Search results for: terrestrial water storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10454

Search results for: terrestrial water storage

8204 The Effect of Probiotic Bacteria on Aflatoxin M1 Detoxification in Phosphate Buffer Saline

Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Mevlude Kizil

Abstract:

Aflatoxin M1 (AFM1) is a major toxic and carcinogenic molecule in milk and milk products. Therefore, it poses a risk for public health. Probiotics can be biological agent to remove AFM1. The aim of this study is to evaluate the effect of probiotic bacteria on AFM1 detoxification in phosphate buffer saline. The PBS samples artificially contaminated with AFM1 at concentration 100 pg/ml were prepared with probiotics bacteria that including monoculture (L. plantarum, B. bifidum ATCC, B. animalis ATCC 27672) and binary culture (L. bulgaricus + S. thermophiles, B. bifidum ATCC + B. animalis ATCC 27672, L. plantarum+B. bifidum ATCC, L. plantarum+ B. animalis ATCC 27672). The samples were incubated at 37°C for 4 hours and stored for 1, 5 and 10 days. The toxin was measured by the ELISA. The highest levels of AFM1 binding ability (63.6%) in PBS were detected yoghurt starter bacteria, while L. plantarum had the lowest levels of AFM1 binding ability (35.5%) in PBS. In addition, it was found that there was significant effect of storage on AFM1 binding ability in all groups except the one including B. animalis (p < 0.05). Consequently, results demonstrate that AFM1 detoxification by probiotic bacteria has a potential application to reduce toxin concentrations in yoghurt. Moreover, probiotic strains can react with itself as synergic or antagonist.

Keywords: aflatoxin M1, ELISA, probiotics, storage

Procedia PDF Downloads 332
8203 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet

Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci

Abstract:

The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.

Keywords: insulator, pollution flashover, high impulse voltage, water jet model

Procedia PDF Downloads 112
8202 Multi-Residue Analysis (GC-ECD) of Some Organochlorine Pesticides in Commercial Broiler Meat Marketed in Shivamogga City, Karnataka State, India

Authors: L. V. Lokesha, Jagadeesh S. Sanganal, Yogesh S. Gowda, Shekhar, N. B. Shridhar, N. Prakash, Prashantkumar Waghe, H. D. Narayanaswamy, Girish V. Kumar

Abstract:

Organochlorine (OC) insecticides are among the most important organotoxins and make a large group of pesticides. Physicochemical properties of these toxins, especially their lipophilicity, facilitate the absorption and storage of these toxins in the meat thus possess public health threat to humans. The presence of these toxins in broiler meat can be a quantitative and qualitative index for the presence of these toxins in animal bodies, which is attributed to Waste water of irrigation after spraying the crops, contaminated animal feeds with pesticides, polluted air are the potential sources of residues in animal products. Fifty broiler meat samples were collected from different retail outlets of Bengaluru city, Karnataka state, in ice cold conditions and later stored under -20°C until analysis. All the samples were subjected to Gas Chromatograph attached to Electron Capture Detector(GC-ECD, VARIAN make) screening and quantification of OC pesticides viz; Alachlor, Aldrin, Alpha-BHC, Beta-BHC, Dieldrin, Delta-BHC, o,p-DDE, p,p-DDE, o,p-DDD, p,p-DDD, o,p-DDT, p,p-DDT, Endosulfan-I, Endosulfan-II, Endosulfan Sulphate and Lindane(all the standards were procured from Merck). Extraction was undertaken by blending fifty grams (g) of meat sample with 50g Sodium Sulphate anahydrous, 120 ml of n-hexane, 120 ml acetone for 15 mins, extract is washed with distilled water and sample moisture is dried by sodium sulphate anahydrous, partitioning is done with 25 ml petroleum ether, 10 ml acetonitrile and 15 ml n-hexane shake vigorously for two minutes, sample clean up was done with florosil column. The reconstituted samples (using n-hexane) (Merck chem) were injected to Gas Chromatograph–Electron Capture Detector(GC-ECD). The present study reveals that, among the fifty chicken samples subjected for analysis, 60% (15/50), 32% (8/50), 28% (7/50), 20% (5/50) and 16% (4/50) of samples contaminated with DDTs, Delta-BHC, Dieldrin, Aldrin and Alachlor respectively. DDT metabolites, Delta-BHC were the most frequently detected OC pesticides. The detected levels of the pesticides were below the levels of MRL(according to Export Council of India notification for fresh poultry meat).

