Search results for: heat recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4600

Search results for: heat recovery

2350 A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors

Authors: Myunggon Yoon, Jung-Ho Moon

Abstract:

In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate.

Keywords: combustor, dynamics, thermoacoustics, transfer function

Procedia PDF Downloads 373
2349 First Documented Anesthesia with Use of Low Doses of Tiletamine-Zolazepam Combination in Ovoviparous Amazon Tree Boa Undergoing Emergency Coeliotomy-Case Report

Authors: Krzysztof Buczak, Sonia Lachowska, Pawel Kucharski, Agnieszka Antonczyk

Abstract:

Tiletamine - zolazepam combination is increasingly used in veterinary anaesthesiology in wild animals, including snakes. The available literature shows a lack of information about anesthesia in this mixture in ovoviviparous snakes. The studies show the possibility of using the combination at a dose of 20 mg/kg or more for snake immobilization. This paper presents an anesthetic protocol with the use of a combination of tiletamine - zolazepam at the dose of 10 mg/kg intramuscularly and maintenance with inhalant anesthesia with isoflurane in pure oxygen. The objective of this study was to evaluate the usefulness of the anesthetic protocol to proceed with coeliotomy in Amazon Tree Boa. The patient was a five years old bicolor female Amazon Tree Boa (Corallus hortulanus) with dystocia. The clinical examination reveals significant emaciation (bodyweight 520g), high degree of dehydration, heart rate (HR = 60 / min), pale mucous membranes and poor reactivity. Meloxicam (1 mg/kg) and tramadol (10 mg/kg) were administered subcutaneously and the patient was placed in an incubator with access to fresh oxygen. Four hours later, the combination of tiletamine - zolazepam (10 mg/kg) was administered intramuscularly for induction of anesthesia. The snake was intubated and connected to inhalant anesthesia equipment. For maintenance, the anesthesia isoflurane in pure oxygen was used due to apnea, which occurs 30 minutes after the induction semi-closed system was attached and the ventilator was turned on (PCV system, four breaths per minute, 8 cm of H2O). Cardiopulmonary parameters (HR, RR, SPO2, ETCO2, ETISO) were assessed throughout the procedure. During the entire procedure, the operating room was heated to a temperature of 26 degrees Celsius. Additionally, the hose was placed on a heating mat, which maintained a temperature of 30 degrees Celsius. For 15 minutes after induction, the loss of muscle tone was observed from the head to the tail. Induction of general anesthesia was scored as good because of the possibility of intubation. During the whole procedure, the heart rate was at the rate of 58 beats per minute (bpm). Ventilation parameters were stable throughout the procedure. The recovery period lasts for about 4 hours after the end of general anesthesia. The muscle tension returned from tail to head. The snake started to breathe spontaneously within 1,5 hours after the end of general anesthesia. The protocol of general anesthesia with the combination of tiletamine- zolazepam with a dose of 10 mg/kg is useful for proceeding with the emergency coeliotomy in maintenance with isoflurane in oxygen. Further study about the impact of the combination of tiletamine- zolazepam for the recovery period is needed.

Keywords: anesthesia, corallus hortulanus, ovoviparous, snake, tiletamine, zolazepam

Procedia PDF Downloads 240
2348 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 595
2347 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems

Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan

Abstract:

Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.

Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling

Procedia PDF Downloads 78
2346 EMG Based Orthosis for Upper Limb Rehabilitation in Hemiparesis Patients

Authors: Nancy N. Sharmila, Aparna Mishra

Abstract:

Hemiparesis affects almost 80% of stroke patients each year. It is marked by paralysis or weakness on one half of the body. Our model provides both assistance and physical therapy for hemiparesis patients for swift recovery. In order to accomplish our goal a force is provided that pulls the forearm up (as in flexing the arm), and pushes the forearm down (as in extending the arm), which will also assist the user during ADL (Activities of Daily Living). The model consists of a mechanical component which is placed around the patient’s bicep and an EMG control circuit to assist patients in daily activities, which makes it affordable and easy to use. In order to enhance the neuromuscular system’s effectiveness in synchronize the movement, proprioceptive neuromuscular facilitation (PNF) concept is used. The EMG signals are acquired from the unaffected arm as an input to drive the orthosis. This way the patient is invigorated to use the orthosis for regular exercise.

