Search results for: solid Tumor
691 Association of Genetically Proxied Cholesterol-Lowering Drug Targets and Head and Neck Cancer Survival: A Mendelian Randomization Analysis
Authors: Danni Cheng
Abstract:
Background: Preclinical and epidemiological studies have reported potential protective effects of low-density lipoprotein cholesterol (LDL-C) lowering drugs on head and neck squamous cell cancer (HNSCC) survival, but the causality was not consistent. Genetic variants associated with LDL-C lowering drug targets can predict the effects of their therapeutic inhibition on disease outcomes. Objective: We aimed to evaluate the causal association of genetically proxied cholesterol-lowering drug targets and circulating lipid traits with cancer survival in HNSCC patients stratified by human papillomavirus (HPV) status using two-sample Mendelian randomization (MR) analyses. Method: Single-nucleotide polymorphisms (SNPs) in gene region of LDL-C lowering drug targets (HMGCR, NPC1L1, CETP, PCSK9, and LDLR) associated with LDL-C levels in genome-wide association study (GWAS) from the Global Lipids Genetics Consortium (GLGC) were used to proxy LDL-C lowering drug action. SNPs proxy circulating lipids (LDL-C, HDL-C, total cholesterol, triglycerides, apoprotein A and apoprotein B) were also derived from the GLGC data. Genetic associations of these SNPs and cancer survivals were derived from 1,120 HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) and 2,570 non-HPV-driven HNSCC patients in VOYAGER program. We estimated the causal associations of LDL-C lowering drugs and circulating lipids with HNSCC survival using the inverse-variance weighted method. Results: Genetically proxied HMGCR inhibition was significantly associated with worse overall survival (OS) in non-HPV-drive HNSCC patients (inverse variance-weighted hazard ratio (HR IVW), 2.64[95%CI,1.28-5.43]; P = 0.01) but better OS in HPV-positive OPSCC patients (HR IVW,0.11[95%CI,0.02-0.56]; P = 0.01). Estimates for NPC1L1 were strongly associated with worse OS in both total HNSCC (HR IVW,4.17[95%CI,1.06-16.36]; P = 0.04) and non-HPV-driven HNSCC patients (HR IVW,7.33[95%CI,1.63-32.97]; P = 0.01). A similar result was found that genetically proxied PSCK9 inhibitors were significantly associated with poor OS in non-HPV-driven HNSCC (HR IVW,1.56[95%CI,1.02 to 2.39]). Conclusion: Genetically proxied long-term HMGCR inhibition was significantly associated with decreased OS in non-HPV-driven HNSCC and increased OS in HPV-positive OPSCC. While genetically proxied NPC1L1 and PCSK9 had associations with worse OS in total and non-HPV-driven HNSCC patients. Further research is needed to understand whether these drugs have consistent associations with head and neck tumor outcomes.Keywords: Mendelian randomization analysis, head and neck cancer, cancer survival, cholesterol, statin
Procedia PDF Downloads 96690 Assessment of the Root Causes of Marine Debris Problem in Lagos State
Authors: Chibuzo Okoye Daniels, Gillian Glegg, Lynda Rodwell
Abstract:
The continuously growing quantity of very slow degrading litter deliberately discarded into the coastal waters around Lagos as marine debris is obvious. What is not known is how to tackle this problem to reduce its prevalence and impact on the environment, economy and community. To identify ways of tackling the marine debris problem two case study areas (Ikoyi and Victoria Islands of Lagos State) were used to assess the root causes, the threat posed by marine debris in the coastal waters around Lagos and the efficacy of current instruments, programmes and initiatives that address marine debris in the study areas. The following methods were used: (1) Self-completed questionnaires for households and businesses within the study areas; (2) Semi-structured interviews with key stakeholders; (3) Observational studies of waste management from collection to disposal and waste management facilities for waste originating from land and maritime sources; (4) Beach surveys and marine debris surveys on shorelines and ports; and (5) Fishing for marine debris. Results of this study identified the following root causes: (1) Indiscriminate human activities and behaviors, and lack of awareness on the part of the main stakeholders and the public of the potential consequences of their actions; (2) Poor solid waste management practices; (3) Lack of strict legal frameworks addressing waste and marine debris problem; and (4) Disposal of non-degradable wastes into domestic sewer system and open streets drains. To effectively tackle marine debris problem in the study areas, adequate, appropriate and cost effective solutions to the above mentioned root causes needs to be identified and effectively transferred for implementation in the study areas.Keywords: marine debris problem, Lagos state, litter, coastal waters
Procedia PDF Downloads 378689 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer
Authors: Feng-Sheng Wang, Chao-Ting Cheng
Abstract:
Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution
Procedia PDF Downloads 78688 Epidemiology of Gestational Choriocarcinoma: A Systematic Review
Authors: Farah Amalina Mohamed Affandi, Redhwan Ahmad Al-Naggar, Seok Mui Wang, Thanikasalam Kathiresan
Abstract:
Gestational choriocarcinoma is a condition in which there is an abnormal growth or a tumor inside the women’s uterus after conception. It is a type of gestational trophoblastic disease which is relatively rare and malignant. The current epidemiological data of this disease are inadequate. The purposes of this study are to examine the epidemiology of choriocarcinoma and their risk factors based on all available population-based and hospital-based data of the disease. In this study, we searched The MEDLINE and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases using the keywords ‘choriocarcinoma’, ‘gestational’, ‘gestational choriocarcinoma’ and ‘epidemiology’. We included only human studies published in English between 1995 and 2015 to ensure up to date evidence. Case studies, case reports, animal studies, letters to the editor, news, and review articles were excluded. Retrieved articles were screened in three phases. In the first phase, any articles that did not match the inclusion criteria based solely on titles were excluded. In the second phase, the abstracts of remaining articles were screened thoroughly; any articles that did not meet our inclusion criteria were excluded. In the final phase, full texts of the remaining articles were read and assessed to exclude articles that did not meet the inclusion criteria or any articles that fulfilled the exclusion criteria. Duplicates articles were also removed. Systematic reviews and meta-analysis were excluded. Extracted data were summarized in table and figures descriptively. The reference lists of included studies were thoroughly reviewed in search for other relevant studies. A total of ten studies met all the selection criteria. Nine were retrospective studies and one was cohort study. Total numbers of 4563 cases of choriocarcinoma were reviewed from several countries which are Korea, Japan, South Africa, USA, New Mexico, Finland, Turkey, China, Brazil and The Netherlands. Different studies included different range of age with their mean age of 28.5 to 30.0 years. All studies investigated on the disease’s incidence rate, only two studies examined on the risk factors or associations of the disease. Approximately 20% of the studies showed a reduction in the incidence of choriocarcinoma while the other 80% showed inconsistencies in rate. Associations of age, fertility age, occupations and socio-demographic with the status remains unclear. There is limited information on the epidemiological aspects of gestational choriocarcinoma. The observed results indicated there was a decrease in the incidence rate of gestational choriocarcinoma globally. These could be due to the reduction in the incidence of molar pregnancy and the efficacy of the treatment, mainly by chemotherapy.Keywords: epidemiology, gestational choriocarcinoma, incidence, prevalence, risk factor
Procedia PDF Downloads 328687 Ecotoxicity Evaluation Methodology for Metallurgical and Steel Wastes
Authors: G. Pelozo, N. Quaranta
Abstract:
The assessment of environmental hazard and ecotoxicological potential of industrial wastes has become an issue of concern in many countries. Therefore, the aim of this work is to develop a methodology, adapting an Argentinian standard, which allows analyze the ecotoxicological effect of various metallurgical and steel wastes. Foundry sand, white mud, red mud, electric arc furnace dust, converter slag, among others, are the studied wastes. The species used to analyze the ecotoxicological effects of wastes is rye grass (Lolium Perenne). The choice of this kind lies, among other things, in its easy and rapid germination making it possible to develop the test in a few days. Moreover, since the processes involved are general for most seeds, the obtained results with this kind are representative, in general, of the effects on seeds or seedlings. Since the studied residues are solids, prior to performing the assay, an eluate is obtained by stirring for 2 hours and subsequent filtration of a solution of waste in water in a relationship of 1:4. This represents 100% of eluate from which two dilutions in water (25% and 50%) are prepared. A sample with untreated solid waste and water is also performed. The test is performed by placing two filter papers in a Petri dish that are saturated with 3.5ml of the prepared dilutions. After that 20 rye grass seeds are placed, and the Petri dishes are covered and the seeds are incubated for 120 hours at 24 °C. Reference controls are carried out by distilled water. Three replicates are performed for each concentration. Once the exposure period is finished, inhibiting elongation of the root is measured (IR). The results of this test show that all the studied wastes produce an unfavorable effect on the development of the seedlings, being the electric arc furnace dust which more affects the germination.Keywords: ecotoxicity, industrial wastes, environmental hazard, seeds
