Search results for: aluminum 2124 metal matrix composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6394

Search results for: aluminum 2124 metal matrix composite

4144 Electrical and Magnetoelectric Properties of (y)Li0.5Ni0.7Zn0.05Fe2O4 + (1-y)Ba0.5Sr0.5TiO3 Magnetoelectric Composites

Authors: S. U. Durgadsimi, S. Chouguleb, S. Belladc

Abstract:

(y) Li0.5Ni0.7Zn0.05Fe2O4 + (1-y) Ba0.5Sr0.5TiO3 magnetoelectric composites with y = 0.1, 0.3 and 0.5 were prepared by a conventional standard double sintering ceramic technique. X-ray diffraction analysis confirmed the phase formation of ferrite, ferroelectric and their composites. logρdc Vs 1/T graphs reveal that the dc resistivity decreases with increasing temperature exhibiting semiconductor behavior. The plots of logσac Vs logω2 are almost linear indicating that the conductivity increases with increase in frequency i.e, conductivity in the composites is due to small polaron hopping. Dielectric constant (έ) and dielectric loss (tan δ) were studied as a function of frequency in the range 100Hz–1MHz which reveals the normal dielectric behavior except the composite with y=0.1 and as a function of temperature at four fixed frequencies (i.e. 100Hz, 1KHz, 10KHz, 100KHz). ME voltage coefficient decreases with increase in ferrite content and was observed to be maximum of about 7.495 mV/cmOe for (0.1) Li0.5Ni0.7Zn0.05Fe2O4 + (0.9) Ba0.5Sr0.5TiO3 composite.

Keywords: XRD, dielectric constant, dielectric loss, DC and AC conductivity, ME voltage coefficient

Procedia PDF Downloads 344
4143 Highly-Efficient Photoreaction Using Microfluidic Device

Authors: Shigenori Togashi, Yukako Asano

Abstract:

We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.

Keywords: microfluidic device, photoreaction, black aluminum oxide, benzophenone, yield improvement

Procedia PDF Downloads 242
4142 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 246
4141 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances

Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia

Abstract:

A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.

Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns

Procedia PDF Downloads 173
4140 Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells

Authors: Zakaria Ahmed, Khaled Charradi, Sherif M. A. S. Keshk, Radhouane Chtourou

Abstract:

Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes.

Keywords: SPEEK, sepiolite clay, LDH clay, proton exchange membrane

Procedia PDF Downloads 123
4139 Wear Performance of SLM Fabricated 1.2709 Steel Nanocomposite Reinforced by TiC-WC for Mould and Tooling Applications

Authors: Daniel Ferreira, José M. Marques Oliveira, Filipe Oliveira

Abstract:

Wear phenomena is critical in injection moulding processes, causing failure of the components, and making the parts more expensive with an additional wasting time. When very abrasive materials are being injected inside the steel mould’s cavities, such as polymers reinforced with abrasive fibres, the consequences of the wear are more evident. Maraging steel (1.2709) is commonly employed in moulding components to resist in very aggressive injection conditions. In this work, the wear performance of the SLM produced 1.2709 maraging steel reinforced by ultrafine titanium and tungsten carbide (TiC-WC), was investigated using a pin-on-disk testing apparatus. A polypropylene reinforced with 40 wt.% fibreglass (PP40) disk, was used as the counterpart material. The wear tests were performed at 40 N constant load and 0.4 ms-1 sliding speed at room temperature and humidity conditions. The experimental results demonstrated that the wear rate in the 18Ni300-TiC-WC composite is lower than the unreinforced 18Ni300 matrix. The morphology and chemical composition of the worn surfaces was observed by 3D optical profilometry and scanning electron microscopy (SEM), respectively. The resulting debris, caused by friction, were also analysed by SEM and energy dispersive X-ray spectroscopy (EDS). Their morphology showed distinct shapes and sizes, which indicated that the wear mechanisms, may be different in maraging steel produced by casting and SLM. The coefficient of friction (COF) was recorded during the tests, which helped to elucidate the wear mechanisms involved.

