Search results for: energy analysis software
33562 Development of Alpha Spectroscopy Method with Solid State Nuclear Track Detector Using Aluminium Thin Films
Authors: Nidal Dwaikat
Abstract:
This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 Mev, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 Mev) can penetrate the film and reach the detector’s surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 Mev and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source.Keywords: aluminium thin film, alpha particles, copper substrate, CR-39 detector
Procedia PDF Downloads 36533561 EEG and DC-Potential Level Сhanges in the Elderly
Authors: Irina Deputat, Anatoly Gribanov, Yuliya Dzhos, Alexandra Nekhoroshkova, Tatyana Yemelianova, Irina Bolshevidtseva, Irina Deryabina, Yana Kereush, Larisa Startseva, Tatyana Bagretsova, Irina Ikonnikova
Abstract:
In the modern world the number of elderly people increases. Preservation of functionality of an organism in the elderly becomes very important now. During aging the higher cortical functions such as feelings, perception, attention, memory, and ideation are gradual decrease. It is expressed in the rate of information processing reduction, volume of random access memory loss, ability to training and storing of new information decrease. Perspective directions in studying of aging neurophysiological parameters are brain imaging: computer electroencephalography, neuroenergy mapping of a brain, and also methods of studying of a neurodynamic brain processes. Research aim – to study features of a brain aging in elderly people by electroencephalogram (EEG) and the DC-potential level. We examined 130 people aged 55 - 74 years that did not have psychiatric disorders and chronic states in a decompensation stage. EEG was recorded with a 128-channel GES-300 system (USA). EEG recordings are collected while the participant sits at rest with their eyes closed for 3 minutes. For a quantitative assessment of EEG we used the spectral analysis. The range was analyzed on delta (0,5–3,5 Hz), a theta - (3,5–7,0 Hz), an alpha 1-(7,0–11,0 Hz) an alpha 2-(11–13,0 Hz), beta1-(13–16,5 Hz) and beta2-(16,5–20 Hz) ranges. In each frequency range spectral power was estimated. The 12-channel hardware-software diagnostic ‘Neuroenergometr-KM’ complex was applied for registration, processing and the analysis of a brain constant potentials level. The DC-potential level registered in monopolar leads. It is revealed that the EEG of elderly people differ in higher rates of spectral power in the range delta (р < 0,01) and a theta - (р < 0,05) rhythms, especially in frontal areas in aging. By results of the comparative analysis it is noted that elderly people 60-64 aged differ in higher values of spectral power alfa-2 range in the left frontal and central areas (р < 0,05) and also higher values beta-1 range in frontal and parieto-occipital areas (р < 0,05). Study of a brain constant potential level distribution revealed increase of total energy consumption on the main areas of a brain. In frontal leads we registered the lowest values of constant potential level. Perhaps it indicates decrease in an energy metabolism in this area and difficulties of executive functions. The comparative analysis of a potential difference on the main assignments testifies to unevenness of a lateralization of a brain functions at elderly people. The results of a potential difference between right and left hemispheres testify to prevalence of the left hemisphere activity. Thus, higher rates of functional activity of a cerebral cortex are peculiar to people of early advanced age (60-64 years) that points to higher reserve opportunities of central nervous system. By 70 years there are age changes of a cerebral power exchange and level of electrogenesis of a brain which reflect deterioration of a condition of homeostatic mechanisms of self-control and the program of processing of the perceptual data current flow.Keywords: brain, DC-potential level, EEG, elderly people
Procedia PDF Downloads 48433560 Aerodynamic Analysis of a Frontal Deflector for Vehicles
Authors: C. Malça, N. Alves, A. Mateus
Abstract:
This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption
Procedia PDF Downloads 40733559 Optimizing the Insertion of Renewables in the Colombian Power Sector
Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner
Abstract:
Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.Keywords: energy policy and planning, stochastic programming, sustainable development, water management
Procedia PDF Downloads 29633558 Exploring a Net-Metering Policy Towards Solar Energy Technology Adoption and Sustainability
Authors: Jane Osei, Kerry Brown, Mehran Nejati
Abstract:
Numerous studies have established that solar energy is the second most prevalent form of alternative renewable energy globally, particularly in regions with abundant sunlight. The adoption and ongoing sustainability of solar technology are pivotal for the transition to renewable energy sources. However, the literature indicates that some countries, especially in the developing world, may impede this transition. Despite various policy initiatives aimed at supporting the adoption of solar technology, the long-term effectiveness of these policies remains uncertain. This study investigates the current policy drivers influencing the success or failure of solar energy technology adoption and sustainability. It employs a qualitative review approach to compare strategies for implementing the net-metering policy incentive in both developing and developed countries, identifying successful and unsuccessful strategies and drawing conclusions on the lessons learned. The study's findings reveal that the effective implementation of net metering depends on regional variations in solar radiation and differing levels of electricity demand across regions. Further, the study found that the implementation of net metering has faced challenges in some countries due to regulatory barriers and bottlenecks that hinder private sector involvement and business sustainability. Economic stability also significantly impacts net metering implementation. This study concludes that governments should strive to balance benefit-sharing to attract more private-sector investment in solar technology while ensuring the viability of government energy regulatory bodies.Keywords: solar energy technology, adoption, sustainability, net-metering
Procedia PDF Downloads 3433557 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique
Authors: Rafid Doulab
Abstract:
Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration
Procedia PDF Downloads 11633556 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools
Authors: M. Radunovic
Abstract:
Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management
Procedia PDF Downloads 10933555 Evaluation of Energy Supply and Demand Side Management for Residential Buildings in Ekiti State, Nigeria
Authors: Oluwatosin Samuel Adeoye
Abstract:
Ekiti State is an agrarian state located in south western part of Nigeria. The injected power to the Ado-Ekiti and the entire state are 25MW and 37.6 MW respectively. The estimated power demand for Ado Ekiti and Ekiti state were 29.01MW and 224.116MW respectively. The distributed power to the consumers is characterized with shortcomings which include: in-adequate supply, poor voltage regulation, improper usage, illiteracy and wastage. The power generation in Nigeria is presently 1680.60MW which does not match the estimated power demand of 15,000MW with a population of over 170 million citizens. This paper evaluates the energy utilization in Ado Ekiti metropolis, the wastage and its economic implication as well as effective means of its management. The use of direct interviews, administration of questionnaires, measurements of current and voltage with clamp multimeter, and simple mathematical approach were used for the purpose of evaluation. Recommendations were made with the view of reducing energy waste from mean value of 10.84% to 2% in order to reduce the cost implication such that the huge financial waste can be injected to other parts of the economy as well as the management of energy in Ekiti state.Keywords: consumers, demand, energy, management, power supply, waste
Procedia PDF Downloads 34033554 Real-Time Working Environment Risk Analysis with Smart Textiles
Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane
Abstract:
Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.Keywords: ergonomics, mobile technologies, risk assessment, smart textiles
Procedia PDF Downloads 11733553 Solar Still Absorber Plate Modification and Exergy Analysis
Authors: Dudul Das, Pankaj Kalita, Sangeeta Borah
Abstract:
Freshwater availability in the world is as low as 1% of total water available and in many geographical locations dissolved fluoride and arsenic are serious problem. In India availability of freshwater will be stressed by 2025, so the availability saline water from sea is a hope for the people of Indian sub-continent, but saline water is not drinkable it need to be processed, which again require a huge amount of energy. So the most easy and handy option in such situation for all those problems is solar still, this investigation presents various scopes for improvement of its efficiency. Experiments showed that by increasing the absorber plate area through better design can increase the distillate output by two fold and by using jute wicks in the modified absorber plate increases the output up to three times that of conventional solar still available in the Department of Energy, Tezpur University. The experiment is carried out at constant water depth of 8.5 cm and glass cover inclination of 27o facing South. The exergy analysis carried out clearly resulted that with the use of jute wick and baffle plated basin the efficiency achieved more than the simple baffle plated basin. The Instantaneous exergy without jute wick ranges from 2.5% to 4.5% while using jute it ranges from 1.5% to 5.15%.Keywords: fluoride, absorber plate, jute wick, instantaneous exergy
Procedia PDF Downloads 46333552 UV-Cured Thiol-ene Based Polymeric Phase Change Materials for Thermal Energy Storage
Authors: M. Vezir Kahraman, Emre Basturk
Abstract:
Energy storage technology offers new ways to meet the demand to obtain efficient and reliable energy storage materials. Thermal energy storage systems provide the potential to acquire energy savings, which in return decrease the environmental impact related to energy usage. For this purpose, phase change materials (PCMs) that work as 'latent heat storage units' which can store or release large amounts of energy are preferred. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. PCMs have found different application areas such as solar energy storage and transfer, HVAC (Heating, Ventilating and Air Conditioning) systems, thermal comfort in vehicles, passive cooling, temperature controlled distributions, industrial waste heat recovery, under floor heating systems and modified fabrics in textiles. Ultraviolet (UV)-curing technology has many advantages, which made it applicable in many different fields. Low energy consumption, high speed, room-temperature operation, low processing costs, high chemical stability, and being environmental friendly are some of its main benefits. UV-curing technique has many applications. One of the many advantages of UV-cured PCMs is that they prevent the interior PCMs from leaking. Shape-stabilized PCM is prepared by blending the PCM with a supporting material, usually polymers. In our study, this problem is minimized by coating the fatty alcohols with a photo-cross-linked thiol-ene based polymeric system. Leakage is minimized because photo-cross-linked polymer acts a matrix. The aim of this study is to introduce a novel thiol-ene based shape-stabilized PCM. Photo-crosslinked thiol-ene based polymers containing fatty alcohols were prepared and characterized for the purpose of phase change materials (PCMs). Different types of fatty alcohols were used in order to investigate their properties as shape-stable PCMs. The structure of the PCMs was confirmed by ATR-FTIR techniques. The phase transition behaviors, thermal stability of the prepared photo-crosslinked PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: differential scanning calorimetry (DSC), Polymeric phase change material, thermal energy storage, UV-curing
Procedia PDF Downloads 22833551 Extrudate Swell under the Effect of Radial Flow and Intrinsic Factors to the Polymer Upstream of the Die
Authors: Hela Krir, Abdelhak Ayadi, Chedly Bradaii
Abstract:
The influence of both intrinsic factors, elastic energy and memory effect, and radial flow on the appearance and the evolution of the extrudate swelling are investigated in the present work. The experiments have been performed with linear polydimethylsiloxane (PDMS) via a capillary rheometer in which a convergent radial flow was created upstream the contraction. The correspondence between the effects of radial flow, entry elastic stored energy and memory effect is discussed. In particular, as the influence of the considered radial flow, extrudate photographs showed that when the gap ratio is reduced, the extrudate swell is lessened than what it is when radial flow geometry is not installed. Moreover, with a narrower gap, the polymer stores less energy during its passage through the die which implies a lower extrudate swelling at the outlet of the die. Results previously mentioned may be related both to shear and elongational components of radial flow.Keywords: elastic energy, extrudate swell, memory effect, radial flow
Procedia PDF Downloads 17233550 Zeolite-Enhanced Pyrolysis: Transforming Waste Plastics into Hydrogen
Authors: Said Sair, Hanane Ait Ousaleh, Ilyas Belghazi, Othmane Amadine
Abstract:
Plastic waste has become a major environmental issue, driving the need for innovative solutions to convert it into valuable resources. This study explores the catalytic pyrolysis of plastic waste to produce hydrogen, using zeolite catalysts as a key component in the process. Various zeolites, including types X, A, and P, are synthesized and characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). These techniques are employed to assess the structural and chemical properties of the catalysts. Catalytic pyrolysis experiments are performed under different conditions, including variations in temperature, catalyst loading, and reaction time, to optimize hydrogen production. The results demonstrate that the choice of zeolite catalyst significantly impacts plastic waste conversion efficiency into hydrogen. This research contributes to advancing circular economy principles by providing an effective method for plastic waste management and clean energy production, promoting environmental sustainability.Keywords: hydrogen production, plastic waste, zeolite catalysts, catalytic pyrolysis, circular economy, sustainable energy
Procedia PDF Downloads 1933549 Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications
Authors: Alpha Matthew
Abstract:
The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance.Keywords: coconut carbon husk, power density, energy density, battery, anode electrode
Procedia PDF Downloads 2333548 Calculation of Organ Dose for Adult and Pediatric Patients Undergoing Computed Tomography Examinations: A Software Comparison