Keywords: accuracy, gas chromatography, meat, pesticide, petroleum ether

Procedia PDF Downloads 329
8201 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom

Authors: Tugba Gurler, Irfan Kurtbas

Abstract:

Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.

Keywords: phase change material, regional energy demand, roof layers, thermal energy storage

Procedia PDF Downloads 106
8200 Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water

Authors: Tao Youjun, Zhao Younan

Abstract:

The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value.

Keywords: hydrocyclone, ultrafine classification, slime, classification efficiency, classification size

Procedia PDF Downloads 170
8199 Water and Sanitation Challenges: A Case of King Sabatha Dalindyebo Municipality

Authors: Masibulele Fiko, Sanjay Balkara, Beauty Makiwane, Samson Asoba

Abstract:

Several municipalities in the Eastern Cape Province of South Africa suffer from severe infrastructure dilapidation and a backlog in repairs and replacement. This scourge is most critical in black dominated areas, such as the rural communities and townships. Several critical service delivery activities have been impaired consequent to the deteriorating facilities and a lot of human endeavors impacted adversely. As such, this study investigated the water and sanitation challenges in King Sabatha Dalindyebo municipality, Eastern Cape Province of South Africa. Questionnaires were distributed to the communities and interviews were conducted with the communities’ leaders. The Participants mentioned that their main sources of water supply were a dam, streams, springs and wells; and the distances to the water sources were thought to be too long and women were often attacked and sometimes raped. South African local authorities are facing problems of insufficient funds to meet their daily operations. The municipality should provide street taps. The alternative way for government to supply financial aid to local authorities is to introduce the private sector in the service rendering process.

Keywords: communities, sanitation, managers, municipality

Procedia PDF Downloads 127
8198 The Dependency of the Solar Based Disinfection on the Microbial Quality of the Source Water

Authors: M. T. Amina, A. A. Alazba, U. Manzoor

Abstract:

Solar disinfection (SODIS) is a viable method for household water treatment and is recommended by the World Health Organization as cost effective approach that can be used without special skills. The efficiency of both SODIS and solar collector disinfection (SOCODIS) system was evaluated using four different sources of water including stored rainwater, storm water, ground water and treated sewage. Samples with naturally occurring microorganisms were exposed to sunlight for about 8-9 hours in 2-L polyethylene terephthalate bottles under similar experimental conditions. Total coliform (TC), Escherichia coli (E. coli) and heterotrophic plate counts (HPC) were used as microbial water quality indicators for evaluating the disinfection efficiency at different sunlight intensities categorized as weak, mild and strong weathers. Heterotrophic bacteria showed lower inactivation rates compared to E. coli and TC in both SODIS and SOCODIS system. The SOCODIS system at strong weather was the strongest disinfection system in this study and the complete inactivation of HPC was observed after 8-9 hours of exposure with SODIS being ineffective for HPC. At moderate weathers, however, the SOCODIS system did not show complete inactivation of HPC due to very high concentrations (up to 5x10^7 CFU/ml) in both storm water and treated sewage. SODIS even remained ineffective for the complete inactivation of E. coli due to its high concentrations of about 2.5x10^5 in treated sewage compared with other waters even after 8-9 hours of exposure. At weak weather, SODIS was not effective at all while SOCODIS system, though incomplete, showed good disinfection efficiency except for HPC and to some extent for high E. coli concentrations in storm water. Largest reduction of >5 log occurred for TC when used stored rainwater even after 6 hours of exposure in the case of SOCODIS system at strong weather. The lowest E. coli and HPC reduction of ~2 log was observed in SODIS system at weak weather. Further tests with varying pH and turbidity are required to understand the effects of reaction parameters that could be a step forward towards maximizing the disinfection efficiency of such systems for the complete inactivation of naturally occurring E. coli or HPC at moderate or even at weak weathers.

