Search results for: fourth generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3918

Search results for: fourth generation

1638 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: bending and deflection, bridge beam, compression, Nigerian Opepe, shear, structural reliability

Procedia PDF Downloads 451
1637 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems

Authors: Ting Gao, Mingyue He

Abstract:

Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.

Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning

Procedia PDF Downloads 130
1636 Low Probability of Intercept (LPI) Signal Detection and Analysis Using Choi-Williams Distribution

Authors: V. S. S. Kumar, V. Ramya

Abstract:

In the modern electronic warfare, the signal scenario is changing at a rapid pace with the introduction of Low Probability of Intercept (LPI) radars. In the modern battlefield, radar system faces serious threats from passive intercept receivers such as Electronic Attack (EA) and Anti-Radiation Missiles (ARMs). To perform necessary target detection and tracking and simultaneously hide themselves from enemy attack, radar systems should be LPI. These LPI radars use a variety of complex signal modulation schemes together with pulse compression with the aid of advancement in signal processing capabilities of the radar such that the radar performs target detection and tracking while simultaneously hiding enemy from attack such as EA etc., thus posing a major challenge to the ES/ELINT receivers. Today an increasing number of LPI radars are being introduced into the modern platforms and weapon systems so these LPI radars created a requirement for the armed forces to develop new techniques, strategies and equipment to counter them. This paper presents various modulation techniques used in generation of LPI signals and development of Time Frequency Algorithms to analyse those signals.

Keywords: anti-radiation missiles, cross terms, electronic attack, electronic intelligence, electronic warfare, intercept receiver, low probability of intercept

Procedia PDF Downloads 453
1635 The Effects of Science, Technology, Engineering and Math Problem-Based Learning on Native Hawaiians and Other Underrepresented, Low-Income, Potential First-Generation High School Students

Authors: Nahid Nariman

Abstract:

The prosperity of any nation depends on its ability to use human potential, in particular, to offer an education that builds learners' competencies to become effective workforce participants and true citizens of the world. Ever since the Second World War, the United States has been a dominant player in the world politically, economically, socially, and culturally. The rapid rise of technological advancement and consumer technologies have made it clear that science, technology, engineering, and math (STEM) play a crucial role in today’s world economy. Exploring the top qualities demanded from new hires in the industry—i.e., problem-solving skills, teamwork, dependability, adaptability, technical and communication skills— sheds light on the kind of path that is needed for a successful educational system to effectively support STEM. The focus of 21st century education has been to build student competencies by preparing them to acquire and apply knowledge, to think critically and creatively, to competently use information, be able to work in teams, to demonstrate intellectual and moral values as well as cultural awareness, and to be able to communicate. Many educational reforms pinpoint various 'ideal' pathways toward STEM that educators, policy makers, and business leaders have identified for educating the workforce of tomorrow. This study will explore how problem-based learning (PBL), an instructional strategy developed in the medical field and adopted with many successful results in K-12 through higher education, is the proper approach to stimulate underrepresented high school students' interest in pursuing STEM careers. In the current study, the effect of a problem-based STEM model on students' attitudes and career interests was investigated using qualitative and quantitative methods. The participants were 71 low-income, native Hawaiian high school students who would be first-generation college students. They were attending a summer STEM camp developed as the result of a collaboration between the University of Hawaii and the Upward Bound Program. The project, funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program, used PBL as an approach in challenging students to engage in solving hands-on, real-world problems in their communities. Pre-surveys were used before camp and post-surveys on the last day of the program to learn about the implementation of the PBL STEM model. A Career Interest Questionnaire provided a way to investigate students’ career interests. After the summer camp, a representative selection of students participated in focus group interviews to discuss their opinions about the PBL STEM camp. The findings revealed a significantly positive increase in students' attitudes towards STEM disciplines and STEM careers. The students' interview results also revealed that students identified PBL to be an effective form of instruction in their learning and in the development of their 21st-century skills. PBL was acknowledged for making the class more enjoyable and for raising students' interest in STEM careers, while also helping them develop teamwork and communication skills in addition to scientific knowledge. As a result, the integration of PBL and a STEM learning experience was shown to positively affect students’ interest in STEM careers.