Authors: Aya Al Masri, Naima Oubenali, Safoin Aktaou, Thibault Julien, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: The increased number of performed 'Computed Tomography (CT)' examinations raise public concerns regarding associated stochastic risk to patients. In its Publication 102, the ‘International Commission on Radiological Protection (ICRP)’ emphasized the importance of managing patient dose, particularly from repeated or multiple examinations. We developed a Dose Archiving and Communication System that gives multiple dose indexes (organ dose, effective dose, and skin-dose mapping) for patients undergoing radiological imaging exams. The aim of this study is to compare the organ dose values given by our software for patients undergoing CT exams with those of another software named "VirtualDose". Materials and methods: Our software uses Monte Carlo simulations to calculate organ doses for patients undergoing computed tomography examinations. The general calculation principle consists to simulate: (1) the scanner machine with all its technical specifications and associated irradiation cases (kVp, field collimation, mAs, pitch ...) (2) detailed geometric and compositional information of dozens of well identified organs of computational hybrid phantoms that contain the necessary anatomical data. The mass as well as the elemental composition of the tissues and organs that constitute our phantoms correspond to the recommendations of the international organizations (namely the ICRP and the ICRU). Their body dimensions correspond to reference data developed in the United States. Simulated data was verified by clinical measurement. To perform the comparison, 270 adult patients and 150 pediatric patients were used, whose data corresponds to exams carried out in France hospital centers. The comparison dataset of adult patients includes adult males and females for three different scanner machines and three different acquisition protocols (Head, Chest, and Chest-Abdomen-Pelvis). The comparison sample of pediatric patients includes the exams of thirty patients for each of the following age groups: new born, 1-2 years, 3-7 years, 8-12 years, and 13-16 years. The comparison for pediatric patients were performed on the “Head” protocol. The percentage of the dose difference were calculated for organs receiving a significant dose according to the acquisition protocol (80% of the maximal dose). Results: Adult patients: for organs that are completely covered by the scan range, the maximum percentage of dose difference between the two software is 27 %. However, there are three organs situated at the edges of the scan range that show a slightly higher dose difference. Pediatric patients: the percentage of dose difference between the two software does not exceed 30%. These dose differences may be due to the use of two different generations of hybrid phantoms by the two software. Conclusion: This study shows that our software provides a reliable dosimetric information for patients undergoing Computed Tomography exams.Keywords: adult and pediatric patients, computed tomography, organ dose calculation, software comparison
Procedia PDF Downloads 16233547 Green Energy, Fiscal Incentives and Conflicting Signals: Analysing the Challenges Faced in Promoting on Farm Waste to Energy Projects
Authors: Hafez Abdo, Rob Ackrill
Abstract:
Renewable energy (RE) promotion in the UK relies on multiple policy instruments, which are required to overcome the path dependency pressures favouring fossil fuels. These instruments include targeted funding schemes and economy-wide instruments embedded in the tax code. The resulting complexity of incentives raises important questions around the coherence and effectiveness of these instruments for RE generation. This complexity is exacerbated by UK RE policy being nested within EU policy in a multi-level governance (MLG) setting. To gain analytical traction on such complexity, this study will analyse policies promoting the on-farm generation of energy for heat and power, from farm and food waste, via anaerobic digestion. Utilising both primary and secondary data, it seeks to address a particular lacuna in the academic literature. Via a localised, in-depth investigation into the complexity of policy instruments promoting RE, this study will help our theoretical understanding of the challenges that MLG and path dependency pressures present to policymakers of multi-dimensional policies.Keywords: anaerobic digestion, energy, green, policy, renewable, tax, UK
Procedia PDF Downloads 37033546 Multisignature Schemes for Reinforcing Trust in Cloud Software-As-A-Service Services
Authors: Mustapha Hedabou, Ali Azougaghe, Ahmed Bentajer, Hicham Boukhris, Mourad Eddiwani, Zakaria Igarramen
Abstract:
Software-as-a-service (SaaS) is emerging as a dominant approach to delivering software. It encompasses a range of business, technical opportunities, issue, and challenges. Trustiness in the cloud services regarding the security and the privacy of the delivered data is the most critical issue with the SaaS model. In this paper, we survey the security concerns related to the SaaS model, and we propose the design of a trusted SaaS model that gives users more confidence into SaaS services by leveraging a trust in a neutral source code certifying authority. The proposed design is based on the use of the multisignature mechanism for signing the source code of the application service. In our model, the cloud provider acts as a root of trust by ensuring the integrity of the application service when it was running on its platform. The proposed design prevents insider attacks from tampering with application service before and after it was launched in a cloud provider platform.Keywords: cloud computing, SaaS Platform, TPM, trustiness, code source certification, multi-signature schemes
