Search results for: field conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16803

Search results for: field conditions

14523 Protein Isolates from Chickpea (Cicer arietinum L.) and Its Application in Cake

Authors: Mohamed Abdullah Ahmed

Abstract:

In a study of chickpea protein isolate (CPI) preparation, the wet alkaline extraction was carried out. The objectives were to determine the optimal extracting conditions of CPI and apply CPI into a sponge cake recipe to replace egg and make acceptable product. The design used in extraction was a central composite design. The response surface methodology was preferred to graphically express the relationship between extraction time and pH with the output variables of percent yield and protein content of CPI. It was noted that optimal extracting conditions were 60 min and pH 10.5 resulting in 90.07% protein content and 89.15% yield of CPI. The protein isolate (CPI) could be incorporated in cake to 20% without adversely affecting the cake physical properties such as cake hardness and sensory attributes. The higher protein content in cake was corresponding to the amount of CPI added. Therefore, adding CPI can significantly (p<0.05) increase protein content in cake. However, sensory evaluation showed that adding more than 20% of CPI decreased the overall acceptability. The results of this investigation could be used as a basic knowledge of CPI utilization in other food products.

Keywords: chick bean protein isolate, sponge cake, utilization, sponge

Procedia PDF Downloads 363
14522 The Effect of Closed Circuit Television Image Patch Layout on Performance of a Simulated Train-Platform Departure Task

Authors: Aaron J. Small, Craig A. Fletcher

Abstract:

This study investigates the effect of closed circuit television (CCTV) image patch layout on performance of a simulated train-platform departure task. The within-subjects experimental design measures target detection rate and response latency during a CCTV visual search task conducted as part of the procedure for safe train dispatch. Three interface designs were developed by manipulating CCTV image patch layout. Eye movements, perceived workload and system usability were measured across experimental conditions. Task performance was compared to identify significant differences between conditions. The results of this study have not been determined.

Keywords: rail human factors, workload, closed circuit television, platform departure, attention, information processing, interface design

Procedia PDF Downloads 165
14521 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice

Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau

Abstract:

The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.

Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices

Procedia PDF Downloads 312
14520 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate

Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki

Abstract:

Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.

Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion

Procedia PDF Downloads 306
14519 Metabolomics Fingerprinting Analysis of Melastoma malabathricum L. Leaf of Geographical Variation Using HPLC-DAD Combined with Chemometric Tools

Authors: Dian Mayasari, Yosi Bayu Murti, Sylvia Utami Tunjung Pratiwi, Sudarsono

Abstract:

Melastoma malabathricum L. is an Indo-Pacific herb that has been traditionally used to treat several ailments such as wounds, dysentery, diarrhea, toothache, and diabetes. This plant is common across tropical Indo-Pacific archipelagos and is tolerant of a range of soils, from low-lying areas subject to saltwater inundation to the salt-free conditions of mountain slopes. How the soil and environmental variation influences secondary metabolite production in the herb, and an understanding of the plant’s utility as traditional medicine, remain largely unknown and unexplored. The objective of this study is to evaluate the variability of the metabolic profiles of M. malabathricum L. across its geographic distribution. By employing high-performance liquid chromatography-diode array detector (HPLC-DAD), a highly established, simple, sensitive, and reliable method was employed for establishing the chemical fingerprints of 72 samples of M. malabathricum L. leaves from various geographical locations in Indonesia. Specimens collected from six terrestrial and archipelago regions of Indonesia were analyzed by HPLC to generate chromatogram peak profiles that could be compared across each region. Data corresponding to the common peak areas of HPLC chromatographic fingerprint were analyzed by hierarchical component analysis (HCA) and principal component analysis (PCA) to extract information on the most significant variables contributing to characterization and classification of analyzed samples data. Principal component values were identified as PC1 and PC2 with 41.14% and 19.32%, respectively. Based on variety and origin, the high-performance liquid chromatography method validated the chemical fingerprint results used to screen the in vitro antioxidant activity of M. malabathricum L. The result shows that the developed method has potential values for the quality of similar M. malabathrium L. samples. These findings provide a pathway for the development and utilization of references for the identification of M. malabathricum L. Our results indicate the importance of considering geographic distribution during field-collection efforts as they demonstrate regional metabolic variation in secondary metabolites of M. malabathricum L., as illustrated by HPLC chromatogram peaks and their antioxidant activities. The results also confirm the utility of this simple approach to a rapid evaluation of metabolic variation between plants and their potential ethnobotanical properties, potentially due to the environments from whence they were collected. This information will facilitate the optimization of growth conditions to suit particular medicinal qualities.