Procedia PDF Downloads 402686 Demonstrating the Efficacy of a Low-Cost Carbon Dioxide-Based Cryoablation Device in Veterinary Medicine for Translation to Third World Medical Applications
Authors: Grace C. Kuroki, Yixin Hu, Bailey Surtees, Rebecca Krimins, Nicholas J. Durr, Dara L. Kraitchman
Abstract:
The purpose of this study was to perform a Phase I veterinary clinical trial with a low-cost, carbon-dioxide-based, passive thaw cryoablation device as proof-of-principle for application in pets and translation to third-world treatment of breast cancer. This study was approved by the institutional animal care and use committee. Client-owned dogs with subcutaneous masses, primarily lipomas or mammary cancers, were recruited for the study. Inclusion was based on clinical history, lesion location, preanesthetic blood work, and fine needle aspirate or biopsy confirmation of mass. Informed consent was obtained from the owners for dogs that met inclusion criteria. Ultrasound assessment of mass extent was performed immediately prior to mass cryoablation. Dogs were placed under general anesthesia and sterilely prepared. A stab incision was created to insert a custom 4.19 OD x 55.9 mm length cryoablation probe (Kubanda Cryotherapy) into the mass. Originally designed for treating breast cancer in low resource settings, this device has demonstrated potential in effectively necrosing subcutaneous masses. A dose escalation study of increasing freeze-thaw cycles (5/4/5, 7/5/7, and 10/7/10 min) was performed to assess the size of the iceball/necrotic extent of cryoablation. Each dog was allowed to recover for ~1-2 weeks before surgical removal of the mass. A single mass was treated in seven dogs (2 mammary masses, a sarcoma, 4 lipomas, and 1 adnexal mass) with most masses exceeding 2 cm in any dimension. Mass involution was most evident in the malignant mammary and adnexal mass. Lipomas showed minimal shrinkage prior to surgical removal, but an area of necrosis was evident along the cryoablation probe path. Gross assessment indicated a clear margin of cryoablation along the cryoprobe independent of tumor type. Detailed histopathology is pending, but complete involution of large lipomas appeared to be unlikely with a 10/7/10 protocol. The low-cost, carbon dioxide-based cryotherapy device permits a minimally invasive technique that may be useful for veterinary applications but is also informative of the unlikely resolution of benign adipose breast masses that may be encountered in third world countries.Keywords: cryoablation, cryotherapy, interventional oncology, veterinary technology
Procedia PDF Downloads 130685 The Plant Hormone Auxin Impacts the Profile of Aroma Compounds in Tomato Fruits (Solanum lycopersicum)
Authors: Vanessa Caroline De Barros Bonato, Bruna Lima Gomes, Luciano Freschi, Eduardo Purgatto
Abstract:
The plant hormone ethylene is closely related to the metabolic changes that occur during fruit ripening, including volatile biosynthesis. Although knowledge about the biochemistry pathways that produce flavor compounds and the importance of ethylene to these processes are extensively covered, little is known about the regulation mechanisms. In addition, growing body of evidences indicates that auxin is also involved in controlling ripening. However, there is scarce information about the involvement of auxin in fruit volatile production. This study aimed to assess auxin-ethylene interactions and its influence on tomato fruit volatile profile. Fruits from tomato cultivar Micro-Tom were treated with IAA and ethylene, separately and in combination. The hormonal treatment was performed by injection (IAA) or gas exposure (ethylene) and the volatiles were extracted by Solid Phase Microextraction (SPME) and analyzed by GC-MS. Ethylene levels and color were measured by gas chromatography and colorimetry, respectively. The results indicate that the treatment with IAA (even in the presence of high concentrations of exogenous ethylene), impacted the profile of volatile compounds derived from fatty acids, amino acids, carbohydrates and isoprenoids. Ethylene is a well-known regulator of the transition from green to red color and also is implicated in the biosynthesis of characteristic volatile compounds of tomato fruit. The effects observed suggest the existence of a crosstalk between IAA and ethylene in the aroma volatile formation in the fruit. A possible interference of IAA in the ethylene sensitivity in the fruit flesh is discussed. The data suggest that auxin plays an important role in the volatile synthesis in the tomato fruit and introduce a new level of complexity in the regulation of the fruit aroma formation during ripening.Keywords: aroma compounds, fruit ripening, fruit quality, phytohormones
Procedia PDF Downloads 396684 Back Extraction and Isolation of Alkaloids from Ionic Liquid-Based Extracts