Keywords: efficiency, microbial, SODIS, SOCODIS, weathers

Procedia PDF Downloads 265
8197 Drinking Water Quality of Lahore Pakistan: A Comparison of Quality of Drinking Water from Source and Distribution System

Authors: Zainab Abbas Soharwardi, Chunli Su, Fazeelat Tahira, Syed Zahid Aziz

Abstract:

The study monitors the quality of drinking water consumed by urban population of Lahore. A total of 50 drinking water samples (16 from source and 34 from distribution system) were examined for physical, chemical and bacteriological parameters. The parameters including pH, turbidity, electrical conductivity, total dissolved solids, total hardness, calcium, magnesium, total alkalinity, carbonate, sulphate, chloride, nitrite, fluoride, sodium and potassium were analyzed. Sixteen out of fifty samples showed high values of alkalinity compared to EPA standards and WHO guidelines. Twenty-eight samples were analyzed for heavy metals, chromium, iron, copper, zinc, cadmium and lead. Trace amounts of heavy metals were detected in some samples, however for most of the samples values were within the permissible limits although high concentration of zinc was detected in one sample collected from Mughal Pura area. Fifteen samples were analyzed for arsenic. The results were unsatisfactory; around 73% samples showed exceeding values of As. WHO has suggested permissible limits of arsenic < 0.01 ppm, whereas 27 % of samples have shown 0.05 ppm arsenic, which is five times greater than WHO highest permissible limits. All the samples were examined for E. coli bacteria. On the basis of bacteriological analysis, 42 % samples did not meet WHO guidelines and were unsafe for drinking.

Keywords: arsenic, heavy metals, ground water, Lahore

Procedia PDF Downloads 345
8196 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach

Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely

Abstract:

Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.

Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python

Procedia PDF Downloads 95
8195 Examination of Recreation Possibilities and Determination of Efficiency Zone in Bursa, Province Nilufer Creek

Authors: Zeynep Pirselimoglu Batman, Elvan Ender Altay, Murat Zencirkiran

Abstract:

Water and water resources are characteristic areas with their special ecosystems Their natural, cultural and economic value and recreation opportunities are high. Recreational activities differ according to the natural, cultural, socio-economic resource values of the areas. In this sense, water and water edge areas, which are important for their resource values, are also important landscape values for recreational activities. From these landscapes values, creeks and the surrounding areas have become a major source of daily life in the past, as well as a major attraction for people's leisure time. However, their qualities and quantities must be sufficient to enable these areas to be used effectively in a recreational sense and to be able to fulfill their recreational functions. The purpose of the study is to identify the recreational use of the water-based activities and identify effective service areas in dense urbanization zones along the creek and green spaces around them. For this purpose, the study was carried out in the vicinity of Nilufer Creek in Bursa. The study area and its immediate surroundings are in the boundaries of Osmangazi and Nilufer districts. The study was carried out in the green spaces along the creek with an individual interaction of 17.930m. These areas are Hudavendigar Urban Park, Atatürk Urban Forest, Bursa Zoo, Soganlı Botanical Park, Mihrapli Park, Nilufer Valley Park. In the first phase of the study, the efficiency zones of these locations were calculated according to international standards. 3200m of this locations are serving the city population and 800m are serving the district and neighborhood population. These calculations are processed on the digitized map by the AUTOCAD program using the satellite image. The efficiency zone of these green spaces in the city were calculated as 71.04 km². In the second phase of the study, water-based current activities were determined by evaluating the recreational potential of these green spaces, which are located along the Nilufer Creek, where efficiency zones have been identified. It has been determined that water-based activities are used intensively in Hudavendigar Urban Park and interacted with Nilufer Creek. Within the scope of effective zones for the study area, appropriate recreational planning proposals have been developed and water-based activities have been suggested.

Keywords: Bursa, efficiency zone, Nilufer Creek, recreation, water-based activities

Procedia PDF Downloads 164
8194 Analysis Of Variations In Rainfall And Flow Regimes In The Poorly Gauged, Semi-arid Basin. (Case Of The Tafna Basin, Western Algeria)

Authors: Amal Bakhti

Abstract:

Climate variability and inadequate water resource management, may be the main factors affecting water levels and water resources in algeria basins. The Tafna Basin in western Algeria is a semi-arid region and poorly gauged. The study examines the influence of precipitation, geological, topographic, and anthropological factors on water levels in the Tafna Basin. The analysis of five basins, based on rainfall and deposition data from 1976-2006, reveals that altitude basins have different water levels based on their geological context. Altitude basins have a higher base flow and a higher base flow index (BFI) compared to plain basins, possibly due to the lithological nature of the formations. Annual precipitation trends show no significant trends, except for a decrease in mean annual rainfall only on two altitude stations and a significant decrease in base stock in two altitude and one plain basin. The decrease in BFI is only significant at 1% for one altitude station, indicating a decrease in stock in altitude basins. The modification of base levels in some Tafna basins could be attributed to other factors, such as anthropological nature, rather than a decrease in precipitation

