Search results for: cooperative language learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9880

Search results for: cooperative language learning

7600 Start Talking in an E-Learning Environment: Building and Sustaining Communities of Practice

Authors: Melissa C. LaDuke

Abstract:

The purpose of this literature review was to identify the use of online communities of practice (CoPs) within e-learning environments as a method to build social interaction and student-centered educational experiences. A literature review was conducted to survey and collect scholarly thoughts concerning CoPs from a variety of sources. Data collected included best practices, ties to educational theories, and examples of online CoPs. Social interaction has been identified as a critical piece of the learning infrastructure, specifically for adult learners. CoPs are an effective way to help students connect to each other and the material of interest. The use of CoPs falls in line with many educational theories, including situated learning theory, social constructivism, connectivism, adult learning theory, and motivation. New literacies such as social media and gamification can help increase social interaction in online environments and provide methods to host CoPs. Steps to build and sustain a CoP were discussed in addition to CoP considerations and best practices.

Keywords: community of practice, knowledge sharing, social interaction, online course design, new literacies

Procedia PDF Downloads 92
7599 The Implementation of Self-Determination Theory on the Opportunities and Challenges for Blended E-Learning in Motivating Egyptian Logistics Learners

Authors: Aisha Noour, Nick Hubbard

Abstract:

Learner motivation is considered an important premise for the Blended e-Learning (BL) method. BL is an effective learning method in multiple domains, which opens several opportunities for its participants to engage in the learning environment. This research explores the learners’ perspective of BL according to the Self-Determination Theory (SDT). It identifies the opportunities and challenges for using the BL in Logistics Education (LE) in Egyptian Higher Education (HE). SDT is approached from different perspectives within the relationship between Intrinsic Motivation (IM), Extrinsic Motivation (EM) and Amotivation (AM). A self-administered face-to-face questionnaire was used to collect data from learners who were geographically widely spread around three colleges of International Transport and Logistics (CILTs) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. Six hundred and sixteen undergraduates responded to a questionnaire survey. Respondents were drawn from three branches in Greater Cairo, Alexandria, and Port Said. The data analysis used was SPSS 22 and AMOS 18.

Keywords: intrinsic motivation, extrinsic motivation, amotivation, blended e-learning, Self Determination Theory

Procedia PDF Downloads 419
7598 Characteristics of an Impact on Reading Comprehension of Elementary School Students

Authors: Judith Hanke

Abstract:

Due to the rise of students with reading difficulties, a digital reading support was developed. The digital reading support focuses on reading comprehension of elementary school students. It consists of literary texts and reading exercises with diagnostics. To analyze the use of the reading packages an intervention study took place in 2023. For the methodology, an ABA-design was selected for the intervention study to examine the reading packages. The study was expedited from April 2023 until July 2023 and collected quantitative data of individuals, groups, and classes. It consisted of a survey group (N = 58) and a control group (N = 53). The pretest was conducted before the reading support intervention. The students of the survey group received reading support on their ability level to aid the individual student’s needs. At the beginning of the study characteristics of the students were collected. The characteristics included gender, age, repetition of a class, spoken language at home, German as a second language, and special support needs such as dyslexia; right after the intervention, the posttest was examined. At least three weeks after the intervention, the follow-up testing was administered. A standardized reading comprehension test was used for the three test times. The test consists of three subtests: word comprehension, sentence comprehension, and text comprehension. The focus of this paper is to determine which characteristics have an impact on reading comprehension of elementary school students. The students’ characteristics were correlated with the three test times through a Pearson correlation. The main findings are that age, repetition of a class, spoken language at home, German as a second language have an effect on reading comprehension. Interestingly gender and special support needs did not have a significant effect on the reading comprehension of the students. The significance of the study is to determine which characteristics have an impact on reading comprehension and then to assess how reading support can be modified to support the diverse students.

