Search results for: Adult dataset
179 Association of Depression with Physical Inactivity and Time Watching Television: A Cross-Sectional Study with the Brazilian Population PNS, 2013
Authors: Margareth Guimaraes Lima, Marilisa Berti A. Barros, Deborah Carvalho Malta
Abstract:
The relationship between physical activity (PA) and depression has been investigated, in both, observational and clinical studies: PA can integrate the treatments for depression; the physical inactivity (PI) may contribute to increase depression symptoms; and on the other hand, emotional problems can decrease PA. The main of this study was analyze the association among leisure and transportation PI and time watching television (TV) according to depression (minor and major), evaluated with the Patient Health Questionnaire (PHQ-9). The association was also analyzed by gender. This is a cross-sectional study. Data were obtained from the National Health Survey 2013 (PNS), performed with representative sample of the Brazilian adult population, in 2013. The PNS collected information from 60,202 individuals, aged 18 years or more. The independent variable were: leisure time physical inactivity (LTPI), considering inactive or insufficiently actives (categories were linked for analyzes), those who do not performed a minimum of 150 or 74 minutes of moderate or vigorous LTPA, respectively, by week; transportation physical inactivity (TPI), individuals who did not reached 150 minutes, by week, travelling by bicycle or on foot to work or other activities; daily time watching TV > 5 hours. The principal independent variable was depression, identified by PHQ-9. Individuals were classified with major depression, with > 5 symptoms, more than seven days, but one of the symptoms was “depressive mood” or “lack of interest or pleasure”. The others had minor depression. The variables used to adjustment were gender, age, schooling and chronic disease. The prevalence of LTPI, TPI and TV time were estimated according to depression, and differences were tested with Chi-Square test. Adjusted prevalence ratios were estimated using multiple Poisson regression models. The analyzes also had stratification by gender. Mean age of the studied population was 42.9 years old (CI95%:42.6-43.2) and 52.9% were women. 77.5% and 68.1% were inactive or insufficiently active in leisure and transportation, respectively and 13.3% spent time watching TV 5 > hours. 6% and 4.1% of the Brazilian population were diagnosed with minor or major depression. LTPI prevalence was 5% and 9% higher among individuals with minor and major depression, respectively, comparing with no depression. The prevalence of TPI was 7% higher in those with major depression. Considering larger time watching TV, the prevalence was 45% and 74% higher among those with minor and major depression, respectively. Analyzing by gender, the associations were greater in men than women and TPI was note be associated, in women. The study detected the higher prevalence of leisure time physical inactivity and, especially, time spent watching TV, among individuals with major and minor depression, after to adjust for a number of potential confounding factors. TPI was only associated with major disorders and among men. Considering the cross-sectional design of the research, these associations can point out the importance of the mental problems control of the population to increase PA and decrease the sedentary lifestyle; on the other hand, the study highlight the need of interventions by encouraging people with depression, to practice PA, even to transportation.Keywords: depression, physical activity, PHQ-9, sedentary lifestyle
Procedia PDF Downloads 156178 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 120177 Gender Gap in Returns to Social Entrepreneurship
Authors: Saul Estrin, Ute Stephan, Suncica Vujic
Abstract:
Background and research question: Gender differences in pay are present at all organisational levels, including at the very top. One possible way for women to circumvent organizational norms and discrimination is to engage in entrepreneurship because, as CEOs of their own organizations, entrepreneurs largely determine their own pay. While commercial entrepreneurship plays an important role in job creation and economic growth, social entrepreneurship has come to prominence because of its promise of addressing societal challenges such as poverty, social exclusion, or environmental degradation through market-based rather than state-sponsored activities. This opens the research question whether social entrepreneurship might be a form of entrepreneurship in which the pay of men and women is the same, or at least more similar; that is to say there is little or no gender pay gap. If the gender gap in pay persists also at the top of social enterprises, what are the factors, which might explain these differences? Methodology: The Oaxaca-Blinder Decomposition (OBD) is the standard approach of decomposing the gender pay gap based on the linear regression model. The OBD divides the gender pay gap into the ‘explained’ part due to differences in labour market characteristics (education, work experience, tenure, etc.), and the ‘unexplained’ part due to differences in the returns to those characteristics. The latter part is often interpreted as ‘discrimination’. There are two issues with this approach. (i) In many countries there is a notable convergence in labour market characteristics across genders; hence the OBD method is no longer revealing, since the largest portion of the gap remains ‘unexplained’. (ii) Adding covariates to a base model sequentially either to test a particular coefficient’s ‘robustness’ or to account for the ‘effects’ on this coefficient of adding covariates might be problematic, due to sequence-sensitivity when added covariates are correlated. Gelbach’s decomposition (GD) addresses latter by using the omitted variables bias formula, which constructs a conditional decomposition thus accounting for sequence-sensitivity when added covariates are correlated. We use GD to decompose the differences in gaps of pay (annual and hourly salary), size of the organisation (revenues), effort (weekly hours of work), and sources of finances (fees and sales, grants and donations, microfinance and loans, and investors’ capital) between men and women leading social enterprises. Database: Our empirical work is made possible by our collection of a unique dataset using respondent driven sampling (RDS) methods to address the problem that there is as yet no information on the underlying population of social entrepreneurs. The countries that we focus on are the United Kingdom, Spain, Romania and Hungary. Findings and recommendations: We confirm the existence of a gender pay gap between men and women leading social enterprises. This gap can be explained by differences in the accumulation of human capital, psychological and social factors, as well as cross-country differences. The results of this study contribute to a more rounded perspective, highlighting that although social entrepreneurship may be a highly satisfying occupation, it also perpetuates gender pay inequalities.Keywords: Gelbach’s decomposition, gender gap, returns to social entrepreneurship, values and preferences
Procedia PDF Downloads 244176 Survey of the Literacy by Radio Project as an Innovation in Literacy Promotion in Nigeria
Authors: Stella Chioma Nwizu
Abstract:
The National Commission for Adult and Non Formal Education (NMEC) in Nigeria is charged with the reduction of illiteracy rate through the development, monitoring, and supervision of literacy programmes in Nigeria. In spite of various efforts by NMEC to reduce illiteracy, literature still shows that the illiteracy rate is still high. According to NMEC/UNICEF, about 60 million Nigerians are non-literate, and nearly two thirds of them are women. This situation forced the government to search for innovative and better approaches to literacy promotion and delivery. The literacy by radio project was adopted as an innovative intervention to literacy delivery in Nigeria because the radio is the cheapest and most easily affordable medium for non-literates. The project aimed at widening access to literacy programmes for the non-literate marginalized and disadvantaged groups in Nigeria by taking literacy programmes to their door steps. The literacy by radio has worked perfectly well in non-literacy reduction in Cuba. This innovative intervention of literacy by radio is anchored on the diffusion of innovation theory by Rogers. The literacy by radio has been going on for fifteen years and the efficacy and contributions of this innovation need to be investigated. Thus, the purpose of this research is to review the contributions of the literacy by radio in Nigeria. The researcher adopted the survey research design for the study. The population for the study consisted of 2,706 participants and 47 facilitators of the literacy by radio programme in the 10 