Keywords: problem-based learning, science education, STEM, underrepresented students

Procedia PDF Downloads 110
1634 In-situ Oxygen Enrichment for UCG

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane.

Keywords: membranes, oxygen-enrichment, gasification, coal

Procedia PDF Downloads 309
1633 Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area

Authors: Van-Dycke Sarpong Asare, Vincent Adongo

Abstract:

Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus.

Keywords: tomography, characterization, consolidated, Pwalugu and seismograph

Procedia PDF Downloads 117
1632 Evaluation of Hollocelulase Production for Lignocellulosic Biomass Degradation by Penicillium polonicum

Authors: H. M. Takematsu, B. R. De Camargo, E. F. Noronha

Abstract:

The use of hydrolyzing enzymes for degradation of lignocellulosic biomass is of great concern for the production of second generation ethanol. Although many hollocelulases have already been described in the literature, much more has to be discovered. Therefore, the aim of this study to evaluate hollocelulase production of P. polonicum grown in liquid media containing sugarcane bagasse as the carbon source. From a collection of twenty fungi isolated from Cerrado biome soil, P. polonicum was molecular identified by sequencing of ITS4, βtubulin and Calmodulin genes, and has been chosen to be further investigated regarding its potential production of hydrolyzing enzymes. Spore suspension (1x10-6 ml-1) solution was inoculated in sterilized minimal liquid medium containing 0,5%(w/v) of non-pretreated sugarcane bagasse as the carbon source, and incubated in shaker incubator at 28°C and 120 rpm. The supernatant obtained, was subjected to enzymatic assays to analyze xylanase, mannanase, pectinase and endoglucanase activities. Xylanase activity showed better results (67,36 UI/mg). Xylanases bands were indicated by zymogram and SDS-PAGE, and one of them was partially purified and characterized. It showed maximum activity at 50 °C, was thermostable for 72h at 40°C, and pH5.0 was the optimum observed. This study presents P. polonicum as an interesting source of hollocelulases, especially xylanase, for lignocellulose bio-conversion processes with commercial use.

Keywords: sugarcane bagasse, Cerrado biome , hollocelulase, lignocellulosic biomass

Procedia PDF Downloads 281
1631 Virtual 3D Environments for Image-Based Navigation Algorithms

Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka

Abstract:

This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.

Keywords: simulation, visual navigation, mobile robot, data visualization

Procedia PDF Downloads 246
1630 Applications of Multi-Path Futures Analyses for Homeland Security Assessments

Authors: John Hardy

Abstract:

A range of future-oriented intelligence techniques is commonly used by states to assess their national security and develop strategies to detect and manage threats, to develop and sustain capabilities, and to recover from attacks and disasters. Although homeland security organizations use future's intelligence tools to generate scenarios and simulations which inform their planning, there have been relatively few studies of the methods available or their applications for homeland security purposes. This study presents an assessment of one category of strategic intelligence techniques, termed Multi-Path Futures Analyses (MPFA), and how it can be applied to three distinct tasks for the purpose of analyzing homeland security issues. Within this study, MPFA are categorized as a suite of analytic techniques which can include effects-based operations principles, general morphological analysis, multi-path mapping, and multi-criteria decision analysis techniques. These techniques generate multiple pathways to potential futures and thereby generate insight into the relative influence of individual drivers of change, the desirability of particular combinations of pathways, and the kinds of capabilities which may be required to influence or mitigate certain outcomes. The study assessed eighteen uses of MPFA for homeland security purposes and found that there are five key applications of MPFA which add significant value to analysis. The first application is generating measures of success and associated progress indicators for strategic planning. The second application is identifying homeland security vulnerabilities and relationships between individual drivers of vulnerability which may amplify or dampen their effects. The third application is selecting appropriate resources and methods of action to influence individual drivers. The fourth application is prioritizing and optimizing path selection preferences and decisions. The fifth application is informing capability development and procurement decisions to build and sustain homeland security organizations. Each of these applications provides a unique perspective of a homeland security issue by comparing a range of potential future outcomes at a set number of intervals and by contrasting the relative resource requirements, opportunity costs, and effectiveness measures of alternative courses of action. These findings indicate that MPFA enhances analysts’ ability to generate tangible measures of success, identify vulnerabilities, select effective courses of action, prioritize future pathway preferences, and contribute to ongoing capability development in homeland security assessments.