Keywords: class repetition, reading comprehension, reading support, second language, spoken language at home

Procedia PDF Downloads 33
7597 The Effectiveness of Blended Learning in Pre-Registration Nurse Education: A Mixed Methods Systematic Review and Met Analysis

Authors: Albert Amagyei, Julia Carroll, Amanda R. Amorim Adegboye, Laura Strumidlo, Rosie Kneafsey

Abstract:

Introduction: Classroom-based learning has persisted as the mainstream model of pre-registration nurse education. This model is often rigid, teacher-centered, and unable to support active learning and the practical learning needs of nursing students. Health Education England (HEE), a public body of the Department of Health and Social Care, hypothesises that blended learning (BL) programmes may address health system and nursing profession challenges, such as nursing shortages and lack of digital expertise, by exploring opportunities for providing predominantly online, remote-access study which may increase nursing student recruitment, offering alternate pathways to nursing other than the traditional classroom route. This study will provide evidence for blended learning strategies adopted in nursing education as well as examine nursing student learning experiences concerning the challenges and opportunities related to using blended learning within nursing education. Objective: This review will explore the challenges and opportunities of BL within pre-registration nurse education from the student's perspective. Methods: The search was completed within five databases. Eligible studies were appraised independently by four reviewers. The JBI-convergent segregated approach for mixed methods review was used to assess and synthesize the data. The study’s protocol has been registered with the International Register of Systematic Reviews with registration number// PROSPERO (CRD42023423532). Results: Twenty-seven (27) studies (21 quantitative and 6 qualitative) were included in the review. The study confirmed that BL positively impacts nursing students' learning outcomes, as demonstrated by the findings of the meta-analysis and meta-synthesis. Conclusion: The review compared BL to traditional learning, simulation, laboratory, and online learning on nursing students’ learning and programme outcomes as well as learning behaviour and experience. The results show that BL could effectively improve nursing students’ knowledge, academic achievement, critical skills, and clinical performance as well as enhance learner satisfaction and programme retention. The review findings outline that students’ background characteristics, BL design, and format significantly impact the success of the BL nursing programme.

Keywords: nursing student, blended learning, pre-registration nurse education, online learning

Procedia PDF Downloads 50
7596 Formative Assessment of Creative Thinking Skills Embedded in Learning Through Play

Authors: Yigal Rosen, Garrett Jaeger, Michelle Newstadt, Ilia Rushkin, Sara Bakken

Abstract:

All children are capable of advancing their creative thinking skills and engaging in creative play. Creative play puts children in charge of exploring ideas, relationships, spaces and problems. Supported by The LEGO Foundation, the creative thinking formative assessment is designed to provide valid, reliable and informative measurement to support the development of creative skills while children are engaged in Learning through Play. In this paper we provide an overview of the assessment framework underpinned the assessment of creative thinking and report the results from the 2022 pilot study demonstrating promising evidence on the ability to measure creative skills in a conceptually and ecologically valid way to inform the development of creative skills.

Keywords: creativity, creative thinking, assessment, learning through play, creative play, learning progressions

Procedia PDF Downloads 133
7595 Facilitating Academic Growth of Students With Autism

Authors: Jolanta Jonak

Abstract:

All students demonstrate various learning preferences and learning styles that range from visual, auditory to kinesthetic preferences. These learning preferences are further impacted by individual cognitive profiles hat characterizes itself in linguistic strengths, logical- special, inter-or intra- personal, just to name a few. Students from culturally and linguistically diverse backgrounds (CLD) have an increased risk of being misunderstood by many school systems and even medical personnel. Students with disability, specifically Autism, are faced with another layer of learning differences. Research indicates that large numbers of students are not provided the type of education and types of supports they need in order to be successful in an academic environment. Multiple research findings indicate that significant numbers of school staff self-reports that they do not feel adequately prepared to work with students with disability and different learing profiles. It is very important for the school staff to be educated about different learning needs of students with autism spectrum disorders. Having the knowledge, school staff can avoid unnecessary referrals for office referrals and avoid inaccurate decisions about restrictive learning environments. This presentation will illustrate the cognitive differences in students with autism, how to recognize them, and how to support them through Differentiated Instruction. One way to ensure successful education for students with disability is by providing Differentiated Instruction (DI). DI is quickly gaining its popularity in the Unites States as a scientific- research based instructional approach for all students. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have an opportunity to learn through approaches that are suitable to their needs. It is extremely important for the school staff, especially school psychologists who often are the first experts to be consulted by educators, to be educated about differences due to learning preference styles and differentiation needs.