Keywords: sem-arid basin, base flow index, trend analysis, karstic basin, poorly gauged

Procedia PDF Downloads 11
8193 Assessment of Water Quality in Keluang River amidst Industrial Expansion in Bayan Lepas, Penang Island, Malaysia

Authors: Sharareh Khodami, Misni Surif, Wan Maznah Wan Omar, Parto Bahreini

Abstract:

Over the past three decades, Penang Island, Malaysia, has experienced rapid development across the industrial, urban, tourism, and aquaculture sectors. Consequently, wastewater from the Bayan Lepas Free Industrial Zone (FIZ) is discharged into a network of drainage canals and the Keluang River, which ultimately releases into the open sea near Jerjak Island. Among these waterways, the Keluang River is the largest canal receiving effluent from the Bayan Lepas FIZ. This study investigated the spatial and temporal variability of key physicochemical parameters water temperature, dissolved oxygen, salinity, pH, and nutrients (NO₃⁻, NO₂⁻, NH₄⁺, and PO₄³⁻) in the Bayan Lepas area. Water samples were collected from ten sampling stations (upstream, housing area, factory area, and coast) during low tide under both wet and dry seasonal conditions. The parameters were analyzed, and the spatial distribution of them were mapped using Geographic Information System (GIS) techniques. The observed ranges were 26–31.7 °C for water temperature, 0.3–9 mg/L for dissolved oxygen, 6.95–8.56 for pH, 0–30.1 ppt for salinity, 0.2–0.820 mg/L for nitrate, 0.002–0.090 mg/L for nitrite, 0.4–6.33 mg/L for ammonia, and 0.033–1.110 mg/L for phosphate. The selected stations exhibited characteristics ranging from fresh to saline water. One-way ANOVA showed that each parameter significantly differed among the stations during the two seasons (P < 0.05). The parameter values were evaluated against Malaysia's National Water Quality Standards (NWQS) and Marine Water Quality Criteria and Standards (MWQCS), and stations for each parameter were categorized from Class I to V. Results indicated that the Keluang River is polluted with high levels of ammonia and phosphate and low dissolved oxygen. The phosphate and ammonium concentrations at the river mouth of the Keluang River were 47.60 and 18.8 times higher than the standard values (0.056 mg/L and 0.024 mg/L), respectively. In light of the ongoing industrial expansion in the Bayan Lepas area, it is imperative to prioritize environmental protection and sustainable development practices to mitigate nutrient pollution and preserve the ecological health of the Keluang River and adjacent coastal regions.

Keywords: industrial impact, Keluang River, nutrient pollution, water quality

Procedia PDF Downloads 11
8192 The Study of Hydro Physical Complex Characteristic of Clay Soil-Ground of Colchis Lowland

Authors: Paata Sitchinava

Abstract:

It has been studied phenomena subjected on the water physical (hydrophysical, mineralogy containing, specific hydrophysical) class of heavy clay soils of the Colchis lowland, according to various categories and forms of the porous water, which will be the base of the distributed used methods of the engineering practice and reclamation effectiveness evaluation. According to of clay grounds data, it has been chosen three research bases section in the central part of lowland, where has implemented investigation works by using a special program. It has been established, that three of cuts are somewhat identical, and by morphological grounds separated layers are the difference by Gallic quality. It has been implemented suitable laboratory experimental research at the samples taken from the cuts, at the base of these created classification mark of physical-technical characteristic, which is the base of suitable calculation of hydrophysical researches.

Keywords: Colchis lowland, drainage, water, soil-ground

Procedia PDF Downloads 181
8191 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler

Authors: Ruth Diego, Luis M. Romeo, Antonio Morán

Abstract:

In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.

Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas

Procedia PDF Downloads 111
8190 Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2

Authors: F. Javier Benitez, Francisco J. Real, Juan Luis Acero, Francisco Casas

Abstract:

Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.