Keywords: homeland security, intelligence, national security, operational design, strategic intelligence, strategic planning

Procedia PDF Downloads 129
1629 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).

Keywords: process optimization, RGB models, thermal models, , UAV, workflow

Procedia PDF Downloads 129
1628 Heat Transfer Analysis of Helical Grooved Passages near the Leading Edge Region in Gas Turbine Blade

Authors: Harishkumar Kamath, Chandrakant R. Kini, N. Yagnesh Sharma

Abstract:

Gas turbines are highly effective engineered prime movers for converting energy from thermal form (combustion stage) to mechanical form – are widely used for propulsion and power generation systems. One method of increasing both the power output and thermal efficiency is to increase the temperature of the gas entering the turbine. In the advanced gas turbines of today, the turbine inlet temperature can be as high as 1500°C; however, this temperature exceeds the melting temperature of the metal blade. With modern gas turbines operating at extremely high temperatures, it is necessary to implement various cooling methods, so the turbine blades and vanes endure in the path of the hot gases. Merely passing coolant air through the blade does not provide adequate cooling; therefore, it is necessary to implement techniques that will further enhance the heat transfer from the blade walls. It is seen that by incorporating helical grooved passages into the leading edge built on turbulence and higher flow rates through the passages, the blade can be cooled effectively. It seen from the analysis helical grooved passages with diameter 5 mm, helical pitch of 50 mm and 8 starts results in better cooling of turbine blade and gives the best thermal performance.

Keywords: blade cooling, helical grooves, leading edge, numerical analysis

Procedia PDF Downloads 255
1627 Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems

Authors: Mehdi Radmehr, Amir Hamed Mashhadzadeh, Mehdi Jafari

Abstract:

Traditional HVDC systems are tough to DC short circuits as they are current regulated with a large reactance connected in series with cables. Multi-terminal DC wind farm topologies are attracting increasing research attempt. With AC/DC converters on the generator side, this topology can be developed into a multi-terminal DC network for wind power collection, which is especially suitable for large-scale offshore wind farms. For wind farms, the topology uses high-voltage direct-current transmission based on voltage-source converters (VSC-HVDC). Therefore, they do not suffer from over currents due to DC cable faults and there is no over current to react to. In this study, the multi-terminal DC wind farm topology is introduced. Then, possible internal DC faults are analyzed according to type and characteristic. Fault over current expressions are given in detail. Under this characteristic analysis, fault detection and detailed protection methods are proposed. Theoretical analysis and PSCAD/EMTDC simulations are provided.

Keywords: DC short circuits, multi-terminal DC wind farm topologies, HVDC transmission based on VSC, fault analysis

Procedia PDF Downloads 413
1626 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process

Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy

Abstract:

In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.

Keywords: hydrogen production, water splitting, photocatalysts, Graphene

Procedia PDF Downloads 177
1625 A Facile Synthesis Strategy of Saccharine/TiO₂ Composite Heterojunction Catalyst for Co₂RR

Authors: Jenaidullah Batur, Sebghatullah Mudaber

Abstract:

Currently, there is a list of catalysts that can reduce CO₂ to valuable chemicals and fuels, among them metal oxides such as TiO₂, known as promising photocatalysts to produce hydrogen and CO unless they are at an earlier age and still need to promote activity to able for produce fabricated values. Herein, in this work, we provided a novel, facile and eco-friendly synthesis strategy to synthesize more effective TiO₂-organic composite materials to selectively reduce CO₂ to CO. In this experiment, commercial nanocrystalline TiO₂ and saccharin with Li (LiBr, LiCl) were synthesized using the facile physical grinding in the motel pestle for 10 minutes, then added 10 mL of deionized water (18.2 megaohms) on the 300mg composite catalyst before samples moving for hydrothermal heating for 24 hours at 80 C in the oven. Compared with nanosized TiO₂, the new TiO₂-Sac-Li indeed displays a high CO generation rate of 70.83 μmol/g/h, which is 7 times higher than TiO₂, which shows enhancement in CO₂ reduction and an apparent improvement in charge carrier dynamic. The CO₂ reduction process at the gas-solid interface on TiO₂-Sac-Li composite semiconductors is investigated by functional calculations and several characterization methods. The results indicate that CO₂ can be easily activated by the TiO₂-Sac-Li atoms on the surface. This work innovatively investigates CO₂ reduction in novel composite materials and helps to broaden the applications of composite materials semiconductors.

Keywords: green chemistry, green synthesis, TiO₂, photocatalyst

Procedia PDF Downloads 71
1624 Technological Measures to Reduce the Environmental Impact of Swimming Pools

Authors: Fátima Farinha, Miguel J. Oliveira, Gina Matias, Armando Inverno, Jânio Monteiro, Cristiano Cabrita

Abstract:

In the last decades, the construction of swimming pools for recreational activities has grown exponentially in southern Europe. Swimming pools are used both for private use in villas and for collective use in hotels or condominiums. However, they have a high environmental impact, mainly in terms of water and energy consumption, being used for a short period of time, depending significantly on favorable atmospheric conditions. Contrary to what would be expected, not enough research has been conducted to reduce the negative impact of this equipment. In this context, this work proposes and analyses technological measures to reduce the environmental impacts of swimming pools, such as thermal insulation of the tank, water balance in order to detect leaks and optimize the backwash process, integration of renewable energy generation, and a smart control system that meets the requirements of the user. The work was developed within the scope of the Ecopool+++ project, which aims to create innovative heated pools with reduced thermal losses and integration of SMART energy plus water management systems. The project is in the final phase of its development, with very encouraging results.

Keywords: swimming pools, sustainability, thermal losses, water management system

Procedia PDF Downloads 85
1623 Atmospheric Oxidation of Carbonyls: Insight to Mechanism, Kinetic and Thermodynamic Parameters

Authors: Olumayede Emmanuel Gbenga, Adeniyi Azeez Adebayo

Abstract:

Carbonyls are the first-generation products from tropospheric degradation reactions of volatile organic compounds (VOCs). This computational study examined the mechanism of removal of carbonyls from the atmosphere via hydroxyl radical. The kinetics of the reactions were computed from the activation energy (using enthalpy (ΔH**) and Gibbs free energy (ΔG**). The minimum energy path (MEP) analysis reveals that in all the molecules, the products have more stable energy than the reactants, which implies that the forward reaction is more thermodynamically favorable. The hydrogen abstraction of the aromatic aldehyde, especially without methyl substituents, is more kinetically favorable compared with the other aldehydes in the order of aromatic (without methyl or meta methyl) > alkene (short chain) > diene > long-chain aldehydes. The activation energy is much lower for the forward reaction than the backward, indicating that the forward reactions are more kinetically stable than their backward reaction. In terms of thermodynamic stability, the aromatic compounds are found to be less favorable in comparison to the aliphatic. The study concludes that the chemistry of the carbonyl bond of the aldehyde changed significantly from the reactants to the products.