Keywords: selective laser melting, nanocomposites, injection moulding, polypropylene with fibreglass

Procedia PDF Downloads 155
4138 Effect of Fibres-Chemical Treatment on the Thermal Properties of Natural Composites

Authors: J. S. S. Neto, R. A. A. Lima, D. K. K. Cavalcanti, J. P. B. Souza, R. A. A. Aguiar, M. D. Banea

Abstract:

In the last decade, investments in sustainable processes and products have gained space in several segments, such as in the civil, automobile, textile and other industries. In addition to increasing concern about the development of environmentally friendly materials that reduce, energy costs and reduces environmental impact in the production of these products, as well as reducing CO2 emissions. Natural fibers offer a great alternative to replace synthetic fibers, totally or partially, because of their low cost and their renewable source. The purpose of this research is to study the effect of surface chemical treatment on the thermal properties of hybrid fiber reinforced natural fibers (NFRC), jute + ramie, jute + sisal, jute + curauá, and jute fiber in polymer matrices. Two types of chemical treatment: alkalinization and silanization were employed, besides the condition without treatment. Differential scanning calorimetry (DSC), thermogravimetry (TG) and dynamic-mechanical analysis (DMA) were performed to explore the thermal stability and weight loss in the natural fiber reinforced composite as a function of chemical treatment.

Keywords: chemical treatment, hybrid composite, jute, thermal

Procedia PDF Downloads 308
4137 The Microstructure of Aging ZnO, AZO, and GZO Films

Authors: Zue Chin Chang, Shih-Chang Liang

Abstract:

RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The electric conduction mechanism of the AZO and GZO films came mainly from the Al and Ga, the oxygen vacancies, Zn interstitial atoms, and Al and/or Ga interstitial atoms. AZO and GZO films achieved higher conduction than did ZnO film, it being ion vacant and nonstoichiometric. The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films.

Keywords: ZnO, AZO, GZO, doped, sputtering

Procedia PDF Downloads 397
4136 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste

Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova

Abstract:

Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.

Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples

Procedia PDF Downloads 119
4135 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction

Authors: Hicham Idriss

Abstract:

Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.

Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic

Procedia PDF Downloads 253
4134 Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed.

Keywords: Bulk superconductors, EBSD, Strain, YBa2Cu3Oy

Procedia PDF Downloads 150
4133 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study

Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq

Abstract:

Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.

Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study

Procedia PDF Downloads 324
4132 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 193
4131 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix

Authors: Shubham Jaiswal

Abstract:

During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method

Procedia PDF Downloads 439
4130 Analytical Response Characterization of High Mobility Transistor Channels

Authors: F. Z. Mahi, H. Marinchio, C. Palermo, L. Varani

Abstract:

We propose an analytical approach for the admittance response calculation of the high mobility InGaAs channel transistors. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The total currents and the potentials matrix relation between the gate and the drain terminals determine the frequency-dependent small-signal admittance response. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand, to control the appearance of plasma resonances, and on the other hand, can give significant information about the admittance phase frequency dependence.

Keywords: small-signal admittance, Poisson equation, currents and potentials matrix, the drain and the gate terminals, analytical model

Procedia PDF Downloads 540
4129 Preparation of CuAlO2 Thin Films on Si or Sapphire Substrate by Sol-Gel Method Using Metal Acetate or Nitrate

Authors: Takashi Ehara, Takayoshi Nakanishi, Kohei Sasaki, Marina Abe, Hiroshi Abe, Kiyoaki Abe, Ryo Iizaka, Takuya Sato

Abstract:

CuAlO2 thin films are prepared on Si or sapphire substrate by sol-gel method using two kinds of sols. One is combination of Cu acetate and Al acetate basic, and the other is Cu nitrate and Al nitrate. In the case of acetate sol, XRD peaks of CuAlO2 observed at annealing temperature of 800-950 ºC on both Si and sapphire substrates. In contrast, in the case of the films prepared using nitrate on Si substrate, XRD peaks of CuAlO2 have been observed only at the annealing temperature of 800-850 ºC. At annealing temperature of 850ºC, peaks of other species have been observed beside the CuAlO2 peaks, then, the CuAlO2 peaks disappeared at annealing temperature of 900 °C with increasing in intensity of the other peaks. Intensity of the other peaks decreased at annealing temperature of 950 ºC with appearance of broad SiO2 peak. In the present, we ascribe these peaks as metal silicide.

Keywords: CuAlO2, silicide, thin Films, transparent conducting oxide

Procedia PDF Downloads 396
4128 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs

Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua

Abstract:

Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.

Keywords: adsorption, organic dyes, iodine, metal organic frameworks

Procedia PDF Downloads 276
4127 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value

Authors: Mostafa Ghasemi, Andrew Urquhart

Abstract:

In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.

Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor

Procedia PDF Downloads 75
4126 The Electrical Properties of Polyester Materials as Outdoor Insulators

Authors: R. M. EL-Sharkawy, L. S. Nasrat, K. B. Ewiss

Abstract:

This work presents a study of flashover voltage for outdoor polyester and composite insulators under dry, ultra-violet and contaminated conditions. Cylindrical of polyester composite samples (with different lengths) have been prepared after incorporated with different concentration of inorganic filler e.g. Magnesium Hydroxide [Mg(OH)2] to improve the electrical and thermal properties in addition to maximize surface flashover voltage and decrease tracking phenomena. Results showed that flashover voltage reaches to 46 kV for samples without filler and 52.6 kV for samples containing 40% of [Mg(OH)2] filler in dry condition. A comparison between different concentrations of filler under various environmental conditions (dry and contaminated conditions) showed higher flashover voltage values for samples containing filler with ratio 40% [Mg(OH)2] and length 3cm than that of samples containing filler [Mg(OH)2] with ratios 20%, 30% and lengths 0.5cm, 1cm, 2cm and 2.5cm. Flashover voltage decreases by adding [Mg(OH)2] filler for polyester samples under ultra-violet condition; as the ratio of filler increases, the value of flashover voltage decreases Also, in this study, the effect of thermal performance with respect to surface of the sample under test have been investigated in details.

Keywords: flashover voltage, filler, polymers, ultra-violet radiation

Procedia PDF Downloads 315
4125 Prompt Photons Production in Compton Scattering of Quark-Gluon and Annihilation of Quark-Antiquark Pair Processes

Authors: Mohsun Rasim Alizada, Azar Inshalla Ahmdov

Abstract:

Prompt photons are perhaps the most versatile tools for studying the dynamics of relativistic collisions of heavy ions. The study of photon radiation is of interest that in most hadron interactions, photons fly out as a background to other studied signals. The study of the birth of prompt photons in nucleon-nucleon collisions was previously carried out in experiments on Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Due to the large energy of colliding nucleons, in addition to prompt photons, many different elementary particles are born. However, the birth of additional elementary particles makes it difficult to determine the accuracy of the effective section of the birth of prompt photons. From this point of view, the experiments planned on the Nuclotron-based Ion Collider Facility (NICA) complex will have a great advantage, since the energy obtained for colliding heavy ions will reduce the number of additionally born elementary particles. Of particular importance is the study of the processes of birth of prompt photons to determine the gluon leaving hadrons since the photon carries information about a rigid subprocess. At present, paper production of prompt photon in Compton scattering of quark-gluon and annihilation of quark–antiquark processes is investigated. The matrix elements Compton scattering of quark-gluon and annihilation of quark-antiquark pair processes has been written. The Square of matrix elements of processes has been calculated in FeynCalc. The phase volume of subprocesses has been determined. Expression to calculate the differential cross-section of subprocesses has been obtained: Given the resulting expressions for the square of the matrix element in the differential section expression, we see that the differential section depends not only on the energy of colliding protons, but also on the mass of quarks, etc. Differential cross-section of subprocesses is estimated. It is shown that the differential cross-section of subprocesses decreases with the increasing energy of colliding protons. Asymmetry coefficient with polarization of colliding protons is determined. The calculation showed that the squares of the matrix element of the Compton scattering process without and taking into account the polarization of colliding protons are identical. The asymmetry coefficient of this subprocess is zero, which is consistent with the literary data. It is known that in any single polarization processes with a photon, squares of matrix elements without taking into account and taking into account the polarization of the original particle must coincide, that is, the terms in the square of the matrix element with the degree of polarization are equal to zero. The coincidence of the squares of the matrix elements indicates that the parity of the system is preserved. The asymmetry coefficient of annihilation of quark–antiquark pair process linearly decreases from positive unit to negative unit with increasing the production of the polarization degrees of colliding protons. Thus, it was obtained that the differential cross-section of the subprocesses decreases with the increasing energy of colliding protons. The value of the asymmetry coefficient is maximal when the polarization of colliding protons is opposite and minimal when they are directed equally. Taking into account the polarization of only the initial quarks and gluons in Compton scattering does not contribute to the differential section of the subprocess.

Keywords: annihilation of a quark-antiquark pair, coefficient of asymmetry, Compton scattering, effective cross-section

Procedia PDF Downloads 149
4124 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria

Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu

Abstract:

Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.