Keywords: fingerprint, high performance liquid chromatography, Melastoma malabathricum l., metabolic profiles, principal component analysis

Procedia PDF Downloads 154
14518 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India

Authors: Sujata Upgupta, Prasoon Kumar Singh

Abstract:

The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.

Keywords: forest, coal mining, indicators, vulnerability

Procedia PDF Downloads 386
14517 Correction Factor to Enhance the Non-Standard Hammer Effect Used in Standard Penetration Test

Authors: Khaled R. Khater

Abstract:

The weight of the SPT hammer is standard (0.623kN). The locally manufacturer drilling rigs use hammers, sometimes deviating off the standard weight. This affects the field measured blow counts (Nf) consequentially, affecting most of correlations previously obtained, as they were obtained based on standard hammer weight. The literature presents energy corrections factor (η2) to be applied to the SPT total input energy. This research investigates the effect of the hammer weight variation, as a single parameter, on the field measured blow counts (Nf). The outcome is a correction factor (ηk), equation, and correction chart. They are recommended to adjust back the measured misleading (Nf) to the standard one as if the standard hammer is used. This correction is very important to be done in such cases where a non-standard hammer is being used because the bore logs in any geotechnical report should contain true and representative values (Nf), let alone the long records of correlations, already in hand. The study here-in is achieved by using laboratory physical model to simulate the SPT dripping hammer mechanism. It is designed to allow different hammer weights to be used. Also, it is manufactured to avoid and eliminate the energy loss sources. This produces a transmitted efficiency up to 100%.

Keywords: correction factors, hammer weight, physical model, standard penetration test

Procedia PDF Downloads 380
14516 Piezosurgery in Periodontics and Oral Implantology

Authors: Neelesh Papineni

Abstract:

Aim: Piezosurgery is a relatively new technique for osteotomy and osteoplasty that uses ultrasonic vibration. The conventional method of treating periodontal cases are by conventional surgeries. However, in this advancing field the use of motor-driven instruments is being considered less invasive. Out of these motor-driven instruments, piezo-electric device has been introduced to the field of periodontics and oral implantology. This article discusses about the wide range of application of piezo-electric device in periodontology, its advantages over conventional surgical therapies and other motor-driven instruments. Results: Piezo- electric has shown better results in aspect of osteotomy, osteoplasty, implants, and any procedure which includes conserving the bone. Also piezo-electric does not cause any kind of damage to the surrounding soft tissue and eliminates the risk of bone necrosis which is a risk factor in other motor driven instruments. Conclusion: In this era of modern dentistry , a successful periodontal and implant surgery requires a sound osseous support. This review gives a pictorial representation about the wide range of application of piezo-electric device in periodontology.

Keywords: piezo-electric, osteotomy, osteoplasty, implantology

Procedia PDF Downloads 370
14515 Technique for Online Condition Monitoring of Surge Arresters

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.

Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current

Procedia PDF Downloads 60
14514 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 401
14513 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field

Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.

Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli

Procedia PDF Downloads 152
14512 Factorial Validity for the Morale Sprit Scale: The Case for Physical Education Faculty Members at Jordanian Universities

Authors: Abedalbasit M. Abedalhafiz, Aman Kasawneh, Zyad Altahynah, Ahmad Okor

Abstract:

The purpose of this study was to determine the construct validity of the morale sprit scale (MSS). Ninety faculty members from colleges of physical education at Jordanian universities were chosen to participate in this study. The design of this study was an ex-post facto. The MSS consists of (48) items that measure different dimensions of morale spirit among faculty members. Principle axis factoring with oblique rotation was utilized to uncover the underlying structure of the instrument. The findings revealed eight factor solution explaining (72.825%). Seven factors were accepted according to the conditions of accepting factors. The seven factors were named morale as reflection of faculty and department's administration, regulations and instructions, working environment and conditions, promotions and incentives and salaries, relations between the faculty member's, the trend toward the college and university, the trend toward self factors.

Keywords: Factorial validity, morale sprit, faculty members, Jordanian Universities

Procedia PDF Downloads 412
14511 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia

Procedia PDF Downloads 375
14510 Geopolymer Concrete: A Review of Properties, Applications and Limitations

Authors: Abbas Ahmed Albu Shaqraa

Abstract:

The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.

Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength

Procedia PDF Downloads 216
14509 Survival of Micro-Encapsulated Probiotic Lactic Acid Bacteria in Mutton Nuggets and Their Assessments in Simulated Gastro-Intestinal Conditions

Authors: Rehana Akhter, Sajad A. Rather, F. A. Masoodi, Adil Gani, S. M. Wani

Abstract:

During recent years probiotic food products receive market interest as health-promoting, functional foods, which are believed to contribute health benefits. In order to deliver the health benefits by probiotic bacteria, it has been recommended that they must be present at a minimum level of 106 CFU/g to 107 CFU/g at point of delivery or be eaten in sufficient amounts to yield a daily intake of 108 CFU. However a major challenge in relation to the application of probiotic cultures in food matrix is the maintenance of viability during processing which might lead to important losses in viability as probiotic cultures are very often thermally labile and sensitive to acidity, oxygen or other food constituents for example, salts. In this study Lactobacillus plantarum and Lactobacillus casei were encapsulated in calcium alginate beads with the objective of enhancing their survivability and preventing exposure to the adverse conditions of the gastrointestinal tract and where then inoculated in mutton nuggets. Micro encapsulated Lactobacillus plantarum and Lactobacillus casei were resistant to simulated gastric conditions (pH 2, 2h) and bile solution (3%, 2 h) resulting in significantly (p ≤ 0.05) improved survivability when compared with free cell counterparts. A high encapsulation yield was found due to the encapsulation procedure. After incubation at low pH-values, micro encapsulation yielded higher survival rates compared to non-encapsulated probiotic cells. The viable cell numbers of encapsulated Lactobacillus plantarum and Lactobacillus casei were 107-108 CFU/g higher compared to free cells after 90 min incubation at pH 2.5. The viable encapsulated cells were inoculated into mutton nuggets at the rate of 108 to 1010 CFU/g. The micro encapsulated Lactobacillus plantarum and Lactobacillus casei achieved higher survival counts (105-107 CFU/g) than the free cell counterparts (102-104 CFU/g). Thus micro encapsulation offers an effective means of delivery of viable probiotic bacterial cells to the colon and maintaining their survival during simulated gastric, intestinal juice and processing conditions during nugget preparation.

Keywords: survival, Lactobacillus plantarum, Lactobacillus casei, micro-encapsulation, nugget

Procedia PDF Downloads 276
14508 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units

Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu

Abstract:

There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.

Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor

Procedia PDF Downloads 180
14507 Evaluating Imitation Behavior of Children with Autism Spectrum Disorder Using Humanoid Robot NAO

Authors: Masud Karim, Md. Solaiman Mia, Saifuddin Md. Tareeq, Md. Hasanuzzaman

Abstract:

Autism Spectrum Disorder (ASD) is a neurodevelopment disorder. Such disorder is found in childhood life. Children with ASD have less capabilities in communication and social skills. Therapies are used to develop communication and social skills. Recently researchers have been trying to use robots in such therapies. In this paper, we have presented social skill learning test cases for children with ASD. Autism conditions are measured in 30 children in a special school. Among them, twelve children are selected who have equal ASD conditions. Then six children participated in training with humans, and another six children participated in training with robots. The learning session continued for one week and three hours each day. We have taken an assessment test before the learning sessions. After completing the learning sessions, we have taken another assessment test. We have found better performances from children who have participated in robotic sessions rather than the children who have participated in human sessions.

Keywords: children with ASD, NAO robot, human-robot interaction, social skills

Procedia PDF Downloads 81
14506 Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth

Authors: Alessandro Falconieri, Sara De Vincentiis, Vittoria Raffa

Abstract:

Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology.

Keywords: axon, external mechanical forces, magnetic nanoparticles, mechanotransduction

Procedia PDF Downloads 119
14505 Magnetic Carriers of Organic Selenium (IV) Compounds: Physicochemical Properties and Possible Applications in Anticancer Therapy

Authors: E. Mosiniewicz-Szablewska, P. Suchocki, P. C. Morais

Abstract:

Despite the significant progress in cancer treatment, there is a need to search for new therapeutic methods in order to minimize side effects. Chemotherapy, the main current method of treating cancer, is non-selective and has a number of limitations. Toxicity to healthy cells is undoubtedly the biggest problem limiting the use of many anticancer drugs. The problem of how to kill cancer without harming a patient can be solved by using organic selenium (IV) compounds. Organic selenium (IV) compounds are a new class of materials showing a strong anticancer activity. They are first organic compounds containing selenium at the +4 oxidation level and therefore they eliminate the multidrug-resistance for all tumor cell lines tested so far. These materials are capable of selectively killing cancer cells without damaging the healthy ones. They are obtained by the incorporation of selenous acid (H2SeO3) into molecules of fatty acids of sunflower oil and therefore, they are inexpensive to manufacture. Attaching these compounds to magnetic carriers enables their precise delivery directly to the tumor area and the simultaneous application of the magnetic hyperthermia, thus creating a huge opportunity to effectively get rid of the tumor without any side effects. Polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (-Fe2O3) nanoparticles and organic selenium (IV) compounds are successfully prepared by nanoprecipitation method. In vitro antitumor activity of the nanocapsules were evidenced using murine melanoma (B16-F10), oral squamos carcinoma (OSCC) and murine (4T1) and human (MCF-7) breast lines. Further exposure of these cells to an alternating magnetic field increased the antitumor effect of nanocapsules. Moreover, the nanocapsules presented antitumor effect while not affecting normal cells. Magnetic properties of the nanocapsules were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements. The nanocapsules presented a typical superparamagnetic behavior around room temperature manifested itself by the split between zero field-cooled/field-cooled (ZFC/FC) magnetization curves and the absence of hysteresis on the field-dependent magnetization curve above the blocking temperature. Moreover, the blocking temperature decreased with increasing applied magnetic field. The superparamagnetic character of the nanocapsules was also confirmed by the occurrence of a maximum in temperature dependences of both real ′(T) and imaginary ′′ (T) components of the ac magnetic susceptibility, which shifted towards higher temperatures with increasing frequency. Additionally, upon decreasing the temperature the ESR signal shifted to lower fields and gradually broadened following closely the predictions for the ESR of superparamagnetoc nanoparticles. The observed superparamagnetic properties of nanocapsules enable their simple manipulation by means of magnetic field gradient, after introduction into the blood stream, which is a necessary condition for their use as magnetic drug carriers. The observed anticancer and superparamgnetic properties show that the magnetic nanocapsules loaded with organic selenium (IV) compounds should be considered as an effective material system for magnetic drug delivery and magnetohyperthermia inductor in antitumor therapy.

