Search results for: polymer matrix sisal fibre
1436 Chemical Modification of Jute Fibers with Oxidative Agents for Usability as Reinforcement in Polymeric Composites
Authors: Yasemin Seki, Aysun Akşit
Abstract:
The goal of this research is to modify the surface characterization of jute yarns with different chemical agents to improve the compatibility with a non-polar polymer, polypropylene, when used as reinforcement. A literature review provided no knowledge on surface treatment of jute fibers with sodium perborate trihydrate. This study also aims to compare the efficiency of sodium perborate trihydrate on jute fiber treatment with other commonly used chemical agents. Accordingly, jute yarns were treated with 0.02% potassium dichromate (PD), potassium permanganate (PM) and sodium perborate trihydrate (SP) aqueous solutions in order to enhance interfacial compatibility with polypropylene in this study. The effect of treatments on surface topography, surface chemistry and interfacial shear strength of jute yarns with polypropylene were investigated. XPS results revealed that surface treatments enhanced surface hydrophobicity by increasing C/O ratios of fiber surface. Surface roughness values increased with the treatments. The highest interfacial adhesion with polypropylene was achieved after SP treatment by providing the highest surface roughness values and hydrophobic character of jute fiber.Keywords: jute, chemical modification, sodium perborate, polypropylene
Procedia PDF Downloads 5081435 Evaluation of Methodologies for Measuring Harmonics and Inter-Harmonics in Photovoltaic Facilities
Authors: Anésio de Leles Ferreira Filho, Wesley Rodrigues de Oliveira, Jéssica Santoro Gonçalves, Jorge Andrés Cormane Angarita
Abstract:
The increase in electric power demand in face of environmental issues has intensified the participation of renewable energy sources such as photovoltaics, in the energy matrix of various countries. Due to their operational characteristics, they can generate time-varying harmonic and inter-harmonic distortions. For this reason, the application of methods of measurement based on traditional Fourier analysis, as proposed by IEC 61000-4-7, can provide inaccurate results. Considering the aspects mentioned herein, came the idea of the development of this work which aims to present the results of a comparative evaluation between a methodology arising from the combination of the Prony method with the Kalman filter and another method based on the IEC 61000-4-30 and IEC 61000-4-7 standards. Employed in this study were synthetic signals and data acquired through measurements in a 50kWp photovoltaic installation.Keywords: harmonics, inter-harmonics, iec61000-4-7, parametric estimators, photovoltaic generation
Procedia PDF Downloads 4871434 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing
Authors: Ali Rabiee, Hessam Ghasemnejad
Abstract:
Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.Keywords: through-thickness stitching, 3D enforcement, energy absorption, tubular composite structures
Procedia PDF Downloads 2621433 The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery
Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song Yan Li, Zihan Gu, Li Shaopeng
Abstract:
In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery.Keywords: black rice husk ash nanoparticle, surfactant, foam life, foam scanning
Procedia PDF Downloads 1521432 Sol-Gel Synthesis and Photoluminescent Properties of YPO4: Pr3+ Nanophosphors
Authors: Badis Kahouadji, Lakhdar Guerbous, Lyes Lamiri
Abstract:
For many years, the luminescent materials were investigated principally in the infrared and visible areas, because the ultraviolet (UV) and especially in vacuum Ultraviolet (VUV) are technically more difficult to explore, especially absence of applications requiring of materials suitable to short wavelengths.Recent necessary, related to the development of certain technologies, encouraged research in these spectra domains. It is in this context that the 4Fn-4Fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies. These studies relate in particular to search for new scintillator materials used for spectroscopy and X-ray, ɤ, as well as medical imaging. The 4Fn- 4Fn-15d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggeting to study on a very specific class of inorganic scintillators that are orthophosphate doped with rare earth ions, this study focused on the Pr3+ concentration on the structural and optical properties of Pr3+ doped YPO4 (yttriumorthophosphate) with powder form prepared by the Sol Gel method.Keywords: rare earth, scintillator, YPO4:Pr3+ nanophosphors, sol gel, 4Fn-4Fn-15d transitions