Keywords: emerging contaminants, UV/chlorine advanced oxidation process, amitriptyline, methyl salicylate, 2-phenoxyethanol, chlorination, photolysis

Procedia PDF Downloads 335
8189 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes

Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje

Abstract:

The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.

Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR

Procedia PDF Downloads 161
8188 The Effect of Flow Discharge on Suspended Solids Transport in the Nakhon-Nayok River

Authors: Apichote Urantinon

Abstract:

Suspended solid is one factor for water quality in open channel. It affects various problems in waterways that could cause high sedimentation in the channels, leading to shallowness in the river. It is composed of the organic and inorganic materials which can settle down anywhere along the open channel. Thus, depends on the solid amount and its composition, it occupies the water body capacity and causes the water quality problems simultaneously. However, the existing of suspended solid in the water column depends on the flow discharge (Q) and secchi depth (sec). This study aims to examine the effect of flow discharge (Q) and secchi depth (sec) on the suspended solids concentration in open channel and attempts to establish the formula that represents the relationship between flow discharges (Q), secchi depth (sec) and suspended solid concentration. The field samplings have been conducted in the Nakhon-Nayok river, during the wet season, September 15-16, 2014 and dry season, March 10-11, 2015. The samplings with five different locations are measured. The discharge has been measured onsite by floating technics, the secchi depth has been measured by secchi disc and the water samples have been collected at the center of the water column. They have been analyzed in the laboratory for the suspended solids concentration. The results demonstrate that the decrease in suspended solids concentration is dependent on flow discharge, since the natural processes in erosion consists of routing of eroded material. Finally, an empirical equation to compute the suspended solids concentration that shows an equation (SScon = 9.852 (sec)-0.759 Q0.0355) is developed. The calculated suspended solids concentration, with uses of empirical formula, show good agreement with the record data as the R2 = 0.831. Therefore, the empirical formula in this study is clearly verified.

Keywords: suspended solids concentration, the Nakhon-Nayok river, secchi depth, floating technics

Procedia PDF Downloads 251
8187 Elimination of Phosphorus by Activated Carbon Prepared from Algerian Dates Stones

Authors: A. Kamarchoua, A. A. Bebaa, A. Douadi

Abstract:

The current work has a goal of the preparation of activated carbon from the stones of dates from southern Algeria (El-Oued province) using a simple pyrolysis proceeded by chemical impregnation in sulphuric acid. For the preparation of the carbon, we choose the diameter of the pellets (0.5-1)mm, activation by acid and water (1:1), carbonization at 450˚C. The prepared carbon has the following characteristics: specific surface 125.86 m2/g, methylene blue number 40, CCE = 0.3meq.g/l, IR and micrographics SEM. The activated carbon thus obtained is used at the water purification in wastewater treatment plant (WWTP) at Kouinine, El- Oued province, to totally eliminate phosphorus. We analyzed the water at the WWTP before the purification procedure. In this study, we have looked at the effect of the following parameters on the adsorption of carbon: the pH, the contact time (Tc) and the agitation speed (Va). The best conditions for phosphorus adsorption are: pH=4 or pH >5, Tc = 60 min and Va = 900 rotations per minute.

Keywords: activated carbon, date stones, pyrolysis, phosphate pollutants

Procedia PDF Downloads 384
8186 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Heavy Water Reactor, Burn up, Minor Actinides, Neutronic Calculation

Procedia PDF Downloads 246
8185 Experimental Study on the Effect of Water-Cement Ratio and Replacement Ratio to the Capacity of the Recycled Aggregate Concrete

Authors: Feng Fu, Maria Karli

Abstract:

In this paper, experimental studies were carried out to investigate the behaviour of recycled aggregate concrete (RAC). A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. In the tests, different recycled aggregate replacement ratio, different mix design and different water to cement ratio have been chosen in the investigation. The behavior of the RAC concrete was investigated in detail. The results of the tests show that the water-cement ratio plays an important role in the strength of the concrete and RAC concrete exhibit sufficient strength in comparison to the normal aggregate concrete; the relevant design recommendations are also made.