Keywords: EMG, hemiparesis, orthosis, rehabilitation

Procedia PDF Downloads 440
2345 Case Report: Complex Regional Pain Syndrome

Authors: Farah Al Zaabi, Sarah Amrani

Abstract:

Complex regional pain syndrome (CRPS) is a chronic pain condition that develops in an extremity following a fracture, soft tissue injury, or surgery. It is a neuropathic pain disorder that is accompanied by the characteristic skin manifestations that are needed for the diagnosis. We report the case of a 30 year old male, who has findings consistent with CRPS and has been followed for over two years by multiple specialties within the healthcare system without obtaining a diagnosis. The symptoms he presented with were treated based on the specialty he was seeing, rather than unified and recognized as a single disease process. Our case highlights the complexity of chronic pain, which can sometimes present with skin manifestations, and the importance of involving a pain specialist early for both the medical and physical recovery of CRPS patients.

Keywords: complex regional pain syndrome, chronic pain, skin changes of CRPS, dermatological manifestions of CRPS

Procedia PDF Downloads 147
2344 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets

Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.

Keywords: cooling speed, gravity, homogenous cooling, jet impingement

Procedia PDF Downloads 120
2343 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model

Authors: Yoftahe Nigussie

Abstract:

This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.

Keywords: room, zone, space, thermal resistance

Procedia PDF Downloads 66
2342 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen

Abstract:

Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.

Keywords: acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSys

Procedia PDF Downloads 322
2341 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects

Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost

Abstract:

A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.

Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet

Procedia PDF Downloads 364
2340 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 127
2339 Bacteriophage Is a Novel Solution of Therapy Against S. aureus Having Multiple Drug Resistance

Authors: Sanjay Shukla, A. Nayak, R. K. Sharma, A. P. Singh, S. P. Tiwari

Abstract:

Excessive use of antibiotics is a major problem in the treatment of wounds and other chronic infections, and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most promising approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of the present study was to evaluate the efficacy of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by the double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in the double agar overlay method out of 150 sewage samples. In TEM, recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9, and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate were very safe, did not show any appearance of abscess formation, which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureuswhich indicates that they are good prophylactic agent. The S. aureusinoculated mice were completely recovered by bacteriophage administration with 100% recovery, which was very good as compere to conventional therapy. In the present study, ten chronic cases of the wound were treated with phage lysate, and follow up of these cases was done regularly up to ten days (at 0, 5, and 10 d). The result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for the treatment of septic chronic wounds.

Keywords: phage therapy, S aureus, antimicrobial resistance, lytic phage, and bacteriophage

Procedia PDF Downloads 114
2338 Exploring the Lived Experiences of Breast Cancer Survivors Post-Treatment

Authors: Nova Grail S. Luminang, Gwyneth B. Gortiza, Alvin E. Haboc, Marinol K. Hate, Rhean Mitchel N. Joven, Kara Kate D. Lammao, Rosemarie M. Lambayung, Elmo Carl D. Lardizabal, Zyra B. Linggayo, Rizza Mae G. Liwag, Ronalyn O. Songcuan

Abstract:

Breast cancer survivorship represents a complex and continuous journey extending beyond the completion of treatment, involving coping with physical, emotional, and psychological aspects of life post-treatment. This study aimed to explore the lived experiences of breast cancer survivors after successful treatment in Tabuk City, focusing on their post-treatment experiences, coping mechanisms, and necessary lifestyle changes. Researchers have selected Tabuk City as their research locale. Utilizing Martin Heidegger’s descriptive phenomenological design, this qualitative research included six participants, allowing for data saturation. Purposive sampling was employed to select participants. Researchers used Colaizzi’s Phenomenological Method in analyzing the data in order to achieve a reliable understanding of the participants’ experiences. The findings revealed three main themes: going through post-treatment hurdles, building resilience, and transformative wellness adjustments. Breast cancer survivors faced significant challenges, including physical adversities, emotional turmoil, limited social life, memory lapses, decreased sexual intimacy, and economic constraints. To cope, survivors adjusted their thoughts and attitudes, accepted their situation, relied on religious beliefs, and joined the support group Kalinga Cancer Care Ministry INC. Additionally, they strived to return to a normal life and embraced gratitude. Survivors made essential changes to their daily routines, modifying their diets, exploring herbal remedies, and incorporating physical activities such as walking and household chores. These adjustments helped improve their overall well-being and prevent cancer recurrence. The researchers concluded that the journey of breast cancer survivors is marked by significant challenges and inspiring resilience. The impact of breast cancer treatment extends beyond physical recovery, encompassing profound emotional and social dimensions. Despite these difficulties, survivors demonstrate remarkable strength and adaptability, making positive lifestyle changes that offer a hopeful and inspiring narrative of recovery and perseverance.

Keywords: breast cancer, lived experiences, breast cancer survivor, post-treatment hurdles, emotional turmoil

Procedia PDF Downloads 9
2337 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, E. Kate

Abstract:

Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.

Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying

Procedia PDF Downloads 308
2336 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy

Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha

Abstract:

In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.

Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA

Procedia PDF Downloads 150
2335 Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions

Authors: Augustas Vaitkevicius, Mikhail Korjik, Eugene Tretyak, Ekaterina Trusova, Gintautas Tamulaitis

Abstract:

Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties.

Keywords: glass ceramics, luminescence, phosphor, silicate

Procedia PDF Downloads 310
2334 Exergy and Energy Analysis of Pre-Heating Unit of Fluid Catalytic Cracking Unit in Kaduna Refining and Petrochemical Company

Authors: M. Nuhu, S. Bilal, A. A. Hamisu, J. A. Abbas, Y. Z. Aminu, P. O. Helen

Abstract:

Exergy and energy analysis of preheating unit of FCCU of KRPC has been calculated and presented in this study. From the design, the efficiency of each heat exchanger was 86%. However, on completion of this work the efficiencies was calculated to be 39.90%, 55.66%, 56.22%, and 57.14% for 16E02, 16E03, 16E04, and 16E05 respectively. 16E04 has the minimum energy loss of 0.86%. The calculated second law and exergy efficiencies of the system were 43.01 and 56.99% respectively.

Keywords: exergy analysis, ideal work, efficiency, exergy destruction, temperature

Procedia PDF Downloads 431
2333 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux

Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour

Abstract:

Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.

Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity

Procedia PDF Downloads 78
2332 High Productivity Fed-Batch Process for Biosurfactant Production for Enhanced Oil Recovery Applications

Authors: G. A. Amin, A. D. Al-Talhi

Abstract:

The bacterium B. subtilis produced surfactin in conventional batch culture as a growth associated product and a growth rate (0.4 h-1). A fed-batch process was developed and the fermentative substrate and other nutrients were fed on hourly basis and according to the growth rate of the bacterium. Conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with fermentation run supplied with 200 g Maldex-15. Up to 35.4 g.l-1 of surfactin and cell biomass of 30.2 g.l-1 were achieved in 12 hrs. Also, markedly substrate yield of 0.269 g/g and volumetric reactor productivity of 2.61 g.1-1.h-1 were obtained confirming the establishment of a cost effective commercial surfactin production.

Keywords: Bacillus subtilis, biosurfactant, exponentially fed-batch fermentation, surfactin

Procedia PDF Downloads 529
2331 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 404
2330 Production of High-Content Fructo-Oligosaccharides

Authors: C. Nobre, C. C. Castro, A.-L. Hantson, J. A. Teixeira, L. R. Rodrigues, G. De Weireld

Abstract:

Fructo-oligosaccharides (FOS) are produced from sucrose by Aureobasidium pullulans in yields between 40-60% (w/w). To increase the amount of FOS it is necessary to remove the small, non-prebiotic sugars, present. Two methods for producing high-purity FOS have been developed: the use of microorganisms able to consume small saccharides; and the use of continuous chromatography to separate sugars: simulated moving bed (SMB). It is herein proposed the combination of both methods. The aim of this study is to optimize the composition of the fermentative broth (in terms of salts and sugars) that will be further purified by SMB. A yield of 0.63 gFOS.g Sucrose-1 was obtained with A. pullulans using low amounts of salts in the initial fermentative broth. By removing the small sugars, Saccharomyces cerevisiae and Zymomonas mobilis increased the percentage of FOS from around 56.0% to 83% (w/w) in average, losing only 10% (w/w) of FOS during the recovery process.

Keywords: fructo-oligosaccharides, microbial treatment, Saccharomyces cerevisiae, Zymomonas mobilis

Procedia PDF Downloads 304
2329 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 34
2328 A Markov Model for the Elderly Disability Transition and Related Factors in China

Authors: Huimin Liu, Li Xiang, Yue Liu, Jing Wang

Abstract:

Background: As one of typical case for the developing countries who are stepping into the aging times globally, more and more older people in China might face the problem of which they could not maintain normal life due to the functional disability. While the government take efforts to build long-term care system and further carry out related policies for the core concept, there is still lack of strong evidence to evaluating the profile of disability states in the elderly population and its transition rate. It has been proved that disability is a dynamic condition of the person rather than irreversible so it means possible to intervene timely on them who might be in a risk of severe disability. Objective: The aim of this study was to depict the picture of the disability transferring status of the older people in China, and then find out individual characteristics that change the state of disability to provide theory basis for disability prevention and early intervention among elderly people. Methods: Data for this study came from the 2011 baseline survey and the 2013 follow-up survey of the China Health and Retirement Longitudinal Study (CHARLS). Normal ADL function, 1~2 ADLs disability,3 or above ADLs disability and death were defined from state 1 to state 4. Multi-state Markov model was applied and the four-state homogeneous model with discrete states and discrete times from two visits follow-up data was constructed to explore factors for various progressive stages. We modeled the effect of explanatory variables on the rates of transition by using a proportional intensities model with covariate, such as gender. Result: In the total sample, state 2 constituent ratio is nearly about 17.0%, while state 3 proportion is blow the former, accounting for 8.5%. Moreover, ADL disability statistics difference is not obvious between two years. About half of the state 2 in 2011 improved to become normal in 2013 even though they get elder. However, state 3 transferred into the proportion of death increased obviously, closed to the proportion back to state 2 or normal functions. From the estimated intensities, we see the older people are eleven times as likely to develop at 1~2 ADLs disability than dying. After disability onset (state 2), progression to state 3 is 30% more likely than recovery. Once in state 3, a mean of 0.76 years is spent before death or recovery. In this model, a typical person in state 2 has a probability of 0.5 of disability-free one year from now while the moderate disabled or above has a probability of 0.14 being dead. Conclusion: On the long-term care cost considerations, preventive programs for delay the disability progression of the elderly could be adopted based on the current disabled state and main factors of each stage. And in general terms, those focusing elderly individuals who are moderate or above disabled should go first.

Keywords: Markov model, elderly people, disability, transition intensity

Procedia PDF Downloads 286
2327 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation

Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad

Abstract:

For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.

Keywords: biorobotics, rehabilitation, robotic assistive device, exoskeleton, nonlinear control

Procedia PDF Downloads 472
2326 Advanced Humidity Sensors Using Cobalt and Iron-Doped ZnO-rGO Composites

Authors: Wallia Majeed

Abstract:

Humidity sensors based on doped ZnO-rGO composites have shown promise due to their sensitivity to humidity changes. Here, it report on the hydrothermal synthesis of ZnO-rGO and doped ZnO-rGO nanocomposites, incorporating cobalt and iron dopants at 2% concentration. X-ray diffraction confirmed successful doping, while scanning electron microscopy revealed the composite's layered structure with embedded ZnO rods. To evaluate their performance, humidity sensors were fabricated by depositing aluminum electrodes on silicon substrates coated with the composites. The Fe-doped ZnO-rGO sensor exhibited rapid response (27 s) and recovery times (24 s) across a wide humidity range (11% to 97% RH), surpassing ZnO-rGO and Co-doped ZnO-rGO variants in sensitivity (2.2k at 100 Hz). These findings highlight Fe-doped ZnO-rGO composites as ideal candidates for humidity sensing applications, offering enhanced performance crucial for environmental monitoring and industrial processes.

Keywords: humidity sensors, nanocomposites, hydrothermal synthesis, sensitivity

Procedia PDF Downloads 29
2325 Analysis of the Recovery of Burnility Index and Reduction of CO2 for Cement Manufacturing Utilizing Waste Cementitious Powder as Alternative Raw Material of Limestone

Authors: Kwon Eunhee, Park Dongcheon, Jung Jaemin

Abstract:

In countries around the world, environmental regulations are being strengthened, and Korea is no exception to this trend, which means that environment pollution and the environmental load have recently become a significant issue. For this reason, in this study limestone was replaced with cementitious powder to reduce the volume of construction waste as well as the emission of carbon dioxide caused by Tal-carbonate reaction. The research found that cementitious powder can be used as a substitute for limestone. However, the mix proportions of fine aggregate and powder included in the cementitious powder appear to have a great effect on substitution. Thus, future research should focus on developing a technology that can effectively separate and discharge fine aggregate and powder in the cementitious powder.

Keywords: waste cementitious powder, fine aggregate powder, CO2 emission, decarbonation reaction, calcining process

Procedia PDF Downloads 482
2324 Effect of Minimalist Footwear on Running Economy Following Exercise-Induced Fatigue

Authors: Jason Blair, Adeboye Adebayo, Mohamed Saad, Jeannette M. Byrne, Fabien A. Basset

Abstract:

Running economy is a key physiological parameter of an individual’s running efficacy and a valid tool for predicting performance outcomes. Of the many factors known to influence running economy (RE), footwear certainly plays a role owing to its characteristics that vary substantially from model to model. Although minimalist footwear is believed to enhance RE and thereby endurance performance, conclusive research reports are scarce. Indeed, debates remain as to which footwear characteristics most alter RE. The purposes of this study were, therefore, two-fold: (a) to determine whether wearing minimalist shoes results in better RE compared to shod and to identify relationships with kinematic and muscle activation patterns; (b) to determine whether changes in RE with minimalist shoes are still evident following a fatiguing bout of exercise. Well-trained male distance runners (n=10; 29.0 ± 7.5 yrs; 71.0 ± 4.8 kg; 176.3 ± 6.5 cm) partook first in a maximal O₂ uptake determination test (VO₂ₘₐₓ = 61.6 ± 7.3 ml min⁻¹ kg⁻¹) 7 days prior to the experimental sessions. Second, in a fully randomized fashion, an RE test consisting of three 8-min treadmill runs in shod and minimalist footwear were performed prior to and following exercise induced fatigue (EIF). The minimalist and shod conditions were tested with a minimum of 7-day wash-out period between conditions. The RE bouts, interspaced by 2-min rest periods, were run at 2.79, 3.33, and 3.89 m s⁻¹ with a 1% grade. EIF consisted of 7 times 1000 m at 94-97% VO₂ₘₐₓ interspaced with 3-min recovery. Cardiorespiratory, electromyography (EMG), kinematics, rate of perceived exertion (RPE) and blood lactate were measured throughout the experimental sessions. A significant main speed effect on RE (p=0.001) and stride frequency (SF) (p=0.001) was observed. The pairwise comparisons showed that running at 2.79 m s⁻¹ was less economic compared to 3.33, and 3.89 m s⁻¹ (3.56 ± 0.38, 3.41 ± 0.45, 3.40 ± 0.45 ml O₂ kg⁻¹ km⁻¹; respectively) and that SF increased as a function of speed (79 ± 5, 82 ± 5, 84 ± 5 strides min⁻¹). Further, EMG analyses revealed that root mean square EMG significantly increased as a function of speed for all muscles (Biceps femoris, Gluteus maximus, Gastrocnemius, Tibialis anterior, Vastus lateralis). During EIF, the statistical analysis revealed a significant main effect of time on lactate production (from 2.7 ± 5.7 to 11.2 ± 6.2 mmol L⁻¹), RPE scores (from 7.6 ± 4.0 to 18.4 ± 2.7) and peak HR (from 171 ± 30 to 181 ± 20 bpm), expect for the recovery period. Surprisingly, a significant main footwear effect was observed on running speed during intervals (p=0.041). Participants ran faster with minimalist shoes compared to shod (3:24 ± 0:44 min [95%CI: 3:14-3:34] vs. 3:30 ± 0:47 min [95%CI: 3:19-3:41]). Although EIF altered lactate production and RPE scores, no other effect was noticeable on RE, EMG, and SF pre- and post-EIF, except for the expected speed effect. The significant footwear effect on running speed during EIF was unforeseen but could be due to shoe mass and/or heel-toe-drop differences. We also cannot discard the effect of speed on foot-strike pattern and therefore, running performance.

Keywords: exercise-induced fatigue, interval training, minimalist footwear, running economy

Procedia PDF Downloads 244
2323 Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR

Authors: C. Rattanakawin, S. Vasailor

Abstract:

Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.

Keywords: agitation leaching, dissolution kinetics, flotation concentrate, oxide copper ore, sulfuric acid

Procedia PDF Downloads 114
2322 Improvement of the Calciferous Minerals Floatability through the Application of High-Power Electromagnetic Pulses

Authors: Valentine A. Chanturiya, Igor Zh. Bunin, Maria V. Ryazantseva

Abstract:

The modification of structural and chemical properties of fluorite, scheelite and calcite under the impact of high-power electromagnetic pulses (HPEMP-treatment) were studied with the help of adsorption of acid-base indicators and atomic – force microscopy (AFM). The HPEMP-treatment during the space of 30 seconds resulted in the intensification of fluorite surface the electron-donating ability and acceptor properties of calcite and scheelite surfaces. High-power electromagnetic treatment of the single minerals resulted in the improvement of the calciferous minerals floatability. The rising of the scheelite recovery is 10 – 12%, fluorite – 5 – 6%, calcite – 7 – 8%.

Keywords: calcite, fluorite, scheelite, high power electromagnetic pulses, floatability

Procedia PDF Downloads 282
2321 Production of Natural Gas Hydrate by Using Air and Carbon Dioxide

Authors: Yun-Ho Ahn, Hyery Kang, Dong-Yeun Koh, Huen Lee

Abstract:

In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.

Keywords: air injection, carbon dioxide sequestration, hydrate production, natural gas hydrate

Procedia PDF Downloads 452