Search results for: model based clustering
35772 Optimization of Platinum Utilization by Using Stochastic Modeling of Carbon-Supported Platinum Catalyst Layer of Proton Exchange Membrane Fuel Cells
Authors: Ali Akbar, Seungho Shin, Sukkee Um
Abstract:
The composition of catalyst layers (CLs) plays an important role in the overall performance and cost of the proton exchange membrane fuel cells (PEMFCs). Low platinum loading, high utilization, and more durable catalyst still remain as critical challenges for PEMFCs. In this study, a three-dimensional material network model is developed to visualize the nanostructure of carbon supported platinum Pt/C and Pt/VACNT catalysts in pursuance of maximizing the catalyst utilization. The quadruple-phase randomly generated CLs domain is formulated using quasi-random stochastic Monte Carlo-based method. This unique statistical approach of four-phase (i.e., pore, ionomer, carbon, and platinum) model is closely mimic of manufacturing process of CLs. Various CLs compositions are simulated to elucidate the effect of electrons, ions, and mass transport paths on the catalyst utilization factor. Based on simulation results, the effect of key factors such as porosity, ionomer contents and Pt weight percentage in Pt/C catalyst have been investigated at the represented elementary volume (REV) scale. The results show that the relationship between ionomer content and Pt utilization is in good agreement with existing experimental calculations. Furthermore, this model is implemented on the state-of-the-art Pt/VACNT CLs. The simulation results on Pt/VACNT based CLs show exceptionally high catalyst utilization as compared to Pt/C with different composition ratios. More importantly, this study reveals that the maximum catalyst utilization depends on the distance spacing between the carbon nanotubes for Pt/VACNT. The current simulation results are expected to be utilized in the optimization of nano-structural construction and composition of Pt/C and Pt/VACNT CLs.Keywords: catalyst layer, platinum utilization, proton exchange membrane fuel cell, stochastic modeling
Procedia PDF Downloads 12135771 Modeling of Diurnal Pattern of Air Temperature in a Tropical Environment: Ile-Ife and Ibadan, Nigeria
Authors: Rufus Temidayo Akinnubi, M. O. Adeniyi
Abstract:
Existing diurnal air temperature models simulate night time air temperature over Nigeria with high biases. An improved parameterization is presented for modeling the diurnal pattern of air temperature (Ta) which is applicable in the calculation of turbulent heat fluxes in Global climate models, based on Nigeria Micrometeorological Experimental site (NIMEX) surface layer observations. Five diurnal Ta models for estimating hourly Ta from daily maximum, daily minimum, and daily mean air temperature were validated using root-mean-square error (RMSE), Mean Error Bias (MBE) and scatter graphs. The original Fourier series model showed better performance for unstable air temperature parameterizations while the stable Ta was strongly overestimated with a large error. The model was improved with the inclusion of the atmospheric cooling rate that accounts for the temperature inversion that occurs during the nocturnal boundary layer condition. The MBE and RMSE estimated by the modified Fourier series model reduced by 4.45 oC and 3.12 oC during the transitional period from dry to wet stable atmospheric conditions. The modified Fourier series model gave good estimation of the diurnal weather patterns of Ta when compared with other existing models for a tropical environment.Keywords: air temperature, mean bias error, Fourier series analysis, surface energy balance,
Procedia PDF Downloads 23035770 Long-Baseline Single-epoch RTK Positioning Method Based on BDS-3 and Galileo Penta-Frequency Ionosphere-Reduced Combinations
Authors: Liwei Liu, Shuguo Pan, Wang Gao
Abstract:
In order to take full advantages of the BDS-3 penta-frequency signals in the long-baseline RTK positioning, a long-baseline RTK positioning method based on the BDS-3 penta-frequency ionospheric-reduced (IR) combinations is proposed. First, the low noise and weak ionospheric delay characteristics of the multi-frequency combined observations of BDS-3is analyzed. Second, the multi-frequency extra-wide-lane (EWL)/ wide-lane (WL) combinations with long-wavelengths are constructed. Third, the fixed IR EWL combinations are used to constrain the IR WL, then constrain narrow-lane (NL)ambiguityies and start multi-epoch filtering. There is no need to consider the influence of ionospheric parameters in the third step. Compared with the estimated ionospheric model, the proposed method reduces the number of parameters by half, so it is suitable for the use of multi-frequency and multi-system real-time RTK. The results using real data show that the stepwise fixed model of the IR EWL/WL/NL combinations can realize long-baseline instantaneous cimeter-level positioning.Keywords: penta-frequency, ionospheric-reduced (IR), RTK positioning, long-baseline