Procedia PDF Downloads 6031431 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines
Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi
Abstract:
In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.Keywords: breast cancer, mammography, CAD system, features, fusion
Procedia PDF Downloads 5991430 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth
Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong
Abstract:
PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth
Procedia PDF Downloads 1421429 Direct Blind Separation Methods for Convolutive Images Mixtures
Authors: Ahmed Hammed, Wady Naanaa
Abstract:
In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping
Procedia PDF Downloads 3221428 Evaluation of Vine Stem Waste as a Filler Material for High Density Polyethylene
Authors: Y. Seki, A. Ç. Kılıç, M. Atagür, O. Özdemir, İ. Şen, K. Sever, Ö. Seydibeyoğlu, M. Sarikanat, N. Küçükdoğan
Abstract:
Cheap and abundant waste materials have been investigated as filler materials in thermoplastic polymers instead of wood- based materials because of deforestation. Vine stem, as an agricultural waste, was used as a filler material for a thermoplastic polymer, high-density polyethylene (HDPE) in this study. Agricultural waste of vine stem was collected from Manisa region, Turkey. Vine stem at different rations was used to reinforce HDPE. The effect of vine stem loading on tensile strength and Young’s modulus of composites were obtained. It was clearly observed that tensile strength and Young’s modulus of HDPE was increased by vine stem loading. Thermal stabilities of composites were obtained by using thermogravimetric analysis. Water absorption behavior of HDPE was improved by loading vine stem into HDPE. The crystallinity index values of neat HDPE and vine stem loaded HDPE composites were investigated byX-ray diffraction analysis. From this study, it was inferred that vine stem, as an agricultural waste, can be used as a filler material for HDPE.Keywords: waste filler, high density polyethylene, composite, composite materials
Procedia PDF Downloads 5171427 An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene
Authors: Salihu Takuma
Abstract:
Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer.Keywords: biodegradable, elongation at break, epoxidation, epoxy fatty acids, sustainable, tensile strength and modulus
Procedia PDF Downloads 2341426 Investigations on Microstructural and Raman Scattering Properties of B2O3 Doped Ba(Ti1-xZrx)O3 Nanoceramics
Authors: Keri̇m Emre Öksüz, Şaduman Şen, Uğur Şen
Abstract:
0.5 wt. % B2O3–doped Ba (Ti1-xZrx) O3, (x=0-0.4) lead-free nanoceramics were synthesized using the solid-state reaction method by adopting the ball milling technique. The influence of the substitution content on crystallographic structure, phase transition, microstructure and sintering behaviour of BT and BZT ceramics were investigated. XRD analysis at room temperature revealed a structural transformation from tetragonal to rhombohedral with enhancement of ZrO2 content in the barium titanate matrix. The scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate microstructure and surface morphology of the sintered samples. The evolution of the Raman spectra was studied for various compositions, and the spectroscopic signature of the corresponding phase was determined. Scanning Electron Microscope (SEM) observations revealed enhanced microstructural uniformity and retarded grain growth with increasing Zr content.Keywords: BaTiO3, barium-titanate-zirconate, nanoceramics, raman spectroscopy
Procedia PDF Downloads 3421425 Testing the Change in Correlation Structure across Markets: High-Dimensional Data
Authors: Malay Bhattacharyya, Saparya Suresh
Abstract:
The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition
Procedia PDF Downloads 1251424 Optimization Techniques for Microwave Structures
Authors: Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.Keywords: segmentation, s parameters, simulation, optimization
Procedia PDF Downloads 5281423 Hydroxyapatite from Biowaste for the Reinforcement of Polymer
Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam
Abstract:
Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.Keywords: biomaterial, biopolymer, bone, hydroxyapatite
Procedia PDF Downloads 3211422 Quantitative Elemental Analysis of Cyperus rotundus Medicinal Plant by Particle Induced X-Ray Emission and ICP-MS Techniques
Authors: J. Chandrasekhar Rao, B. G. Naidu, G. J. Naga Raju, P. Sarita
Abstract:
Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques have been employed in this work to determine the elements present in the root of Cyperus rotundus medicinal plant used in the treatment of rheumatoid arthritis. The elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, and Sr were commonly identified and quantified by both PIXE and ICP-MS whereas the elements Li, Be, Al, As, Se, Ag, Cd, Ba, Tl, Pb and U were determined by ICP-MS and Cl, K, Ca, Ti and Br were determined by PIXE. The regional variation of elemental content has also been studied by analyzing the same plant collected from different geographical locations. Information on the elemental content of the medicinal plant would be helpful in correlating its ability in the treatment of rheumatoid arthritis and also in deciding the dosage of this herbal medicine from the metal toxicity point of view. Principal component analysis and cluster analysis were also applied to the data matrix to understand the correlation among the elements.Keywords: PIXE, CP-MS, elements, Cyperus rotundus, rheumatoid arthritis
Procedia PDF Downloads 3331421 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation.Keywords: stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties
Procedia PDF Downloads 4011420 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors
Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali
Abstract:
The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)
Procedia PDF Downloads 4261419 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection
Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun
Abstract:
In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube
Procedia PDF Downloads 2011418 Production and Characterization of Implant Material Produced by Using Electroless Ni Plated Al2O3-Co-Cr-Ti Powders
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
The microstructure, mechanical properties and corrosion characteristics of Ni plated %10Al2O3-%40Co-%20Cr and %10Ti powders were investigated using specimens produced by tube furnace sintering at 800-1200°C temperature. A uniform nickel layer on Al2O3-Co-Cr and Ti powders was deposited prior to sintering using electroless plating technique. A composite consisting of quintet additions, a metallic phase, Ti,Cr and Co including a ceramic phase, alumina, within a matrix of Ni has been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), corrosion behavior in acidic media were investigated to characterize the properties of the specimens. Experimental results carried out for composition (%10Al2O3-%40Co-%20Cr- %10Ti)20Ni at 1200°C suggest that the best properties as 312.18HV were obtained at 1200°C.Keywords: sintering, intermetallic, Electroless nickel plating, composite
Procedia PDF Downloads 5741417 Enhanced Constraint-Based Optical Network (ECON) for Enhancing OSNR
Authors: G. R. Kavitha, T. S. Indumathi
Abstract:
With the constantly rising demands of the multimedia services, the requirements of long haul transport network are constantly changing in the area of optical network. Maximum data transmission using optimization of the communication channel poses the biggest challenge. Although there has been a constant focus on this area from the past decade, there was no evidence of a significant result that has been accomplished. Hence, after reviewing some potential design of optical network from literatures, it was understood that optical signal to noise ratio was one of the elementary attributes that can define the performance of the optical network. In this paper, we propose a framework termed as ECON (Enhanced Constraint-based Optical Network) that primarily optimize the optical signal to noise ratio using ROADM. The simulation is performed in Matlab and optical signal to noise ratio is extracted considering the system matrix. The outcome of the proposed study shows that optimized OSNR as compared to the existing studies.Keywords: component, optical network, reconfigurable optical add-drop multiplexer, optical signal-to-noise ratio
Procedia PDF Downloads 4881416 Terrorism in German and Italian Press Headlines: A Cognitive Linguistic Analysis of Conceptual Metaphors
Authors: Silvia Sommella
Abstract:
Islamic terrorism has gained a lot of media attention in the last years also because of the striking increase of terror attacks since 2014. The main aim of this paper is to illustrate the phenomenon of Islamic terrorism by applying frame semantics and metaphor analysis to German and Italian press headlines of the two online weekly publications Der Spiegel and L’Espresso between 2014 and 2019. This study focuses on how media discourse – through the use of conceptual metaphors – let arise in people a particular reception of the phenomenon of Islamic terrorism and accept governmental strategies and policies, perceiving terrorists as evildoers, as the members of an uncivilised group ‘other’ opposed to the civilised group ‘we’: two groups that are perceived as opposed. The press headlines are analyzed on the basis of the cognitive linguistics, namely Lakoff and Johnson’s conceptualization of metaphor to distinguish between abstract conceptual metaphors and specific metaphorical expressions. The study focuses on the contexts, frames, and metaphors. The method adopted in this study is Konerding’s frame semantics (1993). Konerding carried out on the basis of dictionaries – in particular of the Duden Deutsches Universalwörterbuch (Duden Universal German Dictionary) – in a pilot study of a lexicological work hyperonym reduction of substantives, working exclusively with nouns because hyperonyms usually occur in the dictionary meaning explanations as for the main elements of nominal phrases. The results of Konerding’s hyperonym type reduction is a small set of German nouns and they correspond to the highest hyperonyms, the so-called categories, matrix frames: ‘object’, ‘organism’, ‘person/actant’, ‘event’, ‘action/interaction/communication’, ‘institution/social group’, ‘surroundings’, ‘part/piece’, ‘totality/whole’, ‘state/property’. The second step of Konerding’s pilot study consists in determining the potential reference points of each category so that conventionally expectable routinized predications arise as predictors. Konerding found out which predicators the ascertained noun types can be linked to. For the purpose of this study, metaphorical expressions will be listed and categorized in conceptual metaphors and under the matrix frames that correspond to the particular conceptual metaphor. All of the corpus analyses are carried out using Ant Conc corpus software. The research will verify some previously analyzed metaphors such as TERRORISM AS WAR, A CRIME, A NATURAL EVENT, A DISEASE and will identify new conceptualizations and metaphors about Islamic terrorism, especially in the Italian language like TERRORISM AS A GAME, WARES, A DRAMATIC PLAY. Through the identification of particular frames and their construction, the research seeks to understand the public reception and the way to handle the discourse about Islamic terrorism in the above mentioned online weekly publications under a contrastive analysis in the German and in the Italian language.Keywords: cognitive linguistics, frame semantics, Islamic terrorism, media
Procedia PDF Downloads 1731415 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept
Authors: Brandtner-Hafner Martin
Abstract:
Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis
Procedia PDF Downloads 1591414 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method
Procedia PDF Downloads 1371413 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling
Authors: Ivan Tolj
Abstract:
Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management
Procedia PDF Downloads 2771412 The Optimisation of Salt Impregnated Matrices as Potential Thermochemical Storage Materials
Authors: Robert J. Sutton, Jon Elvins, Sean Casey, Eifion Jewell, Justin R. Searle
Abstract:
Thermochemical storage utilises chemical salts which store and release energy a fully reversible endo/exothermic chemical reaction. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 (SIMs – Salt In Matrices) are proposed as potential materials for long-term thermochemical storage. The behavior of these materials during typical hydration and dehydration cycles is investigated. A simple moisture experiment represents the hydration, whilst thermogravimetric analysis (TGA) represents the dehydration. Further experiments to approximate the energy density and to determine the peak output temperatures of the SIMs are conducted. The CaCl2 SIM is deemed the best performing SIM across most experiments, whilst the results of MgSO4 SIM indicate difficulty associated with energy recovery.Keywords: hydrated states, inter-seasonal heat storage, moisture sorption, salt in matrix
Procedia PDF Downloads 5541411 CFD Analysis of Flow Regimes of Non-Newtonian Liquids in Chemical Reactor
Authors: Nenashev Yaroslav, Russkin Oleg
Abstract:
The mixing process is one of the most important and critical stages in many industrial sectors, such as chemistry, pharmaceuticals, and the food industry. When designing equipment with mixing impellers, technology developers often encounter working environments with complex physical properties and rheology. In such cases, the use of computational fluid dynamics tools is an excellent solution to mitigate risks and ensure the stable operation of the equipment. The research focuses on one of the designed reactors with mixing impellers intended for polymer synthesis. The study describes an approach to modeling reactors of similar configurations, taking into account the complex properties of the mixed liquids using the computational fluid dynamics (CFD) method. To achieve this goal, a complex 3D model was created, accurately replicating the functionality of chemical equipment. The model allows for the assessment of the hydrodynamic behavior of the reaction mixture inside the reactor, consideration of heat release due to the reaction, and the heat exchange between the reaction mixture and the cooling medium. The results indicate that the choice of the type and size of the mixing device significantly affects the efficiency of the mixing process inside the chemical reactor.Keywords: CFD, mixing, blending, chemical reactor, non-Newton liquids, polymers
Procedia PDF Downloads 361410 Analysis of Wire Coating for Heat Transfer Flow of a Viscoelastic PTT Fluid with Slip Boundary Conditions
Authors: Rehan Ali Shah, A. M. Siddiqui, T. Haroon
Abstract:
Slip boundary value problem in wire coating analysis with heat transfer is examined. The fluid is assumed to be viscoelastic PTT (Phan-Thien and Tanner). The rheological constitutive equation of PTT fluid model simulates various polymer melts. Therefore, the current consequences are valuable in a number of realistic situations. Effects of slip parameter γ as well as εDec^2 (viscoelastic index) on the axial velocity, shear stress, normal stress, average velocity, volume flux, thickness of coated wire, shear stress, force on the total wire and temperature distribution profiles have been investigated. A new direction is explored to analyze the flow with the slip parameter. The slippage at the boundaries plays an important role in thickness of coated wire. It is noted that as the slip parameter increases the flow rate and thickness of coated wire increases while, temperature distribution decreases. The results reduce to no slip when the slip parameter is vanished. Furthermore, we can obtain the results for Maxwell and viscous model by setting ε and λ equal to zero respectively.Keywords: wire coating, straight annular die, PTT fluid, heat transfer, slip boundary conditions
Procedia PDF Downloads 3631409 Synthesis and Characterization of Renewable Resource Based Green Epoxy Coating
Authors: Sukanya Pradhan, Smita Mohanty, S. K Nayak
Abstract:
Plant oils are a great renewable source for being a reliable starting material to access new products with a wide spectrum of structural and functional variations. Even though petroleum products might also render the same, but it would also impose a high risk factor of environmental and health hazard. Since epoxidized vegetable oils are easily available, eco-compatible, non-toxic and renewable, hence these have drawn much of the attentions in the polymer industrial sector especially for the development of eco-friendly coating materials. In this study a waterborne epoxy coating was prepared from epoxidized soyabean oil by using triethanolamine. Because of its hydrophobic nature, it was a tough and tedius task to make it hydrophilic. The hydrophobic biobased epoxy was modified into waterborne epoxy by the help of a plant based anhydride as curing agent. Physico-mechanical, chemical resistance tests and thermal analysis of the green coating material were carried out which showed good physic-mechanical, chemical resistance properties as well as environment friendly. The complete characterization of the final material was done in terms of scratch hardness, gloss test, impact resistance, adhesion and bend test.Keywords: epoxidized soybean oil, waterborne, curing agent, green coating
Procedia PDF Downloads 5411408 Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors
Authors: A. Khosrozadeh, M. A. Darabi, M. Xing, Q. Wang
Abstract:
Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite.Keywords: cellulose, polyaniline, reduced graphene oxide, silver, super capacitor
Procedia PDF Downloads 4301407 Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization
Authors: Hande Taşdemir, Meral Şahin, Mehmet Saçak
Abstract:
Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques.Keywords: kaolinite, poly(N-ethylaniline), conductive composite, chemical polymerization
Procedia PDF Downloads 292