Keywords: agriculture, bioaccumulation, heavy metal, plant tissues

Procedia PDF Downloads 385
4123 Effect pH on Chemical and Physical Properties of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati, H. Mirzaei

Abstract:

The objectives of this study were to determine the effect of pH on chemical, structural, and functional properties of Fetta cheese, and to relate changes in structure to changes in cheese unctionality. Fetta cheese was obtained from a cheese-production facility and stored at 4°C. Ten days after manufacture, the cheese was cut into blocks that were vacuum-packaged and stored for 4 d at 4°C. Cheese blocks were then high-pressure injected one, three, or five times with a 20% (wt/wt) glucono-δ-lactone solution. Successive injections were performed 24 h apart. Cheese blocks were then analyzed after 40 d of storage at 4°C. Acidulant injection decreased cheese pH from 5.3 in the uninjected cheese to 4.7 after five injections. Decreased pH increased the content of soluble calcium and slightly decreased the total calcium content of cheese. At the highest level, injection of acidulant promoted syneresis. Thus, after five injections, the moisture content of cheese decreased from 34 to 31%, which esulted in decreased cheese weight. Lowered cheese pH, 4.7 compared with 5.3, also resulted in contraction of the protein matrix. Acidulant injection decreased cheese hardness and cohesiveness, and the cheese became more crumbly.

Keywords: calcium, high-pressure injection, protein matrix, syneresis

Procedia PDF Downloads 480
4122 Highly Stretchable, Intelligent and Conductive PEDOT/PU Nanofibers Based on Electrospinning and in situ Polymerization

Authors: Kun Qi, Yuman Zhou, Jianxin He

Abstract:

A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a highly stretchable and conductive Poly(3,4-ethylenedioxythiophene)/Polyurethane (PEDOT/PU) nanofibrous membrane is reported. PU nanofibers were prepared by electrospinning and then PEDOT was coated on the plasma modified PU nanofiber surface via in-situ polymerization to form flexible PEDOT/PU composite nanofibers with conductivity. The results show PEDOT is successfully synthesized on the surface of PU nanofiber and PEDOT/PU composite nanofibers possess skin-core structure. Furthermore, the experiments indicate the optimal technological parameters of the polymerization process are as follow: The concentration of EDOT monomers is 50 mmol/L, the polymerization time is 24 h and the temperature is 25℃. The PEDOT/PU nanofibers exhibit excellent electrical conductivity ( 27.4 S/cm). In addition, flexible sensor made from conductive PEDOT/PU nanofibers shows highly sensitive response towards tensile strain and also can be used to detect finger motion. The results demonstrate promising application of the as-obtained nanofibrous membrane in flexible wearable electronic fields.

Keywords: electrospinning, polyurethane, PEDOT, conductive nanofiber, flexible senor

Procedia PDF Downloads 359
4121 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm

Authors: J. Sahari, S. M. Sapuan

Abstract:

Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.

Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical

Procedia PDF Downloads 443
4120 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology

Authors: Yunwei Zhang, Na Li, Yuhong Niu

Abstract:

Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.

Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection

Procedia PDF Downloads 133
4119 Fly Ash Based Geopolymer Concrete as Curbs, Pavement Bricks, and Wall Bricks

Authors: Marthin Dody Josias Sumajouw, Bryan Wijaya, Servie O. Dapas, Ronny E. Pandaleke, Banu Handono, Fabian J. Manoppo

Abstract:

Ordinary Portland Cement (OPC) takes a big role as a concrete binder in infrastructure construction purposes, nevertheless, it produces CO2 emissions abundantly. To reduce the CO2 emissions produced by OPC concrete, nowadays, geopolymer material become one of the solutions due to it being a binder made from waste with pozzolan material. In concrete industries, geopolymer concrete has evolved as a more environmentally friendly material than OPC concrete. The geopolymer concrete was created without the usage of OPC known as cementless concrete materials. Geopolymer concrete obtains silicon and aluminum from industrial by-products such as fly ash, ground granulated blast furnace slag, and kaolinite. A highly alkaline solution chemically activates Si and Al, forming a matrix that holds together the loose aggregates as well as additional unreacted components in the mixture. They are then dissolved in alkaline activating solutions, where they polymerize into molecular chains, resulting in rigid binders. This research aims to get an eco-friendly material that can reduce the use of OPC as a binder and be used for infrastructure development end-products such as Curbs, Pavement Bricks, and Wall Bricks. This research was conducted as applied research to develop new products of environmentally friendly materials by utilizing fly ash and employed for infrastructure development, particularly for the production of end products such as Curbs, Pavement Bricks, and Wall Bricks. Three types of end products with various dimensions and mix designs have been made and tested in the laboratory, resulting in quantitative datasets to be used for identifying patterns and relationships among density, compressive strength, flexural strength, and water absorption. The result found that geopolymer binders can be used for the production of curbs, pavement bricks, and wall bricks. Geopolymer curbs have an average compressive strength of 19,36 MPa, which can be determined as K-233 concrete. Geopolymer pavement bricks have an average compressive strength of 20,79 MPa. It can be used in parking areas and determined as the grade B of pavement bricks according to SNI 03-0691-1996. Geopolymer wall bricks have an average compressive strength of 11,24 MPa, which can be determined as the grade I of Wall Bricks according to SNI 03-0349-1989.