Procedia PDF Downloads 16935769 Modeling Approach to Better Control Fouling in a Submerged Membrane Bioreactor for Wastewater Treatment: Development of Analytical Expressions in Steady-State Using ASM1
Authors: Benaliouche Hana, Abdessemed Djamal, Meniai Abdessalem, Lesage Geoffroy, Heran Marc
Abstract:
This paper presents a dynamic mathematical model of activated sludge which is able to predict the formation and degradation kinetics of SMP (Soluble microbial products) in membrane bioreactor systems. The model is based on a calibrated version of ASM1 with the theory of production and degradation of SMP. The model was calibrated on the experimental data from MBR (Mathematical modeling Membrane bioreactor) pilot plant. Analytical expressions have been developed, describing the concentrations of the main state variables present in the sludge matrix, with the inclusion of only six additional linear differential equations. The objective is to present a new dynamic mathematical model of activated sludge capable of predicting the formation and degradation kinetics of SMP (UAP and BAP) from the submerged membrane bioreactor (BRMI), operating at low organic load (C / N = 3.5), for two sludge retention times (SRT) fixed at 40 days and 60 days, to study their impact on membrane fouling, The modeling study was carried out under the steady-state condition. Analytical expressions were then validated by comparing their results with those obtained by simulations using GPS-X-Hydromantis software. These equations made it possible, by means of modeling approaches (ASM1), to identify the operating and kinetic parameters and help to predict membrane fouling.Keywords: Activated Sludge Model No. 1 (ASM1), mathematical modeling membrane bioreactor, soluble microbial products, UAP, BAP, Modeling SMP, MBR, heterotrophic biomass
Procedia PDF Downloads 29635768 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 11735767 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model
Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady
Abstract:
The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle
Procedia PDF Downloads 36235766 Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems
Authors: Jun Yuan
Abstract:
Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations.Keywords: shipping emission, electricity ship, charging station, optimal design
Procedia PDF Downloads 6235765 Transforming the Human Resources of the Company in Innovation Factors: Educational Tools
Authors: Ciolomic Ioana Andreea, Farcas Teodora, Tiron-Tudor Adriana
Abstract:
Investments in research and innovation are widely acknowledged as being crucial drivers for economic growth, for job-creation and to secure social and economic welfare. The aim of this article is to disseminate the results of a Leonardo da Vinci Innovation Transfer project, AdapTykes Adaptation of trainings based up on the Finnish Workplace Development Programme. This project aims to analyses the adaptability of the Finnish model to the economic and political environment of the two emergent countries Romania and Hungary, in order to develop workplace innovation. The focus of this paper is to present the adaptability of the Finnish model to the Romanian context.Keywords: innovation, human resources, education, tools
Procedia PDF Downloads 52935764 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model
Authors: Jiachen Wang, Dongxu Ji
Abstract:
Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.Keywords: geothermal power generation, optimization, energy model, thermodynamics
Procedia PDF Downloads 6835763 An Ecosystem Approach to Natural Resource Management: Case Study of the Topčiderska River, Serbia
Authors: Katarina Lazarević, Mirjana Todosijević, Tijana Vulević, Natalija Momirović, Ranka Erić
Abstract:
Due to increasing demand, climate change, and world population growth, natural resources are getting exploit fast. One of the most important natural resources is soil, which is susceptible to degradation. Erosion as one of the forms of land degradation is also one of the most global environmental problems. Ecosystem services are often defined as benefits that nature provides to humankind. Soil, as the foundation of basic ecosystem functions, provides benefits to people, erosion control, water infiltration, food, fuel, fibers… This research is using the ecosystem approach as a strategy for natural resources management for promoting sustainability and conservation. The research was done on the Topčiderska River basin (Belgrade, Serbia). The InVEST Sediment Delivery Ratio model was used, to quantify erosion intensity with a spatial distribution output map of overland sediment generation and delivery to the stream. InVEST SDR, a spatially explicit model, is using a method based on the concept of hydrological connectivity and (R) USLE model. This, combined with socio-economic and law and policy analysis, gives a full set of information to decision-makers helping them to successfully manage and deliver sustainable ecosystems.Keywords: ecosystem services, InVEST model, soil erosion, sustainability
Procedia PDF Downloads 14135762 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis
Procedia PDF Downloads 38435761 Improving Fused Deposition Modeling Efficiency: A Parameter Optimization Approach
Authors: Wadea Ameen
Abstract:
Rapid prototyping (RP) technology, such as fused deposition modeling (FDM), is gaining popularity because it can produce functioning components with intricate geometric patterns in a reasonable amount of time. A multitude of process variables influences the quality of manufactured parts. In this study, four important process parameters such as layer thickness, model interior fill style, support fill style and orientation are considered. Their influence on three responses, such as build time, model material, and support material, is studied. Experiments are conducted based on factorial design, and the results are presented.Keywords: fused deposition modeling, factorial design, optimization, 3D printing
Procedia PDF Downloads 2235760 Physical Education Effect on Sports Science Analysis Technology
Authors: Peter Adly Hamdy Fahmy
Abstract:
The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence
Procedia PDF Downloads 4635759 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources
Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha
Abstract:
Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models
Procedia PDF Downloads 21135758 Relationships between Social Entrepreneurship, CSR and Social Innovation: In Theory and Practice
Authors: Krisztina Szegedi, Gyula Fülöp, Ádám Bereczk
Abstract:
The shared goal of social entrepreneurship, corporate social responsibility and social innovation is the advancement of society. The business model of social enterprises is characterized by unique strategies based on the competencies of the entrepreneurs, and is not aimed primarily at the maximization of profits, but rather at carrying out goals for the benefit of society. Corporate social responsibility refers to the active behavior of a company, by which it can create new solutions to meet the needs of society, either on its own or in cooperation with other social stakeholders. The objectives of this article are to define concepts, describe and integrate relevant theoretical models, develop a model and introduce some examples of international practice that can inspire initiatives for social development.Keywords: corporate social responsibility, CSR, social innovation, social entrepreneurship
Procedia PDF Downloads 32335757 Survey to Assess the Feasibility of Executing the Web-Based Collaboration Process Using WBCS
Authors: Mohamed A. Sullabi
Abstract:
The importance of the formal specification in the software life cycle is barely concealing to anyone. Formal specifications use mathematical notation to describe the properties of information system precisely, without unduly constraining the way in how these properties are achieved. Having a correct and quality software specification is not easy task. This study concerns with how a group of rectifiers can communicate with each other and work to prepare and produce a correct formal software specification. WBCS has been implemented based mainly in the proposed supported cooperative work model and a survey conducted on the existing Webbased collaborative writing tools. This paper aims to assess the feasibility of executing the web-based collaboration process using WBCS. The purpose of conducting this test is to test the system as a whole for functionality and fitness for use based on the evaluation test plan.Keywords: formal methods, formal specifications, collaborative writing, usability testing
Procedia PDF Downloads 39835756 Impact of Artificial Intelligence Technologies on Information-Seeking Behaviors and the Need for a New Information Seeking Model
Authors: Mohammed Nasser Al-Suqri
Abstract:
Former information-seeking models are proposed more than two decades ago. These already existed models were given prior to the evolution of digital information era and Artificial Intelligence (AI) technologies. Lack of current information seeking models within Library and Information Studies resulted in fewer advancements for teaching students about information-seeking behaviors, design of library tools and services. In order to better facilitate the aforementioned concerns, this study aims to propose state-of-the-art model while focusing on the information seeking behavior of library users in the Sultanate of Oman. This study aims for the development, designing and contextualizing the real-time user-centric information seeking model capable of enhancing information needs and information usage along with incorporating critical insights for the digital library practices. Another aim is to establish far-sighted and state-of-the-art frame of reference covering Artificial Intelligence (AI) while synthesizing digital resources and information for optimizing information-seeking behavior. The proposed study is empirically designed based on a mix-method process flow, technical surveys, in-depth interviews, focus groups evaluations and stakeholder investigations. The study data pool is consist of users and specialist LIS staff at 4 public libraries and 26 academic libraries in Oman. The designed research model is expected to facilitate LIS by assisting multi-dimensional insights with AI integration for redefining the information-seeking process, and developing a technology rich model.Keywords: artificial intelligence, information seeking, information behavior, information seeking models, libraries, Sultanate of Oman