Authors: Rozalina Keremedchieva, Ivan Svinyarov, Milen G. Bogdanov
Abstract:
In continuation of a research project on the application of ionic liquids (ILs) as an alternative to the conventional organic solvents used in the recovery of value added chemicals of industrial interest1-3 we developed a procedure for back extraction and isolation in pure form of the biologically active alkaloid glaucine from IL-based aqueous solutions. One of the approaches applied was the formation of two-phase systems (IL-ATPS) by the addition of kosmotropic salts to the plant extract. The ability of the salts (Na2CO3, MgSO4, (NH4)2SO4, NaH2PO4) to induce the formation of two-phase systems and the influence of pH value on the partition coefficients of glaucine was comprehensively studied. As a result, it was found that the target alkaloid is preferably partitioned into the IL-rich phase regardless of the pH value of the medium and thus shows the inapplicability of the approach used for the isolation of the target compound from the ionic liquid. However, the results obtained can be used as a platform for the development of an analytical method for the quantitative determination of low concentrations of glaucine in biological samples. We further examined the ability of a series of organic solvents such as diethyl ether, Tert-butylmethyl ether, ethyl acetate, butyl acetate, toluene, chloroform, dichloromethane to recover glaucine form raw IL-based aqueous extracts. Optimal conditions for quantitative extraction of glaucine into chloroform were found from which, after removal of the solvent and subsequent recrystallization from ethanol, the target compound was isolated in a high purity as a hydrobromide salt – The form in which it entrance as an active ingredient in various medicines.Keywords: natural products, ionic liquids, solid-liquid extraction, liquid-liquid extraction
Procedia PDF Downloads 476683 Synthesis and Characterization of Chiral Dopant Based on Schiff's Base Structure
Authors: Hong-Min Kim, Da-Som Han, Myong-Hoon Lee
Abstract:
CLCs (Cholesteric liquid crystals) draw tremendous interest due to their potential in various applications such as cholesteric color filters in LCD devices. CLC possesses helical molecular orientation which is induced by a chiral dopant molecules mixed with nematic liquid crystals. The efficiency of a chiral dopant is quantified by the HTP (helical twisting power). In this work, we designed and synthesized a series of new chiral dopants having a Schiff’s base imine structure with different alkyl chain lengths (butyl, hexyl and octyl) from chiral naphthyl amine by two-step reaction. The structures of new chiral dopants were confirmed by 1H-NMR and IR spectroscopy. The properties were investigated by DSC (differential scanning calorimetry calorimetry), POM (polarized optical microscopy) and UV-Vis spectrophotometer. These solid state chiral dopants showed excellent solubility in nematic LC (MLC-6845-000) higher than 17wt%. We prepared the CLC(Cholesteric Liquid Crystal) cell by mixing nematic LC (MLC-6845-000) with different concentrations of chiral dopants and injecting into the sandwich cell of 5μm cell gap with antiparallel alignment. The cholesteric liquid crystal phase was confirmed from POM, in which all the samples showed planar phase, a typical phase of the cholesteric liquid crystals. The HTP (helical twisting power) is one of the most important properties of CLC. We measured the HTP values from the UV-Vis transmittance spectra of CLC cells with varies chiral dopant concentration. The HTP values with different alkyl chains are as follows: butyl chiral dopant=29.8μm-1; hexyl chiral dopant= 31.8μm-1; octyl chiral dopant=27.7μm-1. We obtained the red, green and blue reflection color from CLC cells, which can be used as color filters in LCDs applications.Keywords: cholesteric liquid crystal, color filter, display, HTP
Procedia PDF Downloads 266682 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application
Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo
Abstract:
Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan
Procedia PDF Downloads 236681 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model
Authors: Can Huang, Xiaoliang Wang, Qingquan Liu
Abstract:
Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH
Procedia PDF Downloads 63680 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds
Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal
Abstract:
EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds
Procedia PDF Downloads 321679 Water Quality, Safety and Drowning Prevention to Preschool Children in Sub-Saharan Africa
Authors: Amos King'ori Githu
Abstract:
Water safety is crucial for all ages, but particularly for children. In the past decade, preschool institutions in Sub-Saharan Africa have seen the inclusion of swimming as one of the co-curricular activities. However, these countries face challenges in adopting frameworks, staffing, and resources to heighten water safety, quality, and drowning prevention, hence the focus of this research. It is worth noting that drowning is a leading cause of injury-related deaths among children. Universally, the highest drowning rates occur among children aged 1-4 years and 5-9 years. Preschool children even stand a higher risk of drowning as they are active, eager, and curious to explore their environment. If not supervised closely around or in water, these children can drown quickly in just a few inches of water. Thus, this empirical review focuses on the identification, assessment, and analysis of water safety efforts to curb drowning among children and assess the quality of water to mitigate contamination that may eventually pose infection risks to the children. In addition, it outlines the use of behavioral theories and evaluation frameworks to guide the above. Notably, a search on ten databases was adopted for crucial peer-reviewed articles, and five were selected in the eventual review. This research relied extensively on secondary data to curb water infections and drowning-inflicted deaths among children. It suffices to say that interventions must be supported that adopt an array of strategies, are guided by planning and theory as well as evaluation frameworks, and are vast in intervention design, evaluation, and delivery methodology. Finally, this approach will offer solid evidence that can be shared to guide future practices and policies in preschools on child safety and drowning prevention.Keywords: water quality and safety, drowning prevention, preschool children, sub-saharan Africa, supervision
Procedia PDF Downloads 60678 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition
Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang
Abstract:
The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer
Procedia PDF Downloads 450677 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction
Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan
Abstract:
The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis
Procedia PDF Downloads 88676 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis
Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus
Abstract:
Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting
Procedia PDF Downloads 329675 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model
Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis
Abstract:
Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.Keywords: artery, drug, nanoparticles, navigation
Procedia PDF Downloads 105674 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii
Authors: Dake Xiong, Ben Hankamer, Ian Ross
Abstract:
The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase
Procedia PDF Downloads 260673 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry
Authors: Samuel Ntsanwisi
Abstract:
This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning
Procedia PDF Downloads 59672 The Role of Semi Open Spaces on Exploitation of Wind-Driven Ventilation
Authors: Paria Saadatjoo
Abstract:
Given that HVAC systems are the main sources of carbon dioxide producers, developing ways to reduce dependence on these systems and making use of natural resources is too important to achieve environmentally friendly buildings. A major part of building potential in terms of using natural energy resources depends on its physical features. So architectural decisions at the first step of the design process can influence the building's energy efficiency significantly. Implementation of semi-open spaces into solid apartment blocks inspired by the concept of courtyard in ancient buildings as a passive cooling strategy is currently enjoying great popularity. However, the analysis of these features and their effect on wind behavior at initial design steps is a difficult task for architects. The main objective of this research was to investigate the influence of semi-open to closed space ratio on airflow patterns in and around midrise buildings and introduce the best ratio in terms of harnessing natural ventilation. The main strategy of this paper was semi-experimental, and the research methodology was descriptive statistics. At the first step, by changing the terrace area, 6 models with various open to closed space ratios were created. These forms were then transferred to CFD software to calculate the primary indicators of natural ventilation potentials such as wind force coefficient, air flow rate, age of air distribution, etc. Investigations indicated that modifying the terrace area and, in other words, the open to closed space ratio influenced the wind force coefficient, airflow rate, and age of air distribution.Keywords: natural ventilation, wind, midrise, open space, energy
Procedia PDF Downloads 169671 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure
Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou
Abstract:
A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure
Procedia PDF Downloads 338670 Drawing Building Blocks in Existing Neighborhoods: An Automated Pilot Tool for an Initial Approach Using GIS and Python
Authors: Konstantinos Pikos, Dimitrios Kaimaris
Abstract:
Although designing building blocks is a procedure used by many planners around the world, there isn’t an automated tool that will help planners and designers achieve their goals with lesser effort. The difficulty of the subject lies in the repeating process of manually drawing lines, while not only it is mandatory to maintain the desirable offset but to also achieve a lesser impact to the existing building stock. In this paper, using Geographical Information Systems (GIS) and the Python programming language, an automated tool integrated into ArcGIS PRO, is being presented. Despite its simplistic enviroment and the lack of specialized building legislation due to the complex state of the field, a planner who is aware of such technical information can use the tool to draw an initial approach of the final building blocks in an area with pre-existing buildings in an attempt to organize the usually sprawling suburbs of a city or any continuously developing area. The tool uses ESRI’s ArcPy library to handle the spatial data, while interactions with the user is made throught Tkinter. The main process consists of a modification of building edgescoordinates, using NumPy library, in an effort to draw the line of best fit, so the user can get the optimal results per block’s side. Finally, after the tool runs successfully, a table of primary planning information is shown, such as the area of the building block and its coverage rate. Regardless of the primary stage of the tool’s development, it is a solid base where potential planners with programming skills could invest, so they can make the tool adapt to their individual needs. An example of the entire procedure in a test area is provided, highlighting both the strengths and weaknesses of the final results.Keywords: arcPy, GIS, python, building blocks
Procedia PDF Downloads 177669 Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. alba
Authors: T. Punjansing, M. Nakkuntod, S. Homchan, P. Inthima, A. Kongbangkerd
Abstract:
The influence of organic supplements on growth and multiplication efficiency of Phaius tankervilleae var. alba seedlings was investigated. 12 week-old seedlings were cultured on half-strength semi-solid Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 8 g/L agar and various concentrations of coconut water (0, 50, 100, 150 and 200 mL/L) combined with potato extract (0, 25 and 50 g/L) and the pH was adjusted to 5.8 prior to autoclaving. The cultures were then kept under constant photoperiod (16 h light: 8 h dark) at 25 ± 2 °C for 12 weeks. The highest number of shoots (3.0 shoots/explant) was obtained when cultured on the medium added with 50 ml/L coconut water and 50 g/L potato extract whereas the highest number of leaves (5.9 leaves/explant) and roots (6.1 roots/explant) could receive on the medium supplemented with 150 ml/L coconut water and 50 g/L potato extract. with 150 ml/L coconut water and 50 g/L potato extract. Additionally, plantlets of P. tankervilleae var. alba were transferred to grow into seven different substrates i.e. soil, sand, coconut husk chip, soil-sand mix (1: 1), soil-coconut husk chip mix (1: 1), sand-coconut husk chip mix (1: 1) and soil-sand-coconut husk chip mix (1: 1: 1) for four weeks. The results found that acclimatized plants showed 100% of survivals when sand, coconut husk chip and sand-coconut husk chip mix are used as substrates. The number of leaves induced by sand-coconut husk chip mix was significantly higher than that planted in other substrates (P > 0.05). Meanwhile, no significant difference in new shoot formation among these substrates was observed (P < 0.05). This precursory developing protocol was likely to be applied for more large scale of plant production as well as conservation of germplasm of this orchid species.Keywords: organic supplements, acclimatization, Phaius tankervilleae var. alba, orchid
Procedia PDF Downloads 228668 The Effect of Incorporating Animal Assisted Interventions with Trauma Focused Cognitive Behavioral Therapy
Authors: Kayla Renteria
Abstract:
This study explored the role animal-assisted psychotherapy (AAP) can play in treating Post-Traumatic Stress Disorder (PTSD) when incorporated into Trauma-informed cognitive behavioral therapy (TF-CBT). A review of the literature was performed to show how incorporating AAP could benefit TF-CBT since this treatment model often presents difficulties, such as client motivation and avoidance of the exposure element of the intervention. In addition, the fluidity of treatment goals during complex trauma cases was explored, as this issue arose in the case study. This study follows the course of treatment of a 12-year-old female presenting with symptoms of PTSD. Treatment consisted of traditional components of the TF-CBT model, with the added elements of AAP to address typical treatment obstacles