Keywords: recycled aggregate concrete, compressive test, tensile splitting test, flexural strength test, impact test

Procedia PDF Downloads 392
8184 Water Harvest and Recycling with Principles of Permaculture in Rural Buildings in Southeastern Anatolia Region, Turkey

Authors: Muhammed Gündoğan

Abstract:

Permaculture is an important source of science and experience that can ensure the integration of sustainable architecture with nature. Since the past, many applications have been applied in rural areas for generations with the principle of benefiting from the self-renewal potential of nature. This culture, which has been transferred from generation to generation with architectural disciplines, has the potential to significantly improve the sustainability of the rural area and is an important guide with its nature-based solution proposals. Şanlıurfa has arid and semi-arid climate characteristics. Although it has substantial agricultural potential, water is limited, especially in rural areas. In the region, rainwater harvesting practices such as artificial water canals and cisterns have been used for a long time. However, these solutions remained mostly at the urban scale, and their reflections at the building scale were restricted and inadequate solutions. Impermeable surfaces are required for water harvesting, but water harvesting is not possible as rural buildings are mostly surrounded by cultivated land. Therefore, existing structures are important in terms of applicability. In this context, considering the typology of Traditional Şanlıurfa Houses, the aim of the project was to create a proposal for limited potable and utility water, which is a serious problem, especially for rural buildings in Şanlıurfa. In the project proposal, roof systems that can work integrated with the structural shape of Traditional Şanlıurfa Houses, rainwater collection systems in the inner courtyard, and greywater recycling were provided. While the average precipitation amount was 453.7 kg/m3 between 1929 and 2012, this value was measured as 622.7 kg/m3 in 2012. Greywater was used to produce natural fertilizers and compost for small-scale fruit and vegetable gardens, and it was combined with the principles of Permaculture to make it a lifestyle. As a result, it has been estimated that a total of 976.4 m3 kg of water can be saved, with an annual average of 158.8 m3 of rainwater recycling and 817.6 m3 of greywater recycling within the scope of the project.

Keywords: rural, traditional residential building, permaculture, rainwater harvesting, greywater recycling

Procedia PDF Downloads 133
8183 Impact of Water Courses Lining on Water Quality and Distribution of Aquatic Vegetations in Two Egyptian Governorates

Authors: Nahed M. M. Ismail, Bayoumy B. Mostafa, Ahmed Abdel-Kader, Khalil M. El-Said, Asmaa Abdel-Motleb, Hoda M. Abu Taleb

Abstract:

This study was carried out in lined and unlined watercourses in Beheira and Giza governorates to investigate the effect of water canals lining on water quality and aquatic vegetations. Samples of water and aquatic plants were collected from the examining sites during four seasons in two successive years. The main ecological parameters were recorded and water quality was measured. Results showed that the mean value of water conductivity and total dissolved salts in lined sites was significantly lower than those of unlined ones (p < 0.01, p < 0.05). In Beheira, the dissolved oxygen concentrations during autumn and winter were higher in lined sites (3.93±1.3 and 9.6±1.1 ppm, respectively) than those of unlined ones (the same values of 1.2±0.6 ppm). However, it represented by lower values of 5.77±6.05 and 4.9±1.8 ppm in lined watercourses in spring and summer, respectively, comparing with those in unlined ones (14.05±5.59 and 5.83±0.8 ppm, respectively). Generally, Zn, Pb, Fe, Cd were higher in both lined and unlined sites during summer than the other seasons. However, Zn and Fe were higher in lined sites (0.78±0.37 and 17.4±4.3 ppb, respectively) during summer than that of unlined ones (0.4±0.1 and 10.95±1.93 ppb, respectively). Cu was absent during summer in lined and unlined sites and only in unlined ones during spring. Regarding to Giza sites, Cu and Pb were absent in both lined and unlined sites during summer and only in unlined ones during spring. Whereas, Fe recorded higher values in autumn in both lined (8.8±20.1 ppb) and unlined sites (15.16±3 ppb) than the other seasons. Present survey study revealed that 13 species of aquatic plants were collected from lined and unlined sites in Beheira and Giza governorates. Eichhornia crassipes, Ceratophyllum demersum, and Potamogeton sp. were the only plant species infested the examined sites during autumn and winter in Beheira. In autumn C. demersum was the only plant found in lined sites represented by highly lower significant percentage (12.5% of the all examined sites) compared to the unlined sites (50%). E. crassipes was completely absent in the lined sites during the two seasons. In spring, there is only 3 plant species in lined sites compared to 6 ones in unlined. Also, in summer, there is only 2 species in lined sites comparing with 5 in unlined. The percentage of occurrence and density of these plants was highly significant (p < 0.01, p < 0.001) higher in unlined sites compared to the lined ones during all seasons. A diversity of plant species, E. crassipes, C. demersum, Jussias repens, Lemma giba, and Polygonum serr were the most abundant in many examined sites during all seasons in Giza. In summer, the percentage of sites containing the two plants E. crassipes (83.3%) and C. demersum (50%) was highly significant (p < 0.001) higher in unlined sites compared to the lined ones (50% and 0.0%, respectively). It concluded from the results that watercourses lining may play a significant role in preserving water with a good quality and reduces the distribution of aquatic vegetation which rendered the current of water.