Keywords: absorption, compressive strength, curbs, end products, geopolymer, pavement bricks, wall bricks

Procedia PDF Downloads 31
4118 Effect on Occupational Health Safety and Environment at Work from Metal Handicraft Using Rattanakosin Local Wisdom

Authors: Witthaya Mekhum, Waleerak Sittisom

Abstract:

This research investigated the effect on occupational health safety and environment at work from metal handicraft using Rattanakosin local wisdom focusing on pollution, accidents, and injuries from work. The sample group in this study included 48 metal handicraft workers in 5 communities by using questionnaires and interview to collect data. The evaluation form TISI 18001 was used to analyze job safety analysis (JSA). The results showed that risk at work reduced after applying the developed model. Banbu Community produces alloy bowl rubbed with stone. The high risk process is melting and hitting process. Before the application, the work risk was 82.71%. After the application of the developed model, the work risk was reduced to 50.61%. Banbart Community produces monk’s food bowl. The high risk process is blow pipe welding. Before the application, the work risk was 93.59%. After the application of the developed model, the work risk was reduced to 48.14%. Bannoen Community produces circle gong. The high risk process is milling process. Before the application, the work risk was 85.18%. After the application of the developed model, the work risk was reduced to 46.91%. Teethong Community produces gold leaf. The high risk process is hitting and spreading process. Before the application, the work risk was 86.42%. After the application of the developed model, the work risk was reduced to 64.19%. Ban Changthong Community produces gold ornament. The high risk process is gold melting process. Before the application, the work risk was 67.90%. After the application of the developed model, the work risk was reduced to 37.03%. It can be concluded that with the application of the developed model, the work risk of 5 communities was reduced in the 3 main groups: (1) Work illness reduced by 16.77%; (2) Pollution from work reduced by 10.31%; (3) Accidents and injuries from work reduced by 15.62%.

Keywords: occupational health, safety, local wisdom, Rattanakosin

Procedia PDF Downloads 440
4117 Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures

Authors: Beatriz Muñiz Cano, J. Ripoll Sau, D. Pacile, P. M. Sheverdyaeva, P. Moras, J. Camarero, R. Miranda, M. Garnica, M. A. Valbuena

Abstract:

Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage.

Keywords: angle resolved photoemission spectroscopy, ARPES, graphene, spintronics, spin-orbitronics, 2D materials, transition metal dichalcogenides, TMDCs, TMDs, LEED, STM, quantum materials

Procedia PDF Downloads 79
4116 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 37
4115 Determination of LS-DYNA MAT162 Material input Parameters for Low Velocity Impact Analysis of Layered Composites

Authors: Mustafa Albayrak, Mete Onur Kaman, Ilyas Bozkurt

Abstract:

In this study, the necessary material parameters were determined to be able to conduct progressive damage analysis of layered composites under low velocity impact by using the MAT162 material module in the LS-DYNA program. The material module MAT162 based on Hashin failure criterion requires 34 parameters in total. Some of these parameters were obtained directly as a result of dynamic and quasi-static mechanical tests, and the remaining part was calibrated and determined by comparing numerical and experimental results. Woven glass/epoxy was used as the composite material and it was produced by vacuum infusion method. In the numerical model, composites are modeled as three-dimensional and layered. As a result, the acquisition of MAT162 material module parameters, which will enable progressive damage analysis, is given in detail and step by step, and the selection methods of the parameters are explained. Numerical data consistent with the experimental results are given in graphics.

Keywords: Composite Impact, Finite Element Simulation, Progressive Damage Analyze, LS-DYNA, MAT162

Procedia PDF Downloads 106