pilot states in Nigeria. A sample of four states made up of 302 participants and eight facilitators were used for the study. Information was collected through Focus Group Discussion (FGD), interviews and content analysis of official documents. The data were analysed qualitatively to review the contributions of literacy by radio project and determine the efficacy of this innovative approach in facilitating literacy in Nigeria. Results from the field experience showed, among others, that more non-literates have better access to literacy programmes through this innovative approach. The pilot project was 88% successful; not less than 2,110 adults were made literate through the literacy by radio project in 2017. However, lack of enthusiasm and commitment on the part of the technical committee and facilitators due to non-payment of honorarium, poor signals from radio stations, interruption of lectures with adverts, low community involvement in decision making in the project are challenges to the success rate of the project. The researcher acknowledges the need to customize all materials and broadcasts in all the dialects of the participants and the inclusion of more civil rights, environmental protection and agricultural skills into the project. The study recommends among others, improved and timely funding of the project by the Federal Government to enable NMEC to fulfill her obligations towards the greater success of the programme, setting up of independent radio stations for airing the programmes and proper monitoring and evaluation of the project by NMEC and State Agencies for greater effectiveness. In an era of the knowledge-driven economy, no one should be allowed to get saddled with the weight of illiteracy.Keywords: innovative approach, literacy, project, radio, survey
Procedia PDF Downloads 66175 Timely Screening for Palliative Needs in Ambulatory Oncology
Authors: Jaci Mastrandrea
Abstract:
Background: The National Comprehensive Cancer Network (NCCN) recommends that healthcare institutions have established processes for integrating palliative care (PC) into cancer treatment and that all cancer patients be screened for PC needs upon initial diagnosis as well as throughout the entire continuum of care (National Comprehensive Cancer Network, 2021). Early PC screening is directly correlated with improved patient outcomes. The Sky Lakes Cancer Treatment Center (SLCTC) is an institution that has access to PC services yet does not have protocols in place for identifying patients with palliative needs or a standardized referral process. The aim of this quality improvement project is to improve early access to PC services by establishing a standardized screening and referral process for outpatient oncology patients. Method: The sample population included all adult patients with an oncology diagnosis who presented to the SLCTC for treatment during the project timeline from March 15th, 2022, to April 29th, 2022. The “Palliative and Supportive Needs Assessment'' (PSNA) screening tool was developed from validated and evidence-based PC referral criteria. The tool was initially implemented using paper forms and later was integrated into the Epic-Beacon EHR system. Patients were screened by registered nurses on the SLCTC treatment team. Nurses responsible for screening patients received an educational inservice prior to implementation. Patients with a PSNA score of three or higher were considered to be a positive screen. Scores of five or higher triggered a PC referral order in the patient’s EHR for the oncologist to review and approve. All patients with a positive screen received an educational handout on the topic of PC, and the EHR was flagged for follow-up. Results: Prior to implementation of the PSCNA screening tool, the SLCTC had zero referrals to PC in the past year, excluding referrals to hospice. Data was collected from the first 100 patient screenings completed within the eight-week data collection period. Seventy-three percent of patients met criteria for PC referral with a score greater than or equal to three. Of those patients who met referral criteria, 53.4% (39 patients) were referred for a palliative and supportive care consultation. Patients that were not referred to PC upon meeting the criteria were flagged in the EHR for re-screening within one to three months. Patients with lung cancer, chronic hematologic malignancies, breast cancer, and gastrointestinal malignancy most frequently met criteria for PC referral and scored highest overall on the scale of 0-12. Conclusion: The implementation of a standardized PC screening tool at the SLCTC significantly increased awareness of PC needs among cancer patients in the outpatient setting. Additionally, data derived from this quality improvement project supports the national recommendation for PC to be an integral component of cancer treatment across the entire continuum of care.Keywords: oncology, palliative care, symptom management, symptom screening, ambulatory oncology, cancer, supportive care
Procedia PDF Downloads 76174 Evaluation of the Risk Factors on the Incidence of Adjacent Segment Degeneration After Anterior Neck Discectomy and Fusion
Authors: Sayyed Mostafa Ahmadi, Neda Raeesi
Abstract:
Background and Objectives: Cervical spondylosis is a common problem that affects the adult spine and is the most common cause of radiculopathy and myelopathy in older patients. Anterior discectomy and fusion is a well-known technique in degenerative cervical disc disease. However, one of the late undesirable complications is adjacent disc degeneration, which affects about 91% of patients in ten years. Many factors can be effective in causing this complication, but some are still debatable. Discovering these risk factors and eliminating them can improve the quality of life. Methods: This is a retrospective cohort study. All patients who underwent anterior discectomy and fusion surgery in the neurosurgery ward of Imam Khomeini Hospital between 2013 and 2016 were evaluated. Their demographic information was collected. All patients were visited and examined for radiculopathy, myelopathy, and muscular force. At the same visit, all patients were asked to have a facelift, and neck profile, as well as a neck MRI(General Tesla 3). Preoperative graphs were used to measure the diameter of the cervical canal(Pavlov ratio) and to evaluate sagittal alignment(Cobb Angle). Preoperative MRI of patients was reviewed for anterior and posterior longitudinal ligament calcification. Result: In this study, 57 patients were studied. The mean age of patients was 50.63 years, and 49.1% were male. Only 3.5% of patients had anterior and posterior longitudinal ligament calcification. Symptomatic ASD was observed in 26.6%. The X-rays and MRIs showed evidence of 80.7% radiological ASD. Among patients who underwent one-level surgery, 20% had symptomatic ASD, but among patients who underwent two-level surgery, the rate of ASD was 50%.In other words, the higher the number of surfaces that are operated and fused, the higher the probability of symptomatic ASD(P-value <0.05). The X-rays and MRIs showed 80.7% of radiological ASD. Among patients who underwent surgery at one level, 78% had radiological ASD, and this number was 92% among patients who underwent two-level surgery(P-value> 0.05). Demographic variables such as age, sex, height, weight, and BMI did not have a significant effect on the incidence of radiological ASD(P-value> 0.05), but sex and height were two influential factors on symptomatic ASD(P-value <0.05). Other related variables such as family history, smoking and exercise also have no significant effect(P-value> 0.05). Radiographic variables such as Pavlov ratio and sagittal alignment were also unaffected by the incidence of radiological and symptomatic ASD(P-value> 0.05). The number of surgical surfaces and the incidence of anterior and posterior longitudinal ligament calcification before surgery also had no statistically significant effect(P-value> 0.05). In the study of the ability of the neck to move in different directions, none of these variables are statistically significant in the two groups with radiological and symptomatic ASD and the non-affected group(P-value> 0.05). Conclusion: According to the findings of this study, this disease is considered to be a multifactorial disease. The incidence of radiological ASD is much higher than symptomatic ASD (80.7% vs. 26.3%) and sex, height and number of fused surfaces are the only factors influencing the incidence of symptomatic ASD and no variable influences radiological ASD.Keywords: risk factors, anterior neck disectomy and fusion, adjucent segment degeneration, complication
Procedia PDF Downloads 61173 COVID-19 Laws and Policy: The Use of Policy Surveillance For Better Legal Preparedness
Authors: Francesca Nardi, Kashish Aneja, Katherine Ginsbach
Abstract:
The COVID-19 pandemic has demonstrated both a need for evidence-based and rights-based public health policy and how challenging it can be to make effective decisions with limited information, evidence, and data. The O’Neill Institute, in conjunction with several partners, has been working since the beginning of the pandemic to collect, analyze, and distribute critical data on public health policies enacted in response to COVID-19 around the world in the COVID-19 Law Lab. Well-designed laws and policies can help build strong health systems, implement necessary measures to combat viral transmission, enforce actions that promote public health and safety for everyone, and on the individual level have a direct impact on health outcomes. Poorly designed laws and policies, on the other hand, can fail to achieve the intended results and/or obstruct the realization of fundamental human rights, further disease spread, or cause unintended collateral harms. When done properly, laws can provide the foundation that brings clarity to complexity, embrace nuance, and identifies gaps of uncertainty. However, laws can also shape the societal factors that make disease possible. Law is inseparable from the rest of society, and COVID-19 has exposed just how much laws and policies intersects all facets of society. In the COVID-19 context, evidence-based and well-informed law and policy decisions—made at the right time and in the right place—can and have meant the difference between life or death for many. Having a solid evidentiary base of legal information can promote the understanding of what works well and where, and it can drive resources and action to where they are needed most. We know that legal mechanisms can enable nations to reduce inequities and prepare for emerging threats, like novel pathogens that result in deadly disease outbreaks or antibiotic resistance. The collection and analysis of data on these legal mechanisms is a critical step towards ensuring that legal interventions and legal landscapes are effectively incorporated into more traditional kinds of health science data analyses. The COVID-19 Law Labs see a unique opportunity to collect and analyze this kind of non-traditional data to inform policy using laws and policies from across the globe and across diseases. This global view is critical to assessing the efficacy of policies in a wide range of cultural, economic, and demographic circumstances. The COVID-19 Law Lab is not just a collection of legal texts relating to COVID-19; it is a dataset of concise and actionable legal information that can be used by health researchers, social scientists, academics, human rights advocates, law and policymakers, government decision-makers, and others for cross-disciplinary quantitative and qualitative analysis to identify best practices from this outbreak, and previous ones, to be better prepared for potential future public health events.Keywords: public health law, surveillance, policy, legal, data
Procedia PDF Downloads 141172 In vivo Estimation of Mutation Rate of the Aleutian Mink Disease Virus
Authors: P.P. Rupasinghe, A.H. Farid
Abstract:
The Aleutian mink disease virus (AMDV, Carnivore amdoparvovirus 1) causes persistent infection, plasmacytosis, and formation and deposition of immune complexes in various organs in adult mink, leading to glomerulonephritis, arteritis and sometimes death. The disease has no cure nor an effective vaccine, and identification and culling of mink positive for anti-AMDV antibodies have not been successful in controlling the infection in many countries. The failure to eradicate the virus from infected farms may be caused by keeping false-negative individuals on the farm, virus transmission from wild animals, or neighboring farms. The identification of sources of infection, which can be performed by comparing viral sequences, is important in the success of viral eradication programs. High mutation rates could cause inaccuracies when viral sequences are used to trace back an infection to its origin. There is no published information on the mutation rate of AMDV either in vivo or in vitro. The in vivo estimation is the most accurate method, but it is difficult to perform because of the inherent technical complexities, namely infecting live animals, the unknown numbers of viral generations (i.e., infection cycles), the removal of deleterious mutations over time and genetic drift. The objective of this study was to determine the mutation rate of AMDV on which no information was available. A homogenate was prepared from the spleen of one naturally infected American mink (Neovison vison) from Nova Scotia, Canada (parental template). The near full-length genome of this isolate (91.6%, 4,143 bp) was bidirectionally sequenced. A group of black mink was inoculated with this homogenate (descendant mink). Spleen sampled were collected from 10 descendant mink after 16 weeks post-inoculation (wpi) and from anther 10 mink after 176 wpi, and their near-full length genomes were bi-directionally sequenced. Sequences of these mink were compared with each other and with the sequence of the parental template. The number of nucleotide substitutions at 176 wpi was 3.1 times greater than that at 16 wpi (113 vs 36) whereas the estimates of mutation rate at 176 wpi was 3.1 times lower than that at 176 wpi (2.85×10-3 vs 9.13×10-4 substitutions/ site/ year), showing a decreasing trend in the mutation rate per unit of time. Although there is no report on in vivo estimate of the mutation rate of DNA viruses in animals using the same method which was used in the current study, these estimates are at the higher range of reported values for DNA viruses determined by various techniques. These high estimates are logical based on the wide range of diversity and pathogenicity of AMDV isolates. The results suggest that increases in the number of nucleotide substitutions over time and subsequent divergence make it difficult to accurately trace back AMDV isolates to their origin when several years elapsed between the two samplings.Keywords: Aleutian mink disease virus, American mink, mutation rate, nucleotide substitution
Procedia PDF Downloads 125171 Relationship Demise After Having Children: An Analysis of Abandonment and Nuclear Family Structure vs. Supportive Community Cultures
Authors: John W. Travis
Abstract:
There is an epidemic of couples separating after a child is born into a family, generally with the father leaving emotionally or physically in the first few years after birth. This separation creates high levels of stress for both parents, especially the primary parent, leaving her (or him) less available to the infant for healthy attachment and nurturing. The deterioration of the couple’s bond leaves parents increasingly under-resourced, and the dependent child in a compromised environment, with an increased likelihood of developing an attachment disorder. Objectives: To understand the dynamics of a couple, once the additional and extensive demands of a newborn are added to a nuclear family structure, and to identify effective ways to support all members of the family to thrive. Qualitative studies interviewed men, women, and couples after pregnancy and the early years as a family, regarding key destructive factors, as well as effective tools for the couple to retain a strong bond. In-depth analysis of a few cases, including the author’s own experience, reveal deeper insights about subtle factors, replicated in wider studies. Using a self-assessment survey, many fathers report feeling abandoned, due to the close bond of the mother-baby unit, and in turn, withdrawing themselves, leaving the mother without support and closeness to resource her for the baby. Fathers report various types of abandonment, from his partner to his mother, with whom he did not experience adequate connection as a child. The study identified a key destructive factor to be unrecognized wounding from childhood that was carried into the relationship. The study culminated in the naming of Male Postpartum Abandonment Syndrome (MPAS), describing the epidemic in industrialized cultures with the nuclear family as the primary configuration. A growing family system often collapses without a minimum number of adult caregivers per infant, approximately four per infant (3.87), which allows for proper healing and caretaking. In cases with no additional family or community beyond one or two parents, the layers of abandonment and trauma result in the deterioration of a couple’s relationship and ultimately the family structure. The solution includes engaging community in support of new families. The study identified (and recommends) specific resources to assist couples in recognizing and healing trauma and disconnection at multiple levels. Recommendations include wider awareness and availability of resources for healing childhood wounds and greater community-building efforts to support couples for the whole family to thrive.Keywords: abandonment, attachment, community building, family and marital functioning, healing childhood wounds, infant wellness, intimacy, marital satisfaction, relationship quality, relationship satisfaction