Keywords: aquatic plants, lining of watercourses, physicochemical parameters, water quality

Procedia PDF Downloads 137
8182 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid

Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu

Abstract:

The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.

Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction

Procedia PDF Downloads 434
8181 Effect of Lithium Bromide Concentration on the Structure and Performance of Polyvinylidene Fluoride (PVDF) Membrane for Wastewater Treatment

Authors: Poojan Kothari, Yash Madhani, Chayan Jani, Bharti Saini

Abstract:

The requirements for quality drinking and industrial water are increasing and water resources are depleting. Moreover large amount of wastewater is being generated and dumped into water bodies without treatment. These have made improvement in water treatment efficiency and its reuse, an important agenda. Membrane technology for wastewater treatment is an advanced process and has become increasingly popular in past few decades. There are many traditional methods for tertiary treatment such as chemical coagulation, adsorption, etc. However recent developments in membrane technology field have led to manufacturing of better quality membranes at reduced costs. This along with the high costs of conventional treatment processes, high separation efficiency and relative simplicity of the membrane treatment process has made it an economically viable option for municipal and industrial purposes. Ultrafiltration polymeric membranes can be used for wastewater treatment and drinking water applications. The proposed work focuses on preparation of one such UF membrane - Polyvinylidene fluoride (PVDF) doped with LiBr for wastewater treatment. Majorly all polymeric membranes are hydrophobic in nature. This property leads to repulsion of water and hence solute particles occupy the pores, decreasing the lifetime of a membrane. Thus modification of membrane through addition of small amount of salt such as LiBr helped us attain certain characteristics of membrane, which can then be used for wastewater treatment. The membrane characteristics are investigated through measuring its various properties such as porosity, contact angle and wettability to find out the hydrophilic nature of the membrane and morphology (surface as well as structure). Pure water flux, solute rejection and permeability of membrane is determined by permeation experiments. A study of membrane characteristics with various concentration of LiBr helped us to compare its effectivity.

Keywords: Lithium bromide (LiBr), morphology, permeability, Polyvinylidene fluoride (PVDF), solute rejection, wastewater treatment

Procedia PDF Downloads 150
8180 Demographic and Socio-Economical Status of Children with Lead Exposure in Venezuela

Authors: Espinosa Carlos, Nobrega Doris

Abstract:

Children are at high risk for lead (Pb) exposure. The objective of this study was to identify risk factors that contribute to high blood lead (PbB) levels in Venezuelan children. The concentration of PbB was determined in 60 children (ages 4-9 years old), coming from the Michelena sector, Valencia District, Carabobo State. The relationship between these concentrations and socio-economical parameters (A: high quality life; B: fair quality life; C: critic poverty), Pb levels of faucet water (Pb-water) and dust Pb levels of floor (Pb-dust) of their houses, was established. Living areas were classified according to sectors and socio-economical status. Forty [40=66.7%] children resulted with PbB levels above the permissible concentration (LAPC). Average PbB was not significantly higher than the permissible levels. Odds ratio proved that children from status C are 7.28 times more likely to have LAPC of PbB than the ones coming from A or B. Thirty-four percent (34%) of the children with LAPC come from status C which could be considered the most critical status from the exposure risk point of view. The 76,3% of the sampled houses reported VSLP of Pb-water, being the Pb-water average in 35 ± 25.5 ug/L. This average significantly went superior to the permissible limit established by Venezuela and international organisms (10 ug/L). When grouping the results of PbB and Pb-water by sex, were that 50,8% of the children who presented/displayed VSLP of Pb-water and PbB. Was a significant relation (p ≤ 0.05), between masculine sex and the VSLP of PbB and Pb-water (x² = 3,672). In relation to the Pb-Dust analyses, were not statistically significant differences with respect to their permissible limit value (40 ug/pie²). This study shows that by correlating geographical and health data, we can identify 'high risk' areas, leading to a proactive public health action. The results of this study are excellent, in order to take preventive measures for the care from the health. Later studies are suggested predicting main to determine of more conclusive form of levels elevated of PbB in the investigated population.