in TF-CBT. A registered therapy dog worked with the subject in all sessions throughout her treatment. The therapy dog was incorporated into components such as relaxation and coping techniques, narrative therapy techniques, and psychoeducation on the cognitive triangle. Throughout the study, the client’s situation and clinical needs required the therapist to switch goals to focus on current safety and stability. The therapy dog provided support and neurophysiological benefits to the client through AAP during this shift in treatment. The client was assessed quantitatively using the Child PTSD Symptom Scale Self Report for DSM-5 (CPSS-SR-5) before and after therapy and qualitatively through a feedback form given after treatment. The participant showed improvement in CPSS-SR-V scores, and she reported that the incorporation of the therapy animal improved her therapy. The results of this study show how the use of AAP provided the client a solid, consistent relationship with the therapy dog that supported her through processing various types of traumas. Implications of the results of treatment and for future research are discussed.Keywords: animal-assisted therapy, trauma-focused cognitive behavioral therapy, PTSD in children, trauma treatment
Procedia PDF Downloads 215667 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters
Authors: Hecson Christian, Joel Macwan
Abstract:
Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.Keywords: GIS, AHP, MCDA, Geo-technical
Procedia PDF Downloads 144666 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy
Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao
Abstract:
Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation
Procedia PDF Downloads 152665 Study of the Composition of Lipids in Different Kinds of Packaged Food Products
Authors: Zineb Taidirt, Fathia Sebahi, Mohamed Karim Guarchani, Anissa Berkane, Noureddine Smail, Ouahiba Hadjoudj
Abstract:
Cardiovascular diseases are one of the most important causes of death in Algeria. Several risk factors are responsible for this, including the consumption of foods containing saturated fat and trans fatty acids TFAs. This brief presents the results of a descriptive study of the lipid composition of 251 food products marketed in Algeria. The objective of the study is to describe the nature and composition of lipids and to verify the compliance of saturated and trans fatty acids intakes with the regulations. The study is based on data from the nutrition labelling of marketed food products. The results showed that the lipids in foodstuffs are diverse in nature and of varying amounts, but their nature is not specified on all products. In addition, the required content of saturated fatty acids is mentioned only in 29.48% of the products; 21.62% of them do not comply with the standard. Hydrogenation of fats, which produced Trans fatty acids, is common: 19.92% of products contain hydrogenated fats, and 74.89% may contain them according to the aspect of the lipid (solid fat). However, the trans fatty acid content is only mentioned in 5.18% of the products. The latter is above the limits set by Algerian regulations in 50% of the butter samples studied. The composition of lipids in mono- and polyunsaturated fatty acids essential for the body is insufficient: only 13.94% of the products inform their contents on their labels. It is necessary to adopt mandatory restriction of trans fatty acids, to ban the use of partially-hydrogenated oils, and to require required mandatory labeling of the TFAs and the other fatty acids on packaged foods, and to conduct more studies in order to appreciate the intake of TFAs and saturated fat and appreciate their effects on the Algerian population and to get more informed about the composition of the lipid in packaged foods.Keywords: cardiovascular diseases, lipids, nutrition labelling, lipids, trans fatty acids
Procedia PDF Downloads 125664 Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter
Authors: Mauricio Cruz, Andrés Díaz García, Martha Isabel Gómez, Juan Carlos Serrato Bermúdez
Abstract:
The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1.Keywords: bioprocess, scale up, fractional design, C:N ratio, air flow
Procedia PDF Downloads 508663 Posttraumatic Stress Disorder and Associated Factors among Patients with Prostate Cancer
Authors: Meral Huri, Sedef Şahin
Abstract:
Post-traumatic stress disorder (PTSD) is characterized by psychiatric symptoms and triggered by a terrifying experience which may immediately effect cognitive, affective, behavioral and social skills of the individual. One of the most common noncutaneous cancer among men is prostate cancer. The incidence of psychological stress is quite common in men with prostate cancer. The aim of the study was to explore the PTSD frequency among prostate cancer and define the relationship between occupational participation, coping skills and level of perceived social support among patients with prostate cancer. Forty patients diagnosed with prostate cancer were included in the study. After dividing the patients into two groups ( study/ control) according to type of tumor, we recorded their characteristics and evaluations differences. We evaluated the demographic information form, Structured Clinical Interview for DSM-IV (SCID- I)- Clinical Version for PTSD, Multidimensional Scale of Perceived Social Support, Styles of Coping Inventory and Canadian Occupational Performance Measure (COPM) before and after 1 month from surgery. The mean age of the study group (n:18) was 65.85.6 years (range: 61-79 years). The mean age of the control group (n: 22) was a little bit higher than the study group with mean age 71.3±6.9 years (range: 60-85 years). There was no statistically significant difference between the groups for age and the other characteristics. According to the results of the study, statistically significant difference was found between the level of PTSD of study and the control group. 22% of study group showed PTSD while 13% of the control group showed PTSD (r: 0.02, p<0.001). The scores of study group and control group showed statistically significant difference in five sub-categories of Styles of Coping Inventory. Patients with prostate cancer showed decreased scores in optimistic, seeking social supports and self-confident approach, while increased scores in helpless and submissive sub-categories than the control group (p<0.001). The scores of Multidimensional Scale of Perceived Social Supports of study group and control group showed statistically significant difference. The total perceived social supports score of the study group was 71.34 ± 0.75 while it was 75.34 ± 0.64 for the control group. Total and the sub-category scores of study group were statistically significant lower than the control group. According to COPM, mean scores of occupational participation of study group for occupational performance were 4.32±2.24 and 7.01±1.52 for the control group, respectively). Mean Satisfaction scores were 3,22±2.31 and 7.45±1.74 for the study and control group, respectively. The patients with prostate cancer and benign prostate hyperplasia (BPH) did not show any statistically difference in activity performance (r:0.87) while patients with prostate cancer showed statistically lower scores than the patients with BPH in activity satisfaction (r:0.02, p<0.001).Psycho-social occupational therapy interventions might help to decrease the prevalence of PTSD by increasing associated factors such as the social support perception, using coping skills and activity participation of patients with prostate cancer.Keywords: activity performance, occupational therapy, posttraumatic stress disorder, prostate cancer
Procedia PDF Downloads 143662 Analysis of Organizational Hybrid Agile Methods Environments: Frameworks, Benefits, and Challenges
Authors: Majid Alsubaie, Hamed Sarbazhosseini
Abstract:
Many working environments have experienced increased uncertainty due to the fast-moving and unpredictable world. IT systems development projects, in particular, face several challenges because of their rapidly changing environments and emerging technologies. Information technology organizations within these contexts adapt systems development methodology and new software approaches to address this issue. One of these methodologies is the Agile method, which has gained huge attention in recent years. However, due to failure rates in IT projects, there is an increasing demand for the use of hybrid Agile methods among organizations. The scarce research in the area means that organizations do not have solid evidence-based knowledge for the use of hybrid Agile. This research was designed to provide further insights into the development of hybrid Agile methods within systems development projects, including how frameworks and processes are used and what benefits and challenges are gained and faced as a result of hybrid Agile methods. This paper presents how three organizations (two government and one private) use hybrid Agile methods in their Agile environments. The data was collected through interviews and a review of relevant documents. The results indicate that these organizations do not predominantly use pure Agile. Instead, they are waterfall organizations by virtue of systems nature and complexity, and Agile is used underneath as the delivery model. Prince2 Agile framework, SAFe, Scrum, and Kanban were the identified models and frameworks followed. This study also found that customer satisfaction and the ability to build quickly are the most frequently perceived benefits of using hybrid Agile methods. In addition, team resistance and scope changes are the common challenges identified by research participants in their working environments. The findings can help to understand Agile environmental conditions and projects that can help get better success rates and customer satisfaction.Keywords: agile, hybrid, IT systems, management, success rate, technology
Procedia PDF Downloads 107