Procedia PDF Downloads 225170 Abuse against Elderly Widows in India and Selected States: An Exploration
Authors: Rasmita Mishra, Chander Shekher
Abstract:
Background: Population ageing is an inevitable outcome of demographic transition. Due to increased life expectancy, the old age population in India and worldwide has increased, and it will continue to grow more alarmingly in the near future. There are redundant austerity that has been bestowed upon the widows, thus, the life of widows is never been easy in India. The loss of spouse along with other disadvantaged socioeconomic intermediaries like illiteracy and poverty often make the life of widows more difficult to live. Methodology: Ethical statement: The study used secondary data available in the public domain for its wider use in social research. Thus, there was no requirement of ethical consent in the present study. Data source: Building a Knowledge Base on Population Aging in India (BKPAI), 2011 dataset is used to fulfill the objectives of this study. It was carried out in seven states – Himachal Pradesh, Kerala, Maharashtra, Odisha, Punjab, Tamil Nadu, and West Bengal – having a higher percentage of the population in the age group 60 years and above compared to the national average. Statistical analysis: Descriptive and inferential statistics were used to understand the level of elderly widows and incidence of abuse against them in India and selected states. Bivariate and Trivariate analysis were carried out to check the pattern of abuse by selected covariates. Chi-Square test is used to verify the significance of the association. Further, Discriminant Analysis (DA) is carried out to understand which factor can separate out group of neglect and non-neglect elderly. Result: With the addition of 27 million from 2001 to 2011, the total elderly population in India is more than 100 million. Elderly females aged 60+ were more widows than their counterpart elderly males. This pattern was observed across selected states and at national level. At national level, more than one tenth (12 percent) of elderly experienced abuse in their lifetime. Incidence of abuse against elderly widows within family was considerably higher than the outside the family. This pattern was observed across the selected place and abuse in the study. In discriminant analysis, the significant difference between neglected and non-neglected elderly on each of the independent variables was examined using group mean and ANOVA. Discussion: The study is the first of its kind to assess the incidence of abuse against elderly widows using large-scale survey data. Another novelty of this study is that it has assessed for those states in India whereby the proportion of elderly is higher than the national average. Place and perpetrators involved in the abuse against elderly widows certainly envisaged the safeness in the present living arrangement of elderly widows. Conclusion: Due to the increasing life expectancy it is expected that the number of elderly will increase much faster than before. As biologically women live longer than men, there will be more women elderly than men. With respect to the living arrangement, after the demise of the spouse, elderly widows are more likely to live with their children who emerged as the main perpetrator of abuse.Keywords: elderly abuse, emotional abuse physical abuse, material abuse, psychological abuse, quality of life
Procedia PDF Downloads 426169 Frailty and Quality of Life among Older Adults: A Study of Six LMICs Using SAGE Data
Authors: Mamta Jat
Abstract:
Background: The increased longevity has resulted in the increase in the percentage of the global population aged 60 years or over. With this “demographic transition” towards ageing, “epidemiologic transition” is also taking place characterised by growing share of non-communicable diseases in the overall disease burden. So, many of the older adults are ageing with chronic disease and high levels of frailty which often results in lower levels of quality of life. Although frailty may be increasingly common in older adults, prevention or, at least, delay the onset of late-life adverse health outcomes and disability is necessary to maintain the health and functional status of the ageing population. This is an effort using SAGE data to assess levels of frailty and its socio-demographic correlates and its relation with quality of life in LMICs of India, China, Ghana, Mexico, Russia and South Africa in a comparative perspective. Methods: The data comes from multi-country Study on Global AGEing and Adult Health (SAGE), consists of nationally representative samples of older adults in six low and middle-income countries (LMICs): China, Ghana, India, Mexico, the Russian Federation and South Africa. For our study purpose, we will consider only 50+ year’s respondents. The logistic regression model has been used to assess the correlates of frailty. Multinomial logistic regression has been used to study the effect of frailty on QOL (quality of life), controlling for the effect of socio-economic and demographic correlates. Results: Among all the countries India is having highest mean frailty in males (0.22) and females (0.26) and China with the lowest mean frailty in males (0.12) and females (0.14). The odds of being frail are more likely with the increase in age across all the countries. In India, China and Russia the chances of frailty are more among rural older adults; whereas, in Ghana, South Africa and Mexico rural residence is protecting against frailty. Among all countries china has high percentage (71.46) of frail people in low QOL; whereas Mexico has lowest percentage (36.13) of frail people in low QOL.s The risk of having low and middle QOL is significantly (p<0.001) higher among frail elderly as compared to non–frail elderly across all countries with controlling socio-demographic correlates. Conclusion: Women and older age groups are having higher frailty levels than men and younger aged adults in LMICs. The mean frailty scores demonstrated a strong inverse relationship with education and income gradients, while lower levels of education and wealth are showing higher levels of frailty. These patterns are consistent across all LMICs. These data support a significant role of frailty with all other influences controlled, in having low QOL as measured by WHOQOL index. Future research needs to be built on this evolving concept of frailty in an effort to improve quality of life for frail elderly population, in LMICs setting.Keywords: Keywords: Ageing, elderly, frailty, quality of life
Procedia PDF Downloads 288168 Validating Chronic Kidney Disease-Specific Risk Factors for Cardiovascular Events Using National Data: A Retrospective Cohort Study of the Nationwide Inpatient Sample
Authors: Fidelis E. Uwumiro, Chimaobi O. Nwevo, Favour O. Osemwota, Victory O. Okpujie, Emeka S. Obi, Omamuyovbi F. Nwoagbe, Ejiroghene Tejere, Joycelyn Adjei-Mensah, Christopher N. Ekeh, Charles T. Ogbodo
Abstract:
Several risk factors associated with cardiovascular events have been identified as specific to Chronic Kidney Disease (CKD). This study endeavors to validate these CKD-specific risk factors using up-to-date national-level data, thereby highlighting the crucial significance of confirming the validity and generalizability of findings obtained from previous studies conducted on smaller patient populations. The study utilized the nationwide inpatient sample database to identify adult hospitalizations for CKD from 2016 to 2020, employing validated ICD-10-CM/PCS codes. A comprehensive literature review was conducted to identify both traditional and CKD-specific risk factors associated with cardiovascular events. Risk factors and cardiovascular events were defined using a combination of ICD-10-CM/PCS codes and statistical commands. Only risk factors with specific ICD-10 codes and hospitalizations with complete data were included in the study. Cardiovascular events of interest included cardiac arrhythmias, sudden cardiac death, acute heart failure, and acute coronary syndromes. Univariate and multivariate regression models were employed to evaluate the association between chronic kidney disease-specific risk factors and cardiovascular events while adjusting for the impact of traditional CV risk factors such as old age, hypertension, diabetes, hypercholesterolemia, inactivity, and smoking. A total of 690,375 hospitalizations for CKD were included in the analysis. The study population was predominantly male (375,564, 54.4%) and primarily received care at urban teaching hospitals (512,258, 74.2%). The mean age of the study population was 61 years (SD 0.1), and 86.7% (598,555) had a CCI of 3 or more. At least one traditional risk factor for CV events was present in 84.1% of all hospitalizations (580,605), while 65.4% (451,505) included at least one CKD-specific risk factor for CV events. The incidence of CV events in the study was as follows: acute coronary syndromes (41,422; 6%), sudden cardiac death (13,807; 2%), heart failure (404,560; 58.6%), and cardiac arrhythmias (124,267; 18%). 91.7% (113,912) of all cardiac arrhythmias were atrial fibrillations. Significant odds of cardiovascular events on multivariate analyses included: malnutrition (aOR: 1.09; 95% CI: 1.06–1.13; p<0.001), post-dialytic hypotension (aOR: 1.34; 95% CI: 1.26–1.42; p<0.001), thrombophilia (aOR: 1.46; 95% CI: 1.29–1.65; p<0.001), sleep disorder (aOR: 1.17; 95% CI: 1.09–1.25; p<0.001), and post-renal transplant immunosuppressive therapy (aOR: 1.39; 95% CI: 1.26–1.53; p<0.001). The study validated malnutrition, post-dialytic hypotension, thrombophilia, sleep disorders, and post-renal transplant immunosuppressive therapy, highlighting their association with increased risk for cardiovascular events in CKD patients. No significant association was observed between uremic syndrome, hyperhomocysteinemia, hyperuricemia, hypertriglyceridemia, leptin levels, carnitine deficiency, anemia, and the odds of experiencing cardiovascular events.Keywords: cardiovascular events, cardiovascular risk factors in CKD, chronic kidney disease, nationwide inpatient sample