Keywords: cancer treatment, magnetic drug delivery system, nanomaterials, nanotechnology

Procedia PDF Downloads 200
14504 Determination of Yield and Some Quality Characteristics of Winter Canola (Brassica napus ssp. oleifera L.) Cultivars

Authors: B. Coşgun, O. Ozturk

Abstract:

Canola is a specific edible type of rapeseed, developed in the 1970s, which contains about 40 percent oil. This research was carried out to determine the yield and some quality characteristics of some winter canola cultivars during the 2010-2011 vegetation period in Central Anatolia of Turkey. In this research; Oase, Dante, Californium, Excalibur, Elvis, ES Hydromel, Licord, Orkan, Vectra, Nelson, Champlain and NK Petrol winter canola varieties were used as material. The field experiment was set up in a “Randomized Complete Block Design” with three replications on 21 September 2010. In this research; seed yield, oil content, protein content, oil yield and protein yield were examined. As a result of this research; seed yield, oil content, oil yield and protein yield (except protein content) were significant differences between the cultivars. The highest seed yield (6348 kg ha-1) was obtained from the NK Petrol, while the lowest seed yield (3949 kg ha-1) was determined from the Champlain cultivar was obtained. The highest oil content (46.73%) was observed from Oase and the lowest value was obtained from Vectra (41.87%) cultivar. The highest oil yield (2950 kg ha-1) was determined from NK Petrol while the least value (1681 kg ha-1) was determined from Champlain cultivar. The highest protein yield (1539.3 kg ha-1) was obtained from NK Petrol and the lowest protein yield (976.5 kg ha-1) was obtained from Champlain cultivar. The main purpose of the cultivation of oil crops, to increase the yield of oil per unit area. According the result of this research, NK Petrol cultivar which ranks first with regard to both seed yield and oil yield between cultivars as the most suitable winter canola cultivar of local conditions.

Keywords: rapeseed, cultivar, seed yield, crude oil ratio, crude protein ratio, crude oil yield, crude protein yield

Procedia PDF Downloads 272
14503 International Humanitarian Law and the Challenges of New Technologies of Warfare

Authors: Uche A. Nnawulezi

Abstract:

Undoubtedly, despite all efforts made to achieve overall peace through the application of the principles of international humanitarian law, crimes against mankind which are of unprecedented concern to the whole world have remained unabated. The fall back on war as a technique for settling disputes between nations, individuals, countries and ethnic groups with accompanying toll of deaths and destruction of properties have remained a conspicuous component of human history. Indeed, to control this conduct of warfare and the dehumanization of individuals, a body of law aimed at regulating the impacts of conflicts and hostilities in the theater of war has become necessary. Thus, it is to examine the conditions in which international humanitarian law will apply and also to determine the extent of the challenges of new progressions of warfare that this study is undertaken. All through this examination, we grasped doctrinal approach wherein we used text books, journals, international materials and supposition of law specialists in the field of international humanitarian law. This paper shall examine the distinctive factors responsible for the rebelliousness to the rules of International Humanitarian Law and furthermore, shall proffer possible courses of action that will address the challenges of new technologies of warfare all over the world. Essentially, the basic proposals made in this paper if totally utilized may go far in ensuring a sufficient standard in the application of the rules of international humanitarian law as it relates to an increasingly frequent phenomenon of contemporary developments in technologies of warfare which has in recent past, made it more difficult for the most ideal application of the rules of international humanitarian law. This paper deduces that for a sustainable global peace to be achieved, the rules of International Humanitarian Law as it relates to the utilization of new technologies of warfare should be completely clung to and should be made a strict liability offense. Likewise, this paper further recommends the introduction of domestic criminal law punishment of serious contraventions of the rules of international humanitarian law.

Keywords: international, humanitarian law, new technologies, warfare

Procedia PDF Downloads 294
14502 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali

Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan

Abstract:

Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.