Keywords: atmospheric carbonyls, oxidation, mechanism, kinetic, thermodynamic

Procedia PDF Downloads 38
1622 Structural Equation Modeling Approach: Modeling the Impact of Social Marketing Programs on Combating Female Genital Mutilation in the Sudanese Society

Authors: Nada Abdelsadig Moahamed Saied

Abstract:

Female Genital Mutilation (FGM) and other similar traditional cultural practices pose a significant problem for Sudanese society. Such actions are severe and seriously detrimental to people's health since they are based on false social perceptions. To address these problems, numerous institutions and organizations were compelled to act rapidly. Female circumcision, or FGM, is one of the riskiest practices. It is referred to as the excision of the genitalia. Any surgeries involving the total or partial removal of the external female genitalia for non-medical reasons fall under this category. The results of FGM can vary depending on the kind and degree of the operation. These can be categorized as short-term, mid-term, or long-term issues. Infections, including the Human, blood, discomfort, and difficulty urinating are the immediate effects. FGM is defined by the World Health Organization (WHO) as practices that purposefully damage or modify female genital organs for non-medical purposes. It often takes place between the ages of one and fifteen. The girl's right to decide on important choices affecting her sexual and reproductive health is violated because the act is usually performed without her consent and frequently against her will. UNICEF, the United Nations International Children's Emergency Fund, aggressively combats the issue of FGM in Sudan. Numerous programs were started by NGOs to stop the practice. To our knowledge, no scientific study has been conducted to evaluate the effects of such social marketing techniques on simulating and comprehending society’s feelings surrounding FGM. This study proposes the development of a structural equation model aiming to determine the impact of awareness programs on people’s intentions to adopt the behavior of abandoning FGM based on theoretical models of behavior change. The model incorporates all the relevant factors that contribute to FGM and possible strategic actions to tackle this problem. The theoretical backdrop for FGM is presented in the next section, which also explains the practice's history, justifications, and potential treatments. The methodology section that follows describes the structural equation model. The proposed model, which compiles all the pertinent elements into a single image, is presented in the fourth part. Finally, conclusions are reached, and suggestions for further research are made.

Keywords: social marketing, policy-making, behavioral change, female genital mutilation, culture

Procedia PDF Downloads 68
1621 Estimating PM2.5 Concentrations Based on Landsat 8 Imagery and Historical Field Data over the Metropolitan Area of Mexico City

Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Francisco Andree Ramirez-Casas, Alondra Orozco-Gomez, Miguel Angel Sanchez-Caro, Carlos Herrera-Ventosa

Abstract:

High concentrations of particulate matter in the atmosphere pose a threat to human health, especially over areas with high concentrations of population; however, field air pollution monitoring is expensive and time-consuming. In order to achieve reduced costs and global coverage of the whole urban area, remote sensing can be used. This study evaluates PM2.5 concentrations, over the Mexico City´s metropolitan area, are estimated using atmospheric reflectance from LANDSAT 8, satellite imagery and historical PM2.5 measurements of the Automatic Environmental Monitoring Network of Mexico City (RAMA). Through the processing of the available satellite images, a preliminary model was generated to evaluate the optimal bands for the generation of the final model for Mexico City. Work on the final model continues with the results of the preliminary model. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.

Keywords: air pollution modeling, Landsat 8, PM2.5, remote sensing

Procedia PDF Downloads 177
1620 Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts

Authors: Silviya Todorova, Anton Naydenov, Ralitsa Velinova, Alexander Larin

Abstract:

Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion.

Keywords: methane combustion, palladium, Co-Ce, Ni-Ce

Procedia PDF Downloads 173
1619 Thai Perception on Bitcoin Value

Authors: Toby Gibbs, Suwaree Yordchim

Abstract:

This research analyzes factors affecting the success of Litecoin Value within Thailand and develops a guideline for self-reliance for effective business implementation. Samples in this study included 119 people through surveys. The results revealed four main factors affecting the success as follows: 1) Future Career training should be pursued in applied Litecoin development. 2) Didn't grasp the concept of a digital currency or see the benefit of a digital currency. 3) There is a great need to educate the next generation of learners on the benefits of Litecoin within the community. 4) A great majority didn't know what Litecoin was. The guideline for self-reliance planning consisted of 4 aspects: 1) Development planning: by arranging meet up groups to conduct further education on Litecoin and share solutions on adoption into every day usage. Local communities need to develop awareness of the usefulness of Litecoin and share the value of Litecoin among friends and family. 2) Computer Science and Business Management staff should develop skills to expand on the benefits of Litecoin within their departments. 3) Further research should be pursued on how Litecoin Value can improve business and tourism within Thailand. 4) Local communities should focus on developing Litecoin awareness by encouraging street vendors to accept Litecoin as another form of payment for services rendered.