Keywords: special education, autism, differentiation, differences, differentiated instruction

Procedia PDF Downloads 45
7594 Quantifying Processes of Relating Skills in Learning: The Map of Dialogical Inquiry

Authors: Eunice Gan Ghee Wu, Marcus Goh Tian Xi, Alicia Chua Si Wen, Helen Bound, Lee Liang Ying, Albert Lee

Abstract:

The Map of Dialogical Inquiry provides a conceptual basis of learning processes. According to the Map, dialogical inquiry motivates complex thinking, dialogue, reflection, and learner agency. For instance, classrooms that incorporated dialogical inquiry enabled learners to construct more meaning in their learning, to engage in self-reflection, and to challenge their ideas with different perspectives. While the Map contributes to the psychology of learning, its qualitative approach makes it hard to track and compare learning processes over time for both teachers and learners. Qualitative approach typically relies on open-ended responses, which can be time-consuming and resource-intensive. With these concerns, the present research aimed to develop and validate a quantifiable measure for the Map. Specifically, the Map of Dialogical Inquiry reflects the eight different learning processes and perspectives employed during a learner’s experience. With a focus on interpersonal and emotional learning processes, the purpose of the present study is to construct and validate a scale to measure the “Relating” aspect of learning. According to the Map, the Relating aspect of learning contains four conceptual components: using intuition and empathy, seeking personal meaning, building relationships and meaning with others, and likes stories and metaphors. All components have been shown to benefit learning in past research. This research began with a literature review with the goal of identifying relevant scales in the literature. These scales were used as a basis for item development, guided by the four conceptual dimensions in the “Relating” aspect of learning, resulting in a pool of 47 preliminary items. Then, all items were administered to 200 American participants via an online survey along with other scales of learning. Dimensionality, reliability, and validity of the “Relating” scale was assessed. Data were submitted to a confirmatory factor analysis (CFA), revealing four distinct components and items. Items with lower factor loadings were removed in an iterative manner, resulting in 34 items in the final scale. CFA also revealed that the “Relating” scale was a four-factor model, following its four distinct components as described in the Map of Dialogical Inquiry. In sum, this research was able to develop a quantitative scale for the “Relating” aspect of the Map of Dialogical Inquiry. By representing learning as numbers, users, such as educators and learners, can better track, evaluate, and compare learning processes over time in an efficient manner. More broadly, this scale may also be used as a learning tool in lifelong learning.

Keywords: lifelong learning, scale development, dialogical inquiry, relating, social and emotional learning, socio-affective intuition, empathy, narrative identity, perspective taking, self-disclosure

Procedia PDF Downloads 142
7593 The Attitude of Egyptian Nubian University Students towards Arabic and Nubian Languages

Authors: Sanaa Abouras

Abstract:

This research investigates the attitude of Egyptian Nubian University students towards the Arabic and the two Nubian languages, Nobiin, and Kenuzi-Dongola. The Nubian languages are called by Egyptian Nubians, Fadijja/Fadicca and Kenzi, respectively. Nubians are people who live in the Nubia area which lies between Egypt’s southern borders with the northern part of Sudan. Nubia is divided into two parts - one under the Egyptian regime, and the other under the Sudanese regime. The number of participants used in the study was forty - half male and half female. Twenty of these participants live in the Nubian region and are enrolled at the South Valley University in Aswan, Egypt. This number was compared with an additional twenty Egyptian-Nubian university students who live outside the Nubian region and attend various Egyptian universities located in Alexandria and Cairo. The hypothesis of this study is that Egyptian Nubian University students tend to have positive attitudes toward Arabic and also the Nubian languages. This research is a qualitative and partially quantitative one. Observations, questionnaires, and interviews were used to collect data in order to explore the following: (1) the language students prefer to speak at home and in public and if language preferences are gender-related, (2) the factors that influence the Egyptian Nubian university students' attitudes towards Arabic and Nubian languages, and (3) a look at the future of these ethnic Nubian languages. Results that answered the main question on the attitude of Egyptian Nubian University students toward Arabic and Nubian languages revealed that students who live inside and outside the Nubian region tend to have positive attitudes towards both the Arabic and the Nubian languages.

Keywords: language attitude, minority, Arabic language, Nubian Language

Procedia PDF Downloads 272
7592 Air Quality Analysis Using Machine Learning Models Under Python Environment

Authors: Salahaeddine Sbai

Abstract:

Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.

Keywords: air quality, machine learning models, pollution, pollutant emissions

Procedia PDF Downloads 91
7591 Efficient Chiller Plant Control Using Modern Reinforcement Learning

Authors: Jingwei Du

Abstract:

The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.

Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning

Procedia PDF Downloads 29
7590 Designing Social Media into Higher Education Courses

Authors: Thapanee Seechaliao

Abstract:

This research paper presents guiding on how to design social media into higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about guiding on how to design social media into higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by frequency and percentage. The research results were the lecturers’ opinions concerning the designing social media into higher education courses as follows: 1) Lecturers deem that the most suitable learning theory is Collaborative Learning. 2) Lecturers consider that the most important learning and innovation Skill in the 21st century is communication and collaboration skills. 3) Lecturers think that the most suitable evaluation technique is authentic assessment. 4) Lecturers consider that the most appropriate portion used as blended learning should be 70% in the classroom setting and 30% online.

Keywords: instructional design, social media, courses, higher education

Procedia PDF Downloads 510
7589 Effective Teaching without Digital Enhancement

Authors: D. A. Carnegie

Abstract:

Whilst there is a movement towards increased digital augmentation in order to facilitate effective tertiary learning, this must come with an awareness of the limitations of such an approach. Learning is best achieved in an environment that includes their learning peers where difficulties can be shared and learning enabled. Policy that advocates for digital technology in place of a physical classroom is dangerous and is often driven by financial concerns rather than pedagogical ones. In this paper, a mostly digital-less form of teaching is presented – one that has proven to be extremely effective. Implicit is anecdotal evidence that student prefer the old overhead transparencies to PowerPoint presentations. Varying and reinforcing assessment, facilitation of effective note-taking, and just actively engaging with students is at the core of a good tertiary education experience. Digital techniques can augment and complement, but not replace these core personal teaching requirements.

Keywords: engineering education, active classroom engagement, effective note taking, reinforcing assessment

Procedia PDF Downloads 351
7588 Supervised Learning for Cyber Threat Intelligence

Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk

Abstract:

The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.

Keywords: threat information sharing, supervised learning, data classification, performance evaluation

Procedia PDF Downloads 149
7587 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER

Procedia PDF Downloads 14
7586 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)

Authors: Medjadj Tarek, Ghribi Hayet

Abstract:

This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).

Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management

Procedia PDF Downloads 95
7585 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119
7584 Efficacy of a Social-Emotional Learning Curriculum for Kindergarten and First Grade Students to Improve Social Adjustment within the School Culture

Authors: Ann P. Daunic, Nancy Corbett

Abstract:

Background and Significance: Researchers emphasize the role that motivation, self-esteem, and self-regulation play in children’s early adjustment to the school culture, including skills such as identifying their own feelings and understanding the feelings of others. As social-emotional growth, academic learning, and successful integration within culture and society are inextricably connected, the Social-Emotional Learning Foundations (SELF) curriculum was designed to integrate social-emotional learning (SEL) instruction within early literacy instruction (specifically, reading) for Kindergarten and first-grade students at risk for emotional and behavioral difficulties. Storybook reading is a typically occurring activity in the primary grades; thus SELF provides an intervention that is both theoretically and practically sound. Methodology: The researchers will report on findings from the first two years of a three-year study funded by the US Department of Education’s Institute of Education Sciences to evaluate the effects of the SELF curriculum versus “business as usual” (BAU). SELF promotes the development of self-regulation by incorporating instructional strategies that support children’s use of SEL related vocabulary, self-talk, and critical thinking. The curriculum consists of a carefully coordinated set of materials and pedagogy designed specifically for primary grade children at early risk for emotional and behavioral difficulties. SELF lessons (approximately 50 at each grade level) are organized around 17 SEL topics within five critical competencies. SELF combines whole-group (the first in each topic) and small-group lessons (the 2nd and 3rd in each topic) to maximize opportunities for teacher modeling and language interactions. The researchers hypothesize that SELF offers a feasible and substantial opportunity within the classroom setting to provide a small-group social-emotional learning intervention integrated with K-1 literacy-related instruction. Participating target students (N = 876) were identified by their teachers as potentially at risk for emotional or behavioral issues. These students were selected from 122 Kindergarten and 100 first grade classrooms across diverse school districts in a southern state in the US. To measure the effectiveness of the SELF intervention, the researchers asked teachers to complete assessments related to social-emotional learning and adjustment to the school culture. A social-emotional learning related vocabulary assessment was administered directly to target students receiving small-group instruction. Data were analyzed using a 3-level MANOVA model with full information maximum likelihood to estimate coefficients and test hypotheses. Major Findings: SELF had significant positive effects on vocabulary, knowledge, and skills associated with social-emotional competencies, as evidenced by results from the measures administered. Effect sizes ranged from 0.41 for group (SELF vs. BAU) differences in vocabulary development to 0.68 for group differences in SEL related knowledge. Conclusion: Findings from two years of data collection indicate that SELF improved outcomes related to social-emotional learning and adjustment to the school culture. This study thus supports the integration of SEL with literacy instruction as a feasible and effective strategy to improve outcomes for K-1 students at risk for emotional and behavioral difficulties.