Keywords: land use/cover, urban, Bali, ASTER

Procedia PDF Downloads 538
14501 Design of Advanced Materials for Alternative Cooling Devices

Authors: Emilia Olivos, R. Arroyave, A. Vargas-Calderon, J. E. Dominguez-Herrera

Abstract:

More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices.

Keywords: ferromagnetic materials, magnetocaloric effect, materials design, solid state refrigeration

Procedia PDF Downloads 204
14500 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: finite element method, flux density, transformer, voltage gradient

Procedia PDF Downloads 279
14499 Native Point Defects in ZnO

Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani

Abstract:

Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.

Keywords: DFT, native, n-type, ZnO

Procedia PDF Downloads 588
14498 Millennial Teachers of Canada: Innovation within the Boxed-In Constraints of Tradition

Authors: Lena Shulyakovskaya

Abstract:

Every year, schools aim to develop and adopt new technology and pedagogy as a way to equip today's students with the needed 21st Century skills. However, the field of primary and secondary education may not be as open to embracing change in reality. Despite the drive to reform and innovation, the field of education in Canada is still very much steeped in tradition and uses many of the practices that came into effect over 50 years ago. Among those are employment and retention practices. Millennials are the youngest generation of professionals entering the workplace at this time and the ones leaving their jobs within just a few years. Almost half of new teachers leave Canadian schools within their first five years on the job. This paper discusses one of the contributing factors that lead Canadian millennial teachers to either leave or stay in the profession - standardized education system. Using an exploratory case study approach, in-depth interviews with former and current millennial teachers were conducted to learn about their experiences within the K-12 system. Among the findings were the young teachers' concerns about the constant changes to teaching practices and technological implementations that claimed to advance teaching and learning, and yet in reality only disguised and reiterated the same traditional, outdated, and standardized practices that already existed. Furthermore, while many millennial teachers aspired to be innovative with their curriculum and teaching practices, they felt trapped and helpless in the hands of school leaders who were very reluctant to change. While many new program ideas and technological advancements are being made openly available to teachers on a regular basis, it is important to consider the education field as a whole and how it plays into the teachers' ability to realistically implement changes. By the year 2025, millennials will make up approximately 75% of the North American workforce. It is important to examine generational differences among teachers and understand how millennial teachers may be shaping the future of primary and secondary schools, either by staying or leaving the profession.

Keywords: 21st century skills, millennials, teacher attrition, tradition

Procedia PDF Downloads 225
14497 A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column

Authors: Nima Khosravi

Abstract:

This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant.

Keywords: beam column, genetic algorithm, particle swarm optimization, sequential quadratic programming, simulated annealing

Procedia PDF Downloads 383
14496 Heritage Making Process of Urban Movements: A Case Study on the Public Struggle for 100% Open Tempelhofer Feld

Authors: Dilsad Aladag

Abstract:

From the closure of Tempelhofer Airport and the field in 2008 till 2014, the field's opening to public use was a subject of an urban movement that comprised demonstrations, protests, squats, workshops, panels, petition campaigns, and a referendum in 2014. As a result, Tempelhofer Feld is an open urban space for the use of Berliners today and protected by 'ThF law'. This analysis questioned how these urban movements' story is narrated and interpreted by two actor groups involved: citizen initiatives and city officials. Representation and communication take a vital part in transmitting and narrating meanings in heritage discourse and practice. Therefore, this research focused on particular websites as channels of representation and communication that these stakeholder groups maintained. The narrative analysis aims to examine meanings and stories portrayed with texts and images on the stakeholder's websites. This paper shares the essential findings of research and draws new questions regarding the urban heritage as both a source and a result of conflicts and stakeholders' role as producers of narrations of urban heritage.

Keywords: conflict, heritage, urban movement, representation

Procedia PDF Downloads 172
14495 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 120
14494 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 115