Keywords: bitcoin, cryptocurrency, decentralized, business implementation

Procedia PDF Downloads 283
1618 Predicting Reading Comprehension in Spanish: The Evidence for the Simple View Model

Authors: Gabriela Silva-Maceda, Silvia Romero-Contreras

Abstract:

Spanish is a more transparent language than English given that it has more direct correspondences between sounds and letters. It has become important to understand how decoding and linguistic comprehension contribute to reading comprehension in the framework of the widely known Simple View Model. This study aimed to identify the level of prediction by these two components in a sample of 1st to 4th grade children attending two schools in central Mexico (one public and one private). Within each school, ten children were randomly selected in each grade level, and their parents were asked about reading habits and socioeconomic information. In total, 79 children completed three standardized tests measuring decoding (pseudo-word reading), linguistic comprehension (understanding of paragraphs) and reading comprehension using subtests from the Clinical Evaluation of Language Fundamentals-Spanish, Fourth Edition, and the Test de Lectura y Escritura en Español (LEE). The data were analyzed using hierarchical regression, with decoding as a first step and linguistic comprehension as a second step. Results showed that decoding accounted for 19.2% of the variance in reading comprehension, while linguistic comprehension accounted for an additional 10%, adding up to 29.2% of variance explained: F (2, 75)= 15.45, p <.001. Socioeconomic status derived from parental questionnaires showed a statistically significant association with the type of school attended, X2 (3, N= 79) = 14.33, p =.002. Nonetheless when analyzing the Simple View components, only decoding differences were statistically significant (t = -6.92, df = 76.81, p < .001, two-tailed); reading comprehension differences were also significant (t = -3.44, df = 76, p = .001, two-tailed). When socioeconomic status was included in the model, it predicted a 5.9% unique variance, even when already accounting for Simple View components, adding to a 35.1% total variance explained. This three-predictor model was also significant: F (3, 72)= 12.99, p <.001. In addition, socioeconomic status was significantly correlated with the amount of non-textbook books parents reported to have at home for both adults (rho = .61, p<.001) and children (rho= .47, p<.001). Results converge with a large body of literature finding socioeconomic differences in reading comprehension; in addition this study suggests that these differences were also present in decoding skills. Although linguistic comprehension differences between schools were expected, it is argued that the test used to collect this variable was not sensitive to linguistic differences, since it came from a test to diagnose clinical language disabilities. Even with this caveat, results show that the components of the Simple View Model can predict less than a third of the variance in reading comprehension in Spanish. However, the results also suggest that a fuller model of reading comprehension is obtained when considering the family’s socioeconomic status, given the potential differences shown by the socioeconomic status association with books at home, factors that are particularly important in countries where inequality gaps are relatively large.

Keywords: decoding, linguistic comprehension, reading comprehension, simple view model, socioeconomic status, Spanish

Procedia PDF Downloads 316
1617 Depressive-Like Behavior in a Murine Model of Colorectal Cancer Associated with Altered Cytokine Levels in Stress-Related Brain Regions

Authors: D. O. Miranda, L. R. Azevedo, J. F. C. Cordeiro, A. H. Dos Santos, S. F. Lisboa, F. S. Guimarães, G. S. Bisson

Abstract:

Background: The Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer death in the world. The prevalence of psychiatric-disorders among CRC patients, mainly depression, is high, resulting in impaired quality of life and side effects of primary treatment. High levels of proinflammatory cytokines at tumor microenvironment is a feature of CRC and the literature suggests that those mediators could contribute to the development of psychiatric disorders. Nevertheless, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and is still not well understood. Therefore, the aim of the present study was to test the hypothesis that depressive-like behavior in an experimental model of CCR induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) was correlated to proinflammatory profile in the periphery and in the brain. Methods: Colorectal carcinogenesis was induced in adult C57BL/6 mice (n=12) by administration of MNNG (5mg/kg, 0.1ml/intrarectal instillation) 2 times a week, for 2 week. Control group (n=12) received saline (0.1ml/intrarectal instillation). Eight weeks after beginning of MNNG administration animals were submitted to the forced swim test (FST) and the sucrose preference test for evaluation, respectively, of depressive- and anhedonia-like behaviors. After behavioral evaluation, the colon was collected and brain regions dissected (cortex-C, striatum-ST and hippocampus-HIP) for posterior evaluation of cytokine levels (IL-1β, IL-10, IL-17, and CX3CL1) by ELISA. Results: MNNG induced depressive-like behavior, represented by increased immobility time in the FST (Student t test, p < 0.05) and lower sucrose preference (Student t test, p < 0.05). Moreover, there were increased levels of IL-1β, IL-17 and CX3CL1 in the colonic tissue (Student t test, p < 0.05) and in the brain (IL-1 β in the ST and HIP, Student t test, p < 0.05; IL-17 and CX3CL1 in the C and HIP, p < 0.05). IL-10 levels, in contrast, were decreased in both the colon (p < 0.05) and the brain (C and HIP, p < 0.05). Conclusions: The results obtained in the present work support the notion that tumor growth induces neuroinflammation in stress-related brain regions and depressive-like behavior, which could be related to the high incidence of depression in colorectal carcinogenesis. This work have important clinical and research implications, taken into account that cytokine levels may be a marker promissory for the developing depression in CRC patients. New therapeutic strategies to assist in alleviating mental suffering in cancer patients might result from a better understanding of the role of cytokines in the pathophysiology of depression in these subjects.

Keywords: cytokines, brain, depression, colorectal cancer

Procedia PDF Downloads 261
1616 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier

Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.

Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)

Procedia PDF Downloads 266
1615 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks

Authors: Mehdi Janbaz

Abstract:

The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.

Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED

Procedia PDF Downloads 134
1614 Assembly Solution for Modular Buildings: Development of a Plug-In Self-Locking Device Designed for Light-Framed Structures

Authors: Laurence Picard, André Bégin-Drolet, Pierre Blanchet

Abstract:

The prefabricated construction industry has been operating in North America for several years now and differs from traditional construction by its much shorter project timelines, lower costs, and increased build quality. Faced with the global housing crisis, prefabrication should be the first choice for erecting buildings quickly and at a low cost. However, the reality is quite different; manufacturers focus their operations mainly on single-home construction. This is explained by the lack of a suitable and efficient assembly solution for erecting large-scale buildings. Indeed, it is difficult to maintain the coveted advantages of prefabrication with a laborious on-site assembly and a colossal load of additional operations such as the installation of fasteners and the internal finishing. In the desire to maximize the benefits of prefabrication and make it a smart choice even for large buildings, an automated connection solution is developed. The plug-in self-locking device was developed accordingly to the product design phases: on-site observations, the definition of the problem and product requirements, solution generation, prototyping, fabricating and testing.

Keywords: assembly solution, automation, construction productivity, modular connection, modular buildings, plug-in device, self-lock mechanism

Procedia PDF Downloads 157
1613 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles

Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad

Abstract:

Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.

Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness

Procedia PDF Downloads 226
1612 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 305
1611 Using Scrum in an Online Smart Classroom Environment: A Case Study

Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr

Abstract:

The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences, and styles of the digital generation of students recently. Further, the onset of the coronavirus disease (COVID-19) pandemic has resulted in online teaching being mandatory. These changes have compounded the problems in the learning engagement and short attention span of HE students. New agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.