Keywords: Socio-cultural context for learning, social-emotional learning, social skills, vocabulary development

Procedia PDF Downloads 125
7583 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 215
7582 A Study on the Implementation of Differentiating Instruction Based on Universal Design for Learning

Authors: Yong Wook Kim

Abstract:

The diversity of students in regular classrooms is increasing due to expand inclusive education and increase multicultural students in South Korea. In this diverse classroom environment, the universal design for learning (UDL) has been proposed as a way to meet both the educational need and social expectation of student achievement. UDL offers a variety of practical teaching methods, one of which is a differentiating instruction. The differentiating instruction has been pointed out resource limitation, organizational resistance, and lacks easy-to-implement framework. However, through the framework provided by the UDL, differentiating instruction is able to be flexible in their implementation. In practice, the UDL and differentiating instruction are complementary, but there is still a lack of research that suggests specific implementation methods that apply both concepts at the same time. This study was conducted to investigate the effects of differentiating instruction strategies according to learner characteristics (readiness, interest, learning profile), components of differentiating instruction (content, process, performance, learning environment), especially UDL principles (representation, behavior and expression, participation) existed in differentiating instruction, and implementation of UDL-based differentiating instruction through the Planning for All Learner (PAL) and UDL Lesson Plan Cycle. It is meaningful that such a series of studies can enhance the possibility of more concrete and realistic UDL-based teaching and learning strategies in the classroom, especially in inclusive settings.

Keywords: universal design for learning, differentiating instruction, UDL lesson plan, PAL

Procedia PDF Downloads 194
7581 Affective (And Effective) Teaching and Learning: Higher Education Gets Social Again

Authors: Laura Zizka, Gaby Probst

Abstract:

The Covid-19 pandemic has affected the way Higher Education Institutions (HEIs) have given their courses. From emergency remote where all students and faculty were immediately confined to home teaching and learning, the continuing evolving sanitary situation obliged HEIs to adopt other methods of teaching and learning from blended courses that included both synchronous and asynchronous courses and activities to hy-flex models where some students were on campus while others followed the course simultaneously online. Each semester brought new challenges for HEIs and, subsequently, additional emotional reactions. This paper investigates the affective side of teaching and learning in various online modalities and its toll on students and faculty members over the past three semesters. The findings confirm that students and faculty who have more self-efficacy, flexibility, and resilience reported positive emotions and embraced the opportunities that these past semesters have offered. While HEIs have begun a new semester in an attempt to return to ‘normal’ face-to-face courses, this paper posits that there are lessons to be learned from these past three semesters. The opportunities that arose from the challenge of the pandemic should be considered when moving forward by focusing on a greater emphasis on the affective aspect of teaching and learning in HEIs worldwide.

Keywords: effective teaching and learning, higher education, engagement, interaction, motivation

Procedia PDF Downloads 117
7580 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning

Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang

Abstract:

This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.

Keywords: acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback

Procedia PDF Downloads 179
7579 Play-Based Intervention Training Program for Daycare Workers Attending to Children with Autism

Authors: Raymond E. Raguindin

Abstract:

Objective: This research studied the teaching improvement of daycare workers in imitation, joint attention, and language activities using the play-based early intervention training program in Cabanatuan City, Nueva Ecija. Methods: Focus group discussions were developed to explore the attitude, beliefs, and practices of daycare workers. Results: Findings of the study revealed that daycare workers have existing knowledge and experience in teaching children with autism. Their workshops on managing inappropriate behaviors of children with autism resulting in a general positive perception of accepting and teaching children with autism in daycare centers. Play based activities were modelled and participated in by daycare workers. These include demonstration, modelling, prompting and providing social reinforcers as reward. Five lectures and five training days were done to implement the training program. Daycare workers’ levels of skill in teaching imitation, joint attention and language were gathered before and after the participation in the training program. Findings suggest significant differences between pre-test and post test scores. They have shown significant improvement in facilitating imitation, joint attention, and language children with autism after the play-based early intervention training. They were able to initiate and sustain imitation, joint attention, and language activities with adequate knowledge and confidence. Conclusions: 1. Existing attitudes and beliefs greatly influenced the positive delivery mode of instruction. 2. Teacher-directed approach to improve attention, imitation, joint attention, and language of children with autism can be acquired by daycare workers. 3. Teaching skills and experience can be used as reference and basis for identifying future training needs.