Procedia PDF Downloads 81167 Cross-Language Variation and the ‘Fused’ Zone in Bilingual Mental Lexicon: An Experimental Research
Authors: Yuliya E. Leshchenko, Tatyana S. Ostapenko
Abstract:
Language variation is a widespread linguistic phenomenon which can affect different levels of a language system: phonological, morphological, lexical, syntactic, etc. It is obvious that the scope of possible standard alternations within a particular language is limited by a variety of its norms and regulations which set more or less clear boundaries for what is possible and what is not possible for the speakers. The possibility of lexical variation (alternate usage of lexical items within the same contexts) is based on the fact that the meanings of words are not clearly and rigidly defined in the consciousness of the speakers. Therefore, lexical variation is usually connected with unstable relationship between words and their referents: a case when a particular lexical item refers to different types of referents, or when a particular referent can be named by various lexical items. We assume that the scope of lexical variation in bilingual speech is generally wider than that observed in monolingual speech due to the fact that, besides ‘lexical item – referent’ relations it involves the possibility of cross-language variation of L1 and L2 lexical items. We use the term ‘cross-language variation’ to denote a case when two equivalent words of different languages are treated by a bilingual speaker as freely interchangeable within the common linguistic context. As distinct from code-switching which is traditionally defined as the conscious use of more than one language within one communicative act, in case of cross-language lexical variation the speaker does not perceive the alternate lexical items as belonging to different languages and, therefore, does not realize the change of language code. In the paper, the authors present research of lexical variation of adult Komi-Permyak – Russian bilingual speakers. The two languages co-exist on the territory of the Komi-Permyak District in Russia (Komi-Permyak as the ethnic language and Russian as the official state language), are usually acquired from birth in natural linguistic environment and, according to the data of sociolinguistic surveys, are both identified by the speakers as coordinate mother tongues. The experimental research demonstrated that alternation of Komi-Permyak and Russian words within one utterance/phrase is highly frequent both in speech perception and production. Moreover, our participants estimated cross-language word combinations like ‘маленькая /Russian/ нывка /Komi-Permyak/’ (‘a little girl’) or ‘мунны /Komi-Permyak/ домой /Russian/’ (‘go home’) as regular/habitual, containing no violation of any linguistic rules and being equally possible in speech as the equivalent intra-language word combinations (‘учöтик нывка’ /Komi-Permyak/ or ‘идти домой’ /Russian/). All the facts considered, we claim that constant concurrent use of the two languages results in the fact that a large number of their words tend to be intuitively interpreted by the speakers as lexical variants not only related to the same referent, but also referring to both languages or, more precisely, to none of them in particular. Consequently, we can suppose that bilingual mental lexicon includes an extensive ‘fused’ zone of lexical representations that provide the basis for cross-language variation in bilingual speech.Keywords: bilingualism, bilingual mental lexicon, code-switching, lexical variation
Procedia PDF Downloads 148166 Linguistic Cyberbullying, a Legislative Approach
Authors: Simona Maria Ignat
Abstract:
Bullying online has been an increasing studied topic during the last years. Different approaches, psychological, linguistic, or computational, have been applied. To our best knowledge, a definition and a set of characteristics of phenomenon agreed internationally as a common framework are still waiting for answers. Thus, the objectives of this paper are the identification of bullying utterances on Twitter and their algorithms. This research paper is focused on the identification of words or groups of words, categorized as “utterances”, with bullying effect, from Twitter platform, extracted on a set of legislative criteria. This set is the result of analysis followed by synthesis of law documents on bullying(online) from United States of America, European Union, and Ireland. The outcome is a linguistic corpus with approximatively 10,000 entries. The methods applied to the first objective have been the following. The discourse analysis has been applied in identification of keywords with bullying effect in texts from Google search engine, Images link. Transcription and anonymization have been applied on texts grouped in CL1 (Corpus linguistics 1). The keywords search method and the legislative criteria have been used for identifying bullying utterances from Twitter. The texts with at least 30 representations on Twitter have been grouped. They form the second corpus linguistics, Bullying utterances from Twitter (CL2). The entries have been identified by using the legislative criteria on the the BoW method principle. The BoW is a method of extracting words or group of words with same meaning in any context. The methods applied for reaching the second objective is the conversion of parts of speech to alphabetical and numerical symbols and writing the bullying utterances as algorithms. The converted form of parts of speech has been chosen on the criterion of relevance within bullying message. The inductive reasoning approach has been applied in sampling and identifying the algorithms. The results are groups with interchangeable elements. The outcomes convey two aspects of bullying: the form and the content or meaning. The form conveys the intentional intimidation against somebody, expressed at the level of texts by grammatical and lexical marks. This outcome has applicability in the forensic linguistics for establishing the intentionality of an action. Another outcome of form is a complex of graphemic variations essential in detecting harmful texts online. This research enriches the lexicon already known on the topic. The second aspect, the content, revealed the topics like threat, harassment, assault, or suicide. They are subcategories of a broader harmful content which is a constant concern for task forces and legislators at national and international levels. These topic – outcomes of the dataset are a valuable source of detection. The analysis of content revealed algorithms and lexicons which could be applied to other harmful contents. A third outcome of content are the conveyances of Stylistics, which is a rich source of discourse analysis of social media platforms. In conclusion, this corpus linguistics is structured on legislative criteria and could be used in various fields.Keywords: corpus linguistics, cyberbullying, legislation, natural language processing, twitter
Procedia PDF Downloads 86165 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 101164 Chronic Care Management for the Medically Vulnerable during the Pandemic: Experiences of Family Caregivers of Youth with Substance Use Disorders in Zambia
Authors: Ireen Manase Kabembo, Patrick Chanda
Abstract:
Background: Substance use disorders are among the chronic conditions that affect all age groups. Worldwide, there is an increase in young people affected by SUDs, which implies that more family members are transitioning into the caregiver role. Family caregivers play a buffering role in the formal healthcare system due to their involvement in caring for persons with acute and chronic conditions in the home setting. Family carers of youth with problematic alcohol and marijuana use experience myriad challenges in managing daily care for this medically vulnerable group. In addition, the poor health-seeking behaviours of youth with SUDs characterized by eluding treatment and runaway tendencies coupled with the effects of the pandemic made caregiving a daunting task for most family caregivers. Issues such as limited and unavailable psychotropic medications, social stigma and discrimination, financial hurdles, systemic barriers in adolescent and young adult mental healthcare services, and the lack of a perceived vulnerability to Covid-19 by youth with SUDs are experiences of family caretakers. Methods: A qualitative study with 30 family caregivers of youth aged 16-24 explored their lived experiences and subjective meanings using two in-depth semi-structured interviews, a caregiving timeline, and participant observation. Findings: Results indicate that most family caregivers had challenges managing care for treatment elusive youth, let alone having them adhere to Covid-19 regulations. However, youth who utilized healthcare services and adhered to treatment regimens had positive outcomes and sustained recovery. The effects of the pandemic, such as job losses and the closure of businesses, further exacerbated the financial challenges experienced by family caregivers, making it difficult to purchase needed medications and daily necessities for the youth. The unabated stigma and discrimination of families of substance-dependent youth in Zambian communities further isolated family caregivers, leaving them with limited support. Conclusion: Since young people with SUDs have a compromised mental capacity due to the cognitive impairments that come with continued substance abuse, they often have difficulties making sound judgements, including the need to utilize SUD recovery services. Also, their tendency to not adhere to the Covid-19 pandemic requirements places them at a higher risk for adverse health outcomes in the (post) pandemic era. This calls for urgent implementation of robust youth mental health services that address prevention and recovery for these emerging adults grappling with substance use disorders. Support for their family caregivers, often overlooked, cannot be overemphasized.Keywords: chronic care management, Covid-19 pandemic, family caregivers, youth with substance use disorders
Procedia PDF Downloads 105163 Histological and Ultrastructural Study on the Effect
Authors: Olfat Mohamed Hussien Yousef
Abstract:
Tamoxifen (TM) is a synthetic non-steroidal antiestrogen. It is one of the most effective drugs for treatment of estrogen-dependent cancer by binding to estrogen receptors, suppressing of epithelial proliferation and as a chemotherapeutic agent. Recently, more attention has been paid to the protective effects of natural antioxidants against toxicities induced by anti-cancer drugs involving free radical-mediated oxidative stress and tissue injury. Vitamin C is a potent antioxidant that has the ability to scavenge factors causing free radical formation in animals receiving tamoxifen. The present study aims at pinpointing the TM-induced histopathological and ultrastructural changes in the kidneys and to assess the possible chemoprotective role of vitamin C against such TM-induced microscopic changes. Thirty adult male CD-1 mice, 25-30 g in weight and 3 months old, were divided into three groups. The first group served as control. The second group received the therapeutic dose of TM at daily oral dose of 40 mg/kg body weight for 28 days. The third group received the therapeutic dose of vitamin C at a daily dose of 500 mg/kg body weight simultaneously with the therapeutic dose of TM used in group two for 28 days. Animals were sacrificed and kidney samples were obtained and processed for histological and ultrastructural examination. Histological changes induced by TM included damage of the renal corpuscles including obliteration of the subcapsular space, congestion of the glomerular blood capillaries, segmental mesangial cell proliferation with matrix expansion, capsular adhesions with the glomerular tuft especially at the urinary pole of the corpuscles. Moreover, some proximal and distal tubules suffered various degrees of degeneration in some lining cells. Haemorrhage and inflammatory cell infiltration were also observed in the intertubular spaces. Ultrastructural observations revealed damage of the parietal epithelium of Bowman’s capsule, fusion and destruction of the foot processes of podocytes and great increase of mesangial cells and mesangial matrix. The cells of the proximal convoluted tubules displayed marked destruction of the microvilli constituting the brush borders and degeneration of the mitochondria; besides, abundant lysosomes, numerous vacuoles and pyknotic nuclei were observed. The distal convoluted tubules displayed marked distruction of both the basal infolding and the mitochondria in some areas. Histological and ultrastructural results revealed that treatment of male mice with TM simultaneously with vitamin C led to apparent repair of the injured renal tissue. This might suggest that vitamin C (an antioxidant agent) can minimize the toxic effects of TM (an antiestrogen).Keywords: tamoxifen, vitamin c, mammalian kidney, histology, ultrastructure
Procedia PDF Downloads 379162 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 191161 Quality of Life Responses of Students with Intellectual Disabilities Entering an Inclusive, Residential Post-Secondary Program
Authors: Mary A. Lindell
Abstract:
Adults with intellectual disabilities (ID) are increasingly attending postsecondary institutions, including inclusive residential programs at four-year universities. The legislation, national organizations, and researchers support developing postsecondary education (PSE) options for this historically underserved population. Simultaneously, researchers are assessing the quality of life indicators (QOL) for people with ID. This study explores the quality of life characteristics for individuals with ID entering a two-year PSE program. A survey aligned with the PSE program was developed and administered to participants before they began their college program (in future studies, the same survey will be administered 6 months and 1 year after graduating). Employment, income, and housing are frequently cited QOL measures. People with disabilities, and especially people with ID, are more likely to experience unemployment and low wages than people without disabilities. PSE improves adult outcomes (e.g., employment, income, housing) for people with and without disabilities. Similarly, adults with ID who attend PSE are more likely to be employed than their peers who do not attend PSE; however, adults with ID are least likely among their typical peers and other students with disabilities to attend PSE. There is increased attention to providing individuals with ID access to PSE and more research is needed regarding the characteristics of students attending PSE. This study focuses on the participants of a fully residential two-year program for individuals with ID. Students earn an Applied Skills Certificate while focusing on five benchmarks: self-care, home care, relationships, academics, and employment. To create a QOL measure, the goals of the PSE program were identified, and possible assessment items were initially selected from the National Core Indicators (NCI) and the National Transition Longitudinal Survey 2 (NTLS2) that aligned with the five program goals. Program staff and advisory committee members offered input on potential item alignment with program goals and expected value to students with ID in the program. National experts in researching QOL outcomes of people with ID were consulted and concurred that the items selected would be useful in measuring the outcomes of postsecondary students with ID. The measure was piloted, modified, and administered to incoming students with ID. Research questions: (1) In what ways are students with ID entering a two-year PSE program similar to individuals with ID who complete the NCI and NTLS2 surveys? (2) In what ways are students with ID entering a two-year PSE program different than individuals with ID who completed the NCI and NTLS2 surveys? The process of developing a QOL measure specific to a PSE program for individuals with ID revealed that many of the items in comprehensive national QOL measures are not relevant to stake-holders of this two-year residential inclusive PSE program. Specific responses of students with ID entering an inclusive PSE program will be presented as well as a comparison to similar items on national QOL measures. This study explores the characteristics of students with ID entering a residential, inclusive PSE program. This information is valuable for, researchers, educators, and policy makers as PSE programs become more accessible for individuals with ID.Keywords: intellectual disabilities, inclusion, post-secondary education, quality of life