Procedia PDF Downloads 27533545 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer
Authors: S. M. Giripunje, Mohit Kumar
Abstract:
Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)
Procedia PDF Downloads 38533544 The Nexus between Wind Energy, Biodiversity Protection and Social Acceptance: Evidence of Good Practices from Greece, Latvia, and Poland
Authors: Christos Bouras, Eirini Stergiou, Charitini Karakostaki, Vasileios Tzanos, Vasileios Kokkinos
Abstract:
Wind power represents a major pathway to curtailing greenhouse gas emissions and thus reducing the rate of climate change. A wind turbine runs practically emission-free for 20 years, representing one of the most environmentally sustainable sources of energy. Nevertheless, environmental and biodiversity concerns can often slow down or halt the deployment of wind farms due to local public opposition. This opposition is often fueled by poor relationships between wind energy stakeholders and civil society, which in many cases led to conflictual protests and property damage. In this context, addressing these concerns is essential in order to facilitate the proliferation of wind farms in Europe and the phase-out of fossil fuels from the energy mix. The aim of this study is to identify a number of good practices and cases to avoid increasing biodiversity protection at all stages of wind farms’ lifecycle in three participating countries, namely Greece, Latvia, and Poland. The results indicate that although available technological solutions are already being exploited worldwide, in these countries, there is still room for improvement. To address this gap, a set of policy recommendations is proposed to accomplish the wind energy targets in the near future while simultaneously mitigating the pertinent biodiversity risks.Keywords: biodiversity protection, environmental impact, social acceptance, wind energy
Procedia PDF Downloads 15633543 Feasibility Study for Implementation of Geothermal Energy Technology as a Means of Thermal Energy Supply for Medium Size Community Building
Authors: Sreto Boljevic
Abstract:
Heating systems based on geothermal energy sources are becoming increasingly popular among commercial/community buildings as management of these buildings looks for a more efficient and environmentally friendly way to manage the heating system. The thermal energy supply of most European commercial/community buildings at present is provided mainly by energy extracted from natural gas. In order to reduce greenhouse gas emissions and achieve climate change targets set by the EU, restructuring in the area of thermal energy supply is essential. At present, heating and cooling account for approx... 50% of the EU primary energy supply. Due to its physical characteristics, thermal energy cannot be distributed or exchange over long distances, contrary to electricity and gas energy carriers. Compared to electricity and the gas sectors, heating remains a generally black box, with large unknowns to a researcher and policymaker. Ain literature number of documents address policies for promoting renewable energy technology to facilitate heating for residential/community/commercial buildings and assess the balance between heat supply and heat savings. Ground source heat pump (GSHP) technology has been an extremely attractive alternative to traditional electric and fossil fuel space heating equipment used to supply thermal energy for residential/community/commercial buildings. The main purpose of this paper is to create an algorithm using an analytical approach that could enable a feasibility study regarding the implementation of GSHP technology in community building with existing fossil-fueled heating systems. The main results obtained by the algorithm will enable building management and GSHP system designers to define the optimal size of the system regarding technical, environmental, and economic impacts of the system implementation, including payback period time. In addition, an algorithm is created to be utilized for a feasibility study for many different types of buildings. The algorithm is tested on a building that was built in 1930 and is used as a church located in Cork city. The heating of the building is currently provided by a 105kW gas boiler.Keywords: GSHP, greenhouse gas emission, low-enthalpy, renewable energy
Procedia PDF Downloads 21933542 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation
Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari
Abstract:
Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite
Procedia PDF Downloads 3933541 Solar Power Satellites: Reconsideration Based on Novel Approaches
Authors: Alex Ellery
Abstract:
Solar power satellites (SPS), despite their promise as a clean energy source, have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current $20,000/kg to < $200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to $2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many. Here, I present a novel approach to reduce the specific cost of solar power satellites to ~$1/kg by leveraging two enabling technologies – in-situ resource utilization and 3D printing. The power of such technologies will open up enormous possibilities for providing additional options for combating climate change whilst meeting demands for global energy. From the constraints imposed by in-situ resource utilization, a novel approach to solar energy conversion in SPS may be realized.Keywords: clean energy sources, in-situ resource utilisation, solar power satellites, thermionic emission
Procedia PDF Downloads 42533540 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating
Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei
Abstract:
The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands
Procedia PDF Downloads 6433539 A Robust Implementation of a Building Resources Access Rights Management System
Authors: Eugen Neagoe, Victor Balanica
Abstract:
A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).Keywords: smart building controller, software security, access rights, access authorization
Procedia PDF Downloads 44033538 Investigating the Energy Gap and Wavelength of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ Superlattices in Terms of Material Thickness and Al Mole Fraction Using Empirical Tight-Binding Method
Authors: Matineh Sadat Hosseini Gheidari, Vahid Reza Yazdanpanah
Abstract:
In this paper, we used the empirical tight-binding method (ETBM) with sp3s* approximation and considering the first nearest neighbor with spin-orbit interactions in order to model superlattice structure (SLS) of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ grown on GaAs (100) substrate at 300K. In the next step, we investigated the behavior of the energy gap and wavelength of this superlattice in terms of different thicknesses of core materials and Al mole fractions. As a result of this survey, we found out that as the Al composition increases, the energy gap of this superlattice has an upward trend and ranges from 1.42-1.63 eV. Also, according to the wavelength range that we gained from this superlattice in different Al mole fractions and various thicknesses, we can find a suitable semiconductor for a special light-emitting diode (LED) application.Keywords: energy gap, empirical tight-binding method, light-emitting diode, superlattice, wavelength
Procedia PDF Downloads 20633537 Estimation of Particle Size Distribution Using Magnetization Data
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism
Procedia PDF Downloads 14333536 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves
Authors: Yingchen Yang
Abstract:
Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction
Procedia PDF Downloads 17233535 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules
Authors: BenedictI Ita, Etido P. Inyang
Abstract:
In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules
Procedia PDF Downloads 8433534 Sizing of Hybrid Source Battery/Supercapacitor for Automotive Applications
Authors: Laid Degaa, Bachir Bendjedia, Nassim Rizoug, Abdelkader Saidane
Abstract:
Energy storage system is a key aspect for the development of clean cars. The work proposed here deals with the modeling of hybrid storage sources composed of a combination of lithium-ion battery and supercapacitors. Simulation results show the performance of the active model for a hybrid source and confirm the feasibility of our approach. In this context, sizing of the electrical energy supply is carried out. The aim of this sizing is to propose an 'optimal' solution that improves the performance of electric vehicles in term of weight, cost and aging.Keywords: battery, electric vehicles, energy, hybrid storage, supercapacitor
Procedia PDF Downloads 79233533 The Challenges of Scaling Agile to Large-Scale Distributed Development: An Overview of the Agile Factory Model
Authors: Bernard Doherty, Andrew Jelfs, Aveek Dasgupta, Patrick Holden
Abstract:
Many companies have moved to agile and hybrid agile methodologies where portions of the Software Design Life-cycle (SDLC) and Software Test Life-cycle (STLC) can be time boxed in order to enhance delivery speed, quality and to increase flexibility to changes in software requirements. Despite widespread proliferation of agile practices, implementation often fails due to lack of adequate project management support, decreased motivation or fear of increased interaction. Consequently, few organizations effectively adopt agile processes with tailoring often required to integrate agile methodology in large scale environments. This paper provides an overview of the challenges in implementing an innovative large-scale tailored realization of the agile methodology termed the Agile Factory Model (AFM), with the aim of comparing and contrasting issues of specific importance to organizations undertaking large scale agile development. The conclusions demonstrate that agile practices can be effectively translated to a globally distributed development environment.Keywords: agile, agile factory model, globally distributed development, large-scale agile
Procedia PDF Downloads 294