Keywords: early intervention, imitation, joint attention, language

Procedia PDF Downloads 120
7578 Data Structure Learning Platform to Aid in Higher Education IT Courses (DSLEP)

Authors: Estevan B. Costa, Armando M. Toda, Marcell A. A. Mesquita, Jacques D. Brancher

Abstract:

The advances in technology in the last five years allowed an improvement in the educational area, as the increasing in the development of educational software. One of the techniques that emerged in this lapse is called Gamification, which is the utilization of video game mechanics outside its bounds. Recent studies involving this technique provided positive results in the application of these concepts in many areas as marketing, health and education. In the last area there are studies that cover from elementary to higher education, with many variations to adequate to the educators methodologies. Among higher education, focusing on IT courses, data structures are an important subject taught in many of these courses, as they are base for many systems. Based on the exposed this paper exposes the development of an interactive web learning environment, called DSLEP (Data Structure Learning Platform), to aid students in higher education IT courses. The system includes basic concepts seen on this subject such as stacks, queues, lists, arrays, trees and was implemented to ease the insertion of new structures. It was also implemented with gamification concepts, such as points, levels, and leader boards, to engage students in the search for knowledge and stimulate self-learning.

Keywords: gamification, Interactive learning environment, data structures, e-learning

Procedia PDF Downloads 495
7577 Guidelines for the Development of Community Classroom for Research and Academic Services in Ranong Province

Authors: Jenjira Chinnawong, Phusit Phukamchanoad

Abstract:

The objective of this study is to explore the guidelines for the development of community classroom for research and academic services in Ranong province. By interviewing leaders involved in the development of learning resources, research, and community services, it was found that the leaders' perceptions in the development of learning resources, research, and community services in Ranong, was at the highest level. They perceived at every step on policies of community classroom implementation, research, and community services in Ranong. Leaders' perceptions were at the moderate level in terms of analysis of problems related to procedures of community classroom management, research and community services in Ranong especially in the planning and implementation of the examination, improvement, and development of learning sources to be in good condition and ready to serve the visitors. Their participation in the development of community classroom, research, and community services in Ranong was at a high level, particularly in the participation in monitoring and evaluation of the development of learning resources as well as in reporting on the result of the development of learning resources. The most important thing in the development of community classroom, research and community services in Ranong is the necessity to integrate the three principles of knowledge building in teaching, research and academic services in order to create the identity of the local and community classroom for those who are interested to visit to learn more about the useful knowledge. As a result, community classroom, research, and community services were well-known both inside and outside the university.

Keywords: community classroom, learning resources, development, participation

Procedia PDF Downloads 158
7576 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners

Authors: Michael McMahon

Abstract:

The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.

Keywords: multimedia learning, e-learning, design for learning, ICT

Procedia PDF Downloads 103
7575 A Language Training Model for Pilots in Training

Authors: Aysen Handan Girginer

Abstract:

This study analyzes the possible causes of miscommunication between pilots and air traffic controllers by looking into a number of variables such as pronunciation, L1 interference, use of non-standard vocabulary. The purpose of this study is to enhance the knowledge of the aviation LSP instructors and to apply this knowledge to the design of new curriculum. A 16-item questionnaire was administered to 60 Turkish pilots who work for commercial airlines in Turkey. The questionnaire consists of 7 open-ended and 9 Likert-scale type questions. The analysis of data shows that there are certain pit holes that may cause communication problems for pilots that can be avoided through proper English language training. The findings of this study are expected to contribute to the development of new materials and to develop a language training model that is tailored to the needs of students of flight training department at the Faculty of Aeronautics and Astronautics. The results are beneficial not only to the instructors but also to the new pilots in training. Specific suggestions for aviation students’ training will be made during the presentation.