Procedia PDF Downloads 11535755 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 14735754 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD
Procedia PDF Downloads 20235753 Contactless Electromagnetic Detection of Stress Fluctuations in Steel Elements
Authors: M. A. García, J. Vinolas, A. Hernando
Abstract:
Steel is nowadays one of the most important structural materials because of its outstanding mechanical properties. Therefore, in order to look for a sustainable economic model and to optimize the use of extensive resources, new methods to monitor and prevent failure of steel-based facilities are required. The classical mechanical tests, as for instance building tasting, are invasive and destructive. Moreover, for facilities where the steel element is embedded, (as reinforced concrete) these techniques are directly non applicable. Hence, non-invasive monitoring techniques to prevent failure, without altering the structural properties of the elements are required. Among them, electromagnetic methods are particularly suitable for non-invasive inspection of the mechanical state of steel-based elements. The magnetoelastic coupling effects induce a modification of the electromagnetic properties of an element upon applied stress. Since most steels are ferromagnetic because of their large Fe content, it is possible to inspect their structure and state in a non-invasive way. We present here a distinct electromagnetic method for contactless evaluation of internal stress in steel-based elements. In particular, this method relies on measuring the magnetic induction between two coils with the steel specimen in between them. We found that the alteration of electromagnetic properties of the steel specimen induced by applied stress-induced changes in the induction allowed us to detect stress well below half of the elastic limit of the material. Hence, it represents an outstanding non-invasive method to prevent failure in steel-based facilities. We here describe the theoretical model, present experimental results to validate it and finally we show a practical application for detection of stress and inhomogeneities in train railways.Keywords: magnetoelastic, magnetic induction, mechanical stress, steel
Procedia PDF Downloads 5035752 Numerical Solutions of an Option Pricing Rainfall Derivatives Model
Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa
Abstract:
Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives
Procedia PDF Downloads 10735751 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation
Authors: U. Yavas, M. Gokasan
Abstract:
Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.Keywords: predictive control, engine control, engine modeling, PID control, feedforward compensation
Procedia PDF Downloads 63635750 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes
Authors: Yaxian Chen, Yeonhee Park
Abstract:
Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome
Procedia PDF Downloads 6435749 Two Quasiparticle Rotor Model for Deformed Nuclei
Authors: Alpana Goel, Kawalpreet Kalra
Abstract:
The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.Keywords: deformed nuclei, signature effects, signature inversion, signature reversal
Procedia PDF Downloads 15835748 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication
Authors: M. Guemmadi, A. Ouibrahim
Abstract:
This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity
Procedia PDF Downloads 54235747 Visualization of PM₂.₅ Time Series and Correlation Analysis of Cities in Bangladesh
Authors: Asif Zaman, Moinul Islam Zaber, Amin Ahsan Ali
Abstract:
In recent years of industrialization, the South Asian countries are being affected by air pollution due to a severe increase in fine particulate matter 2.5 (PM₂.₅). Among them, Bangladesh is one of the most polluting countries. In this paper, statistical analyses were conducted on the time series of PM₂.₅ from various districts in Bangladesh, mostly around Dhaka city. Research has been conducted on the dynamic interactions and relationships between PM₂.₅ concentrations in different zones. The study is conducted toward understanding the characteristics of PM₂.₅, such as spatial-temporal characterization, correlation of other contributors behind air pollution such as human activities, driving factors and environmental casualties. Clustering on the data gave an insight on the districts groups based on their AQI frequency as representative districts. Seasonality analysis on hourly and monthly frequency found higher concentration of fine particles in nighttime and winter season, respectively. Cross correlation analysis discovered a phenomenon of correlations among cities based on time-lagged series of air particle readings and visualization framework is developed for observing interaction in PM₂.