Keywords: agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning

Procedia PDF Downloads 154
1610 Knowledge of Nature through the Ultimate Methodology of Buddhism and Philosophy of Karmic Consequence to Uproot through the Buddha’s Perspective

Authors: Pushpa Debnath

Abstract:

Buddhism implies the ultimate methodology to obtain the acknowledgment to get out from cycling existence applied by the sutras. The Buddha’s natural methodology is the highest way of cessation from suffering existence. To be out of it, one must know the suffering before having tentativeness. According to the Buddha’s methodology, one can observe every being suffer from chronologically grasping craving. It is because lack of knowledge that the Buddha finds the four noble truths which are the basic states. These are suffering, the origin of suffering, cessation of suffering, and the path leading to the cessation of suffering. The Buddha describes that birth is suffering, aging is suffering, sickness is suffering, death is suffering, association with the unexpected is suffering, separation from the pleasant is suffering, and not receiving what one desires is suffering, In brief, the five aggregates of clinging are suffering. As the five aggregates are form, feeling, perception, mental formation, and consciousness. These are known as the matter that we identify with “You, Me” or “He.” The second truth cause of suffering is craving which has three types: craving for sense pleasures, craving for existence, and craving for non-existence. The third truth is the obliteration of craving, suffering can be eliminated to attain the Nibbana. The fourth truth is the path of liberation is the noble eight-fold path consisting of the right view, right intention, right speech, right action, right livelihood, right effort, right mindfulness, and right concentration. The six senses are the media of the eye, ear, nose, tongue, body, and mind sense faculties relating with the five aggregates and the six senses objects visual objects, sounds, smells, tastes, touch, and mind-objects that are contained by every visible being. The first five internal sense bases are material while the mind is a non-material phenomenon. Contact with the external world maintains by receiving through the six senses; visual objects through the eye, sounds through the ear, smells through the nose, tastes through the tongue, touch through the body, and mind-objects through sense faculties. These are the six senses a living being experiences by craving. Everything is conglomerated with all senses faculties through the natural phenomenon which are earth, water, fire, and air element. In this analysis, it is believed that beings are well adapted to the natural phenomenon. Everybody has fear of life because we have hatred, delusion, and anger which are the primary resources of falling into (Samsara) continuously that is the continuity of the natural way. These are the reasons for the suffering that chronically self-diluting through the threefold way. These are the roots of the entire beings suffering so the Buddha finds the enlightenment to uproot from cycling existence and the understanding of the natural consequence. When one could uproot ignorance, one could able to realize the ultimate happiness of Nirvana. From the craving of ignorance, everything starts to be present to the future which gives us mental agonies in existence.

Keywords: purification, morality, natural phenomenon, analysis, development of mind, observatory, Nirvana

Procedia PDF Downloads 70
1609 Synthesis of New Anti-Tuberculosis Drugs

Authors: M. S. Deshpande, Snehal D. Bomble

Abstract:

Tuberculosis (TB) is a deadly contagious disease that is caused by a bacterium called Mycobacterium tuberculosis. More than sixty years ago, the introduction of the first anti-TB drugs for the treatment of TB (streptomycin (STR), p-aminosalcylic acid (PAS), isoniazid (INH), and then later ethambutol (EMB) and rifampicin (RIF)) gave optimism to the medical community, and it was believed that the disease would be completely eradicated soon. Worldwide, the number of TB cases has continued to increase, but the incidence rate has decreased since 2003. Recently, highly drug-resistant forms of TB have emerged worldwide. The prolonged use of classical drugs developed a growing resistance and these drugs have gradually become less effective and incapable to meet the challenges, especially those of multi drug resistant (MDR)-TB, extensively drug resistant (XDR)-TB, and HIV-TB co-infections. There is an unmet medical need to discover newer synthetic molecules and new generation of potent drugs for the treatment of tuberculosis which will shorten the time of treatment, be potent and safe while effective facing resistant strains and non-replicative, latent forms, reduce adverse side effect and not interfere in the antiretroviral therapy. This paper attempts to bring out the review of anti-TB drugs, and presents a novel method of synthesizing new anti-tuberculosis drugs and potential compounds to overcome the bacterial resistance and combat the re-emergence of tuberculosis.

Keywords: tuberculosis, mycobacterium, multi-drug resistant (MDR)-TB, extensively drug resistant (XDR)-TB

Procedia PDF Downloads 366