Keywords: demographic, lead, risk, socio-economical status

Procedia PDF Downloads 139
8179 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture

Authors: Chul Ho Han, Kyoung Hoon Kim

Abstract:

This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.

Keywords: entropy, exergy, ammonia-water mixture, heat exchanger

Procedia PDF Downloads 400
8178 Efficient Sources and Methods of Extracting Water for Irrigation

Authors: Anthony Iyenjamu, Josiah Adeyemo

Abstract:

Due to the increasing water scarcity in South Africa, the prime focus of irrigation in South Africa shifts to creating feasible water sources and the efficient use of these sources. These irrigation systems in South Africa are implemented because of low and erratic rainfall and high evaporative demand. Irrigation contributes significantly to crop production in South Africa, as the mean annual precipitation for the country is usually less than 500mm. This is considered to be the minimum required for rain fed cropping. Even though the rainfall is low, a lot of the water in various areas in South Africa is lost due to runoff into storm water systems that run to the rivers and eventually into the sea. This study reviews the irrigation systems in South Africa which can be vastly improved by creating irrigation dams. A method of which may seem costly at first but rewarding with time. The study investigates the process of creating dam capacity capable of sustaining a suitable area size of land to be irrigated and thus diverting all runoff into these dams. This type of infrastructure method vastly improves various sectors in our irrigation systems. Extensive research is carried out in the surrounding area in which the dam should be constructed. Rainfall patterns and rainfall data is used for calculations of which period the dam will be at its optimum using rainfall. The size of the area irrigated was used to calculate the size of the irrigation dam to be constructed. The location of the dam must be situated as close to the river as possible to minimize the excessive use of pipelines to the dam. This study also investigated all existing resources to alleviate the cost. It was found that irrigation dams could solve the erratic distribution of rainfall in South Africa for irrigation purposes.

Keywords: irrigation, rainfed, rain harvesting, reservoir

Procedia PDF Downloads 284
8177 New Desiccant Solar Unit for Air Conditioning and Desalination: Study of the Compartments of Desalination and Water Condensation

Authors: Zied Guidara, Alexander Morgenstern, Aref Maalej

Abstract:

In this paper, a new desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of the desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation.

Keywords: air conditioning, desalination, condensation, design, desiccant wheel, modelling, experimental investigation

Procedia PDF Downloads 387
8176 Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber

Authors: Manisha Bal, B. C. Meikap

Abstract:

Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height.

Keywords: air pollution, HCl scrubbing, mass transfer, self-priming venturi scrubber

Procedia PDF Downloads 144
8175 Solar Energy Applications in Seawater Distillation

Authors: Yousef Abdulaziz Almolhem

Abstract:

Geographically, the most Arabic countries locate in areas confined to arid or semiarid regions. For this reason, most of our countries have adopted the seawater desalination as a strategy to overcome this problem. For example, the water supply of AUE, Kuwait, and Saudi Arabia is almost 100% from the seawater desalination plants. Many areas in Saudia Arabia and other countries in the world suffer from lack of fresh water which hinders the development of these areas, despite the availability of saline water and high solar radiation intensity. Furthermore, most developing countries do not have sufficient meteorological data to evaluate if the solar radiation is enough to meet the solar desalination. A mathematical model was developed to simulate and predict the thermal behavior of the solar still which used direct solar energy for distillation of seawater. Measurement data were measured in the Environment and Natural Resources Department, Faculty of Agricultural and Food sciences, King Faisal University, Saudi Arabia, in order to evaluate the present model. The simulation results obtained from this model were compared with the measured data. The main results of this research showed that there are slight differences between the measured and predicted values of the elements studied, which is resultant from the change of some factors considered constants in the model such as the sky clearance, wind velocity and the salt concentration in the water in the basin of the solar still. It can be concluded that the present model can be used to estimate the average total solar radiation and the thermal behavior of the solar still in any area with consideration to the geographical location.

Keywords: mathematical model, sea water, distillation, solar radiation

Procedia PDF Downloads 286