Procedia PDF Downloads 99160 Plant Microbiota of Coastal Halophyte Salicornia Ramossisima
Authors: Isabel N. Sierra-Garcia, Maria J. Ferreira, Sandro Figuereido, Newton Gomes, Helena Silva, Angela Cunha
Abstract:
Plant-associated microbial communities are considered crucial in the adaptation of halophytes to coastal environments. The plant microbiota can be horizontally acquired from the environment or vertically transmitted from generation to generation via seeds. Recruiting of the microbial communities by the plant is affected by geographical location, soil source, host genotype, and cultivation practice. There is limited knowledge reported on the microbial communities in halophytes the influence of biotic and abiotic factors. In this work, the microbiota associated with the halophyte Salicornia ramosissima was investigated to determine whether the structure of bacterial communities is influenced by host genotype or soil source. For this purpose, two contrasting sites where S. ramosissima is established in the estuarine system of the Ria de Aveiro were investigated. One site corresponds to a natural salt marsh where S. ramosissima plants are present (wild plants), and the other site is a former salt pan that nowadays are subjected to intensive crop production of S. ramosissima (crop plants). Bacterial communities from the rhizosphere, seeds and root endosphere of S. ramossisima from both sites were investigated by sequencing bacterial 16S rRNA gene using the Illumina MiSeq platform. The analysis of the sequences showed that the three plant-associated compartments, rhizosphere, root endosphere, and seed endosphere, harbor distinct microbiomes. However, bacterial richness and diversity were higher in seeds of wild plants, followed by rhizosphere in both sites, while seeds in the crop site had the lowest diversity. Beta diversity measures indicated that bacterial communities in root endosphere and seeds were more similar in both wild and crop plants in contrast to rhizospheres that differed by local, indicating that the recruitment of the similar bacterial communities by the plant genotype is active in regard to the site. Moreover, bacterial communities from the root endosphere and rhizosphere were phylogenetically more similar in both sites, but the phylogenetic composition of seeds in wild and crop sites was distinct. These results indicate that cultivation practices affect the seed microbiome. However, minimal vertical transmission of bacteria from seeds to adult plants is expected. Seeds from the crop site showed higher abundances of Kushneria and Zunongwangia genera. Bacterial members of the classes Alphaprotebacteria and Bacteroidia were the most ubiquitous across sites and compartments and might encompass members of the core microbiome. These findings indicate that bacterial communities associated with S. ramosissima are more influenced by host genotype rather than local abiotic factors or cultivation practices. This study provides a better understanding of the composition of the plant microbiota in S. ramosissima , which is essential to predict the interactions between plant and associated microbial communities and their effects on plant health. This knowledge is useful to the manipulations of these microbial communities to enhance the health and productivity of this commercially important plant.Keywords: halophytes, plant microbiome, Salicornia ramosissima, agriculture
Procedia PDF Downloads 169159 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 146158 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction
Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini
Abstract:
Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable
Procedia PDF Downloads 280157 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review
Authors: Hanan Algarni
Abstract:
Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.Keywords: virtual reality, treadmill, stroke, gait rehabilitation
Procedia PDF Downloads 274156 Associated Problems with the Open Dump Site and Its Possible Solutions
Authors: Pangkaj Kumar Mahanta, Md. Rafizul Islam
Abstract:
The rapid growth of the population causes a substantial amount of increase in household waste all over the world. Waste management is becoming one of the most challenging phenomena in the present day. The most environmentally friendly final disposal process of waste is sanitary landfilling, which is practiced in most developing countries. However, in Southeast Asia, most of the final disposal point is an open dump site. Due to the ignominy of proper management of waste and monitoring, the surrounding environment gets polluted more by the open dump site in comparison with a sanitary landfill. Khulna is 3rd largest metropolitan city in Bangladesh, having a population of around 1.5 million and producing approximately 450 tons per day of Municipal Solid Waste. The Municipal solid waste of Khulna city is disposed of in Rajbandh open dump site. The surrounding air is being polluted by the gas produced in the open dump site. Also, the open dump site produces leachate, which contains various heavy metals like Cadmium (Cd), Chromium (Cr), Lead (Pb), Manganese (Mn), Mercury (Hg), Strontium (Sr), etc. Leachate pollutes the soil as well as the groundwater of the open dump site and also the surrounding area through seepage. Moreover, during the rainy season, the surface water is polluted by leachate runoff. Also, the plastic waste flowing out from the open dump site through various drivers pollutes the nearby environment. The health risk assessment associated with heavy metals was carried out by computing the chronic daily intake (CDI), hazard quotient (HQ), and hazard index (HI) via different exposure pathways following the USEPA guidelines. For ecological risk, potential contamination index (Cp), Contamination factor (CF), contamination load index (PLI), numerical integrated contamination factor (NICF), enrichment factor (EF), ecological risk index (ER), and potential ecological risk index (PERI) were computed. The health risk and ecological risk assessment results reveal that some heavy metals possess strong health and ecological risk. In addition, the child faces higher harmful health risks from several heavy metals than the adult for all the exposure pathways and media. The conversion of an open dump site into a sanitary landfill and a proper management system can reduce the problems associated with an open dump site. In the sanitary landfill, the produced gas will be managed properly to save the surrounding atmosphere from being polluted. The seepage of leachate can be minimized by installing a compacted clay layer (CCL) as a baseline and leachate collection in a sanitary landfill to save the underlying soil layer and surrounding water bodies from leachate. Another important component of a sanitary landfill is the conversion of plastic waste to energy will minimize the plastic pollution in the landfill area and also the surrounding soil and water bodies. Also, in the sanitary landfill, the bio-waste can be used to make compost to reduce the volume of bio-waste and proper utilization of the landfill area.Keywords: ecological risk, health risk, open dump site, sanitary landfill
Procedia PDF Downloads 194155 Evaluation of Trabectedin Safety and Effectiveness at a Tertiary Cancer Center at Qatar: A Retrospective Analysis
Authors: Nabil Omar, Farah Jibril, Oraib Amjad
Abstract:
Purpose: Trabecatine is a is a potent marine-derived antineoplastic drug which binds to the minor groove of the DNA, bending DNA towards the major groove resulting in a changed conformation that interferes with several DNA transcription factors, repair pathways and cell proliferation. Trabectedin was approved by the European Medicines Agency (EMA; London, UK) for the treatment of adult patients with advanced stage soft tissue sarcomas in whom treatment with anthracyclines and ifosfamide has failed, or for those who are not candidates for these therapies. The recommended dosing regimen is 1.5 mg/m2 IV over 24 hours every 3 weeks. The purpose of this study was to comprehensively review available data on the safety and efficacy of trabectedin used as indicated for patients at a Tertiary Cancer Center at Qatar. Methods: A medication administration report generated in the electronic health record identified all patients who received trabectedin between November 1, 2015 and November 1, 2017. This retrospective chart review evaluated the indication of trabectedin use, compliance to administration protocol and the recommended monitoring parameters, number of patients improved on the drug and continued treatment, number of patients discontinued treatment due to side-effects and the reported side effects. Progress and discharged notes were utilized to report experienced side effects during trabectedin therapy. A total of 3 patients were reviewed. Results: Total of 2 out of 3 patients who received trabectedin were receiving it for non-FDA and non-EMA, approved