Keywords: curriculum design, materials development, LSP, pilot training

Procedia PDF Downloads 351
7574 An Analysis of a Canadian Personalized Learning Curriculum

Authors: Ruthanne Tobin

Abstract:

The shift to a personalized learning (PL) curriculum in Canada represents an innovative approach to teaching and learning that is also evident in various initiatives across the 32-nation OECD. The premise behind PL is that empowering individual learners to have more input into how they access and construct knowledge, and express their understanding of it, will result in more meaningful school experiences and academic success. In this paper presentation, the author reports on a document analysis of the new curriculum in the province of British Columbia. Three theoretical frameworks are used to analyze the new curriculum. Framework 1 focuses on five dominant aspects (FDA) of PL at the classroom level. Framework 2 focuses on conceptualizing and enacting personalized learning (CEPL) within three spheres of influence. Framework 3 focuses on the integration of three types of knowledge (content, technological, and pedagogical). Analysis is ongoing, but preliminary findings suggest that the new curriculum addresses framework 1 quite well, which identifies five areas of personalized learning: 1) assessment for learning; 2) effective teaching and learning; 3) curriculum entitlement (choice); 4) school organization; and 5) “beyond the classroom walls” (learning in the community). Framework 2 appears to be less well developed in the new curriculum. This framework speaks to the dynamics of PL within three spheres of interaction: 1) nested agency, comprised of overarching constraints [and enablers] from policy makers, school administrators and community; 2) relational agency, which refers to a capacity for professionals to develop a network of expertise to serve shared goals; and 3) students’ personalized learning experience, which integrates differentiation with self-regulation strategies. Framework 3 appears to be well executed in the new PL curriculum, as it employs the theoretical model of technological, pedagogical content knowledge (TPACK) in which there are three interdependent bodies of knowledge. Notable within this framework is the emphasis on the pairing of technologies with excellent pedagogies to significantly assist students and teachers. This work will be of high relevance to educators interested in innovative school reform.

Keywords: curriculum reform, K-12 school change, innovations in education, personalized learning

Procedia PDF Downloads 282
7573 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109
7572 Impact of Overall Teaching Program of Anatomy in Learning: A Students Perspective

Authors: Mamatha Hosapatna, Anne D. Souza, Antony Sylvan Dsouza, Vrinda Hari Ankolekar

Abstract:

Our study intends to know the effect of the overall teaching program of Anatomy on a students learning. The advancement of various teaching methodologies in the present era has led to progressive changes in education. A student should be able to correlate well between the theory and practical knowledge attained even in the early years of their education in medicine and should be able to implement the same in patient care. The present study therefore aims to assess the impact the current anatomy teaching program has on a students learning and to what extent is it successful in making the learning program effective. Specific objectives of our study to assess the impact of overall teaching program of Anatomy in a students’ learning. Description of process proposed: A questionnaire will be constructed and the students will be asked to put forth their views regarding the Anatomy teaching program and its method of assessment. Suggestions, if any will also be encouraged to be put forth. Type of study is cross sectional observations. Target population is the first year MBBS students and sample size is 250. Assessment plan is to obtaining students responses using questionnaire. Calculating percentages of the responses obtained. Tabulation of the results will be done.

Keywords: anatomy, observational study questionnaire, observational study, M.B.B.S students

Procedia PDF Downloads 499
7571 Creative Application of Cognitive Linguistics and Communicative Methods to Eliminate Common Learners' Mistakes in Academic Essay Writing

Authors: Ekaterina Lukianchenko

Abstract:

This article sums up a six-year experience of teaching English as a foreign language to over 900 university students at MGIMO (Moscow University of International Relations, Russia), all of them native speakers of Russian aged 16 to 23. By combining modern communicative approach to teaching with cognitive linguistics theories, one can deal more effectively with deeply rooted mistakes which particular students have of which conventional methods have failed to eliminate. If language items are understood as concepts and frames, and classroom activities as meaningful parts of language competence development, this might help to solve such problems as incorrect use of words, unsuitable register, and confused tenses - as well as logical or structural mistakes, and even certain psychological issues concerning essay writing. Along with classic teaching methods, such classroom practice includes plenty of interaction between students - playing special classroom games aimed at eliminating particular mistakes, working in pairs and groups, integrating all skills in one class. The main conclusions that the author of the experiment makes consist in an assumption that academic essay writing classes demand a balanced plan. This should not only include writing as such, but additionally feature elements of listening, reading, speaking activities specifically chosen according to the skills and language students will need to write the particular type of essay.

Keywords: academic essay writing, creative teaching, cognitive linguistics, competency-based approach, communicative language teaching, frame, concept

Procedia PDF Downloads 297