₅ concentrations between cities. Significant time-lagged correlations were discovered between the PM₂.₅ time series in different city groups throughout the country by cross correlation analysis. Additionally, seasonal heatmaps depict that the pooled series correlations are less significant in warmer months, and among cities of greater geographic distance as well as time lag magnitude and direction of the best shifted correlated particulate matter time series among districts change seasonally. The geographic map visualization demonstrates spatial behaviour of air pollution among districts around Dhaka city and the significant effect of wind direction as the vital actor on correlated shifted time series. The visualization framework has multipurpose usage from gathering insight of general and seasonal air quality of Bangladesh to determining the pathway of regional transportation of air pollution.Keywords: air quality, particles, cross correlation, seasonality
Procedia PDF Downloads 10535746 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 9435745 Music Piracy Revisited: Agent-Based Modelling and Simulation of Illegal Consumption Behavior
Authors: U. S. Putro, L. Mayangsari, M. Siallagan, N. P. Tjahyani
Abstract:
National Collective Management Institute (LKMN) in Indonesia stated that legal music products were about 77.552.008 unit while illegal music products were about 22.0688.225 unit in 1996 and this number keeps getting worse every year. Consequently, Indonesia named as one of the countries with high piracy levels in 2005. This study models people decision toward unlawful behavior, music content piracy in particular, using agent-based modeling and simulation (ABMS). The classification of actors in the model constructed in this study are legal consumer, illegal consumer, and neutral consumer. The decision toward piracy among the actors is a manifestation of the social norm which attributes are social pressure, peer pressure, social approval, and perceived prevalence of piracy. The influencing attributes fluctuate depending on the majority of surrounding behavior called social network. There are two main interventions undertaken in the model, campaign and peer influence, which leads to scenarios in the simulation: positively-framed descriptive norm message, negatively-framed descriptive norm message, positively-framed injunctive norm with benefits message, and negatively-framed injunctive norm with costs message. Using NetLogo, the model is simulated in 30 runs with 10.000 iteration for each run. The initial number of agent was set 100 proportion of 95:5 for illegal consumption. The assumption of proportion is based on the data stated that 95% sales of music industry are pirated. The finding of this study is that negatively-framed descriptive norm message has a worse reversed effect toward music piracy. The study discovers that selecting the context-based campaign is the key process to reduce the level of intention toward music piracy as unlawful behavior by increasing the compliance awareness. The context of Indonesia reveals that that majority of people has actively engaged in music piracy as unlawful behavior, so that people think that this illegal act is common behavior. Therefore, providing the information about how widespread and big this problem is could make people do the illegal consumption behavior instead. The positively-framed descriptive norm message scenario works best to reduce music piracy numbers as it focuses on supporting positive behavior and subject to the right perception on this phenomenon. Music piracy is not merely economical, but rather social phenomenon due to the underlying motivation of the actors which has shifted toward community sharing. The indication of misconception of value co-creation in the context of music piracy in Indonesia is also discussed. This study contributes theoretically that understanding how social norm configures the behavior of decision-making process is essential to breakdown the phenomenon of unlawful behavior in music industry. In practice, this study proposes that reward-based and context-based strategy is the most relevant strategy for stakeholders in music industry. Furthermore, this study provides an opportunity that findings may generalize well beyond music piracy context. As an emerging body of work that systematically constructs the backstage of law and social affect decision-making process, it is interesting to see how the model is implemented in other decision-behavior related situation.Keywords: music piracy, social norm, behavioral decision-making, agent-based model, value co-creation
Procedia PDF Downloads 18735744 The Effect of Articial Intelligence on Physical Education Analysis and Sports Science
Authors: Peter Adly Hamdy Fahmy
Abstract:
The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence
Procedia PDF Downloads 6035743 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition
Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang
Abstract:
Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model
Procedia PDF Downloads 109