indications; metastatic rhabdomyosarcoma and ovarian cancer stage IV with poor prognosis. And only one patient received it as indicated for leiomyosarcoma of left ureter with metastases to liver, lungs and bone. None of the patients has continued the therapy due to development of serious side effects. One patient had stopped the medication after one cycle due to disease progression and transient hepatic toxicity, the other one had disease progression and developed 12 % reduction in LVEF after 12 cycles of trabectedin, and the third patient deceased, had disease progression on trabectedin after the 10th cycle that was received through peripheral line which resulted in developing extravasation and left arm cellulitis requiring debridement. Regarding monitoring parameters, at baseline the three patients had ECHO, and Creatine Phosphokinase (CPK) but it was not monitored during treatment as recommended. Conclusion: Utilizing this medication as indicated with performing the appropriate monitoring parameters as recommended can benefit patients who are receiving it. It is important to reinforce the intravenous administration via central intravenous line, the re-assessment of left ventricular ejection fraction (LVEF) by echocardiogram or multigated acquisition (MUGA) scan at 2- to 3-month intervals thereafter until therapy is discontinued, and CPK and LFTs levels prior to each administration of trabectedin.Keywords: trabectedin, drug-use evaluation, safety, effectiveness, adverse drug reaction, monitoring
Procedia PDF Downloads 143154 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma
Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles
Abstract:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.Keywords: deconvolution, imaging, microenvironment, PDAC
Procedia PDF Downloads 128153 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging
Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott
Abstract:
The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging
Procedia PDF Downloads 135152 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function
Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio
Abstract:
Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).Keywords: algorithm, diabetes, laboratory medicine, non-invasive
Procedia PDF Downloads 34151 Multilevel Regression Model - Evaluate Relationship Between Early Years’ Activities of Daily Living and Alzheimer’s Disease Onset Accounting for Influence of Key Sociodemographic Factors Using a Longitudinal Household Survey Data
Authors: Linyi Fan, C.J. Schumaker
Abstract:
Background: Biomedical efforts to treat Alzheimer’s disease (AD) have typically produced mixed to poor results, while more lifestyle-focused treatments such as exercise may fare better than existing biomedical treatments. A few promising studies have indicated that activities of daily life (ADL) may be a useful way of predicting AD. However, the existing cross-sectional studies fail to show how functional-related issues such as ADL in early years predict AD and how social factors influence health either in addition to or in interaction with individual risk factors. This study would helpbetterscreening and early treatments for the elderly population and healthcare practice. The findings have significance academically and practically in terms of creating positive social change. Methodology: The purpose of this quantitative historical, correlational study was to examine the relationship between early years’ ADL and the development of AD in later years. The studyincluded 4,526participantsderived fromRAND HRS dataset. The Health and Retirement Study (HRS) is a longitudinal household survey data set that is available forresearchof retirement and health among the elderly in the United States. The sample was selected by the completion of survey questionnaire about AD and dementia. The variablethat indicates whether the participant has been diagnosed with AD was the dependent variable. The ADL indices and changes in ADL were the independent variables. A four-step multilevel regression model approach was utilized to address the research questions. Results: Amongst 4,526 patients who completed the AD and dementia questionnaire, 144 (3.1%) were diagnosed with AD. Of the 4,526 participants, 3,465 (76.6%) have high school and upper education degrees,4,074 (90.0%) were above poverty threshold. The model evaluatedthe effect of ADL and change in ADL on onset of AD in late years while allowing the intercept of the model to vary by level of education. The results suggested that the only significant predictor of the onset of AD was changes in early years’ ADL (b = 20.253, z = 2.761, p < .05). However, the result of the sensitivity analysis (b = 7.562, z = 1.900, p =.058), which included more control variables and increased the observation period of ADL, are not supported this finding. The model also estimated whether the variances of random effect vary by Level-2 variables. The results suggested that the variances associated with random slopes were approximately zero, suggesting that the relationship between early years’ ADL were not influenced bysociodemographic factors. Conclusion: The finding indicated that an increase in changes in ADL leads to an increase in the probability of onset AD in the future. However, this finding is not support in a broad observation period model. The study also failed to reject the hypothesis that the sociodemographic factors explained significant amounts of variance in random effect. Recommendations were then made for future research and practice based on these limitations and the significance of the findings.Keywords: alzheimer’s disease, epidemiology, moderation, multilevel modeling
Procedia PDF Downloads 135150 Differentiating Third Instar Larvae of Three Species of Flies (Family: Sarcophagidae) of Potential Forensic Importance in Jamaica, Using Morphological Characteristics
Authors: Rochelle Daley, Eric Garraway, Catherine Murphy
Abstract:
Crime is a major problem in Jamaica as well as the high number of unsolved violent crimes. The introduction of forensic entomology in criminal investigations has the potential to decrease the number of unsolved violent crimes through the estimation of PMI (post-mortem interval) or time since death. Though it has great potential, forensic entomology requires data from insects specific to a geographical location to be credibly applied in legal investigations. It is a relatively new area of study in the Caribbean, with multiple pioneer research opportunities. Of critical importance in forensic entomology is the ability to identify the species of interest. Larvae are commonly collected at crime scenes and a means of rapid identification is crucial. Moreover, a low-cost method is critical in countries with limited budget available for crime fighting. Sarcophagids are one of the most important colonisers of a carcass however, they are difficult to distinguish using morphology due to their similarities, however, there is a lack of research on the larvae of this family. This research contributes to that, having identified the larvae of three species from the family Sarcophagidae: Peckia nicasia, Peckia chrysostoma and Blaesoxipha plinthopyga; important agents in flesh decomposition. Adults of Sarcophidae are also difficult to differentiate, often requiring study of the genitalia; the use of larvae in species identification is important in such cases. Adult Sarcophagids were attracted using bottle traps baited with pig liver. These adults larviposited and the larvae were collected and colonises (generation 2 and 3) reared at room temperature for morphological work (n=50). The posterior ends of the larvae from segments 9 or 10 were removed and mounted posterior end upwards to allow study using a light microscope at magnification X200 (posterior cavity and intersegmental spine bands) and X640 (anterior and posterior spiracle). The remaining sections of the larvae were cleared in 10 % KOH and the cephalopharyngeal skeleton dissected out and measured at different points. The cephalopharyngeal skeletons show observable differences in the shapes and sizes of the mouth hooks as well as the length of the ventral cornua. The most notable difference between species is in the general shape of the anal segments and the shape of the posterior spiracles. Intersegmental spine bands of these larvae become less pigmented and visible as the larvae change instars. Spine bands along with anterior spiracle are not recommended as features for species distinction. Larvae can potentially be used to distinguish Sarcophagids to the level of species, with observable differences in the anal segments and the cephalopharyngeal skeletons. However, this method of identification should be tested by comparing these morphological features with other Jamaican Sarcophagids to further support this conclusion.Keywords: 3rd instar larval morphology, forensic entomology, Jamaica, Sarcophagidae
Procedia PDF Downloads 146