Search results for: active optical cable(AOC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5164

Search results for: active optical cable(AOC)

2914 Direct Visualization of Shear Induced Structures in Wormlike Micellar Solutions by Microfluidics and Advanced Microscopy

Authors: Carla Caiazza, Valentina Preziosi, Giovanna Tomaiuolo, Denis O'Sullivan, Vincenzo Guida, Stefano Guido

Abstract:

In the last decades, wormlike micellar solutions have been extensively used to tune the rheological behavior of home care and personal care products. This and other successful applications underlie the growing attention that both basic and applied research are devoting to these systems, and to their unique rheological and flow properties. One of the key research topics is the occurrence of flow instabilities at high shear rates (such as shear banding), with the possibility of appearance of flow induced structures. In this scenario, microfluidics is a powerful tool to get a deeper insight into the flow behavior of a wormlike micellar solution, as the high confinement of a microfluidic device facilitates the onset of the flow instabilities; furthermore, thanks to its small dimensions, it can be coupled with optical microscopy, allowing a direct visualization of flow structuring phenomena. Here, the flow of a widely used wormlike micellar solution through a glass capillary has been studied, by coupling the microfluidic device with μPIV techniques. The direct visualization of flow-induced structures and the flow visualization analysis highlight a relationship between solution structuring and the onset of discontinuities in the velocity profile.

Keywords: flow instabilities, flow-induced structures, μPIV, wormlike micelles

Procedia PDF Downloads 346
2913 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 237
2912 Software Quality Assurance in Network Security using Cryptographic Techniques

Authors: Sidra Shabbir, Ayesha Manzoor, Mehreen Sirshar

Abstract:

The use of the network communication has imposed serious threats to the security of assets over the network. Network security is getting more prone to active and passive attacks which may result in serious consequences to data integrity, confidentiality and availability. Various cryptographic techniques have been proposed in the past few years to combat with the concerned problem by ensuring quality but in order to have a fully secured network; a framework of new cryptosystem was needed. This paper discusses certain cryptographic techniques which have shown far better improvement in the network security with enhanced quality assurance. The scope of this research paper is to cover the security pitfalls in the current systems and their possible solutions based on the new cryptosystems. The development of new cryptosystem framework has paved a new way to the widespread network communications with enhanced quality in network security.

Keywords: cryptography, network security, encryption, decryption, integrity, confidentiality, security algorithms, elliptic curve cryptography

Procedia PDF Downloads 733
2911 Efficiency Improvement of REV-Method for Calibration of Phased Array Antennas

Authors: Daniel Hristov

Abstract:

The paper describes the principle of operation, simulation and physical validation of method for simultaneous acquisition of gain and phase states of multiple antenna elements and the corresponding feed lines across a Phased Array Antenna (PAA). The derived values for gain and phase are used for PAA-calibration. The method utilizes the Rotating-Element Electric- Field Vector (REV) principle currently used for gain and phase state estimation of single antenna element across an active antenna aperture. A significant reduction of procedure execution time is achieved with simultaneous setting of different phase delays to multiple phase shifters, followed by a single power measurement. The initial gain and phase states are calculated using spectral and correlation analysis of the measured power series.

Keywords: antenna, antenna arrays, calibration, phase measurement, power measurement

Procedia PDF Downloads 137
2910 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment

Authors: Margarita Belousova

Abstract:

The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.

Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment

Procedia PDF Downloads 276
2909 Active Deformable Micro-Cutters with Nano-Abrasives

Authors: M. Pappa, C. Efstathiou, G. Livanos, P. Xidas, D. Vakondios, E. Maravelakis, M. Zervakis, A. Antoniadis

Abstract:

The choice of cutting tools in manufacturing processes is an essential parameter on which the required manufacturing time, the consumed energy and the cost effort all depend. If the number of tool changing times could be minimized or even eliminated by using a single convex tool providing multiple profiles, then a significant benefit of time and energy saving, as well as tool cost, would be achieved. A typical machine contains a variety of tools in order to deal with different curvatures and material removal rates. In order to minimize the required cutting tool changes, Actively Deformable micro-Cutters (ADmC) will be developed. The design of the Actively Deformable micro-Cutters will be based on the same cutting technique and mounting method as that in typical cutters.

Keywords: deformable cutters, cutting tool, milling, turning, manufacturing

Procedia PDF Downloads 452
2908 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: arc spray, coating, composite, erosion

Procedia PDF Downloads 451
2907 Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films

Authors: P. Jayaram, Prasoon Prasannan, N. K. Deepak, P. P. Pradyumnan

Abstract:

Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films.

Keywords: PL, SEM, TCOs, thin films, XRD

Procedia PDF Downloads 238
2906 Collaboration between Dietician and Occupational Therapist, Promotes Independent Functional Eating in Tube Weaning Process of Mechanical Ventilated Patients

Authors: Inbal Zuriely, Yonit Weiss, Hilla Zaharoni, Hadas Lewkowicz, Tatiana Vander, Tarif Bader

Abstract:

early active movement, along with adjusting optimal nutrition, prevents aggravation of muscle degeneracy and functional decline. Eating is a basic activity of daily life, which reflects the patient's independence. When eating and feeding are experienced successfully, they lead to a sense of pleasure and satisfaction. However, when they are experienced as a difficulty, they might evoke feelings of helplessness and frustration. This stresses the essential process of gradual weaning off the enteral feeding tube. the work describes the collaboration of a dietitian, determining the nutritional needs of patients undergoing enteral tube weaning as part of the rehabilitation process, with the suited treatment of an occupational therapist. Occupational therapy intervention regarding eating capabilities focuses on improving the required motor and cognitive components, along with environmental adjustments and aids, imparting eating strategies and training to patients and their families. The project was conducted in the long-term, ventilated patients’ department at the Herzfeld Rehabilitation Geriatric Medical Center on patients undergoing enteral tube weaning with the staff’s assistance. Establishing continuous collaboration between the dietician and the occupational therapist, starting from the beginning of the feeding-tube weaning process: 1.The dietician updates the occupational therapist about the start of the process and the approved diet. 2.The occupational therapist performs cognitive, motor, and functional assessments and treatments regarding the patient’s eating capabilities and recommends the required adjustments for independent eating according to the FIM (Functional Independence Measure) scale. 3.The occupational therapist closely follows up on the patient’s degree of independence in eating and provides a repeated update to the dietician. 4.The dietician accordingly guides the ward staff on whether and how to feed the patient or allow independent eating. The project aimed to promote patients toward independent feeding, which leads to a sense of empowerment, enjoyment of the eating experience, and progress of functional ability, along with performing active movements that will motivate mobilization. From the beginning of 2022, 26 patients participated in the project. 79% of all patients who started the weaning process from tube feeding achieved different levels of independence in feeding (independence levels ranged from supervision (FIM-5) to complete independence (FIM-7). The integration of occupational therapy and dietary treatment is based on a patient-centered approach while considering the patient’s personal needs, preferences, and goals. This interdisciplinary partnership is essential for meeting the complex needs of prolonged mechanically ventilated patients and promotes independent functioning and quality of life.

Keywords: dietary, mechanical ventilation, occupational therapy, tube feeding weaning

Procedia PDF Downloads 78
2905 Analysis and Study of Growth Rates of Indigenous Phytoplankton in Enriched Spent Oil Impacted Ecosystems in South Western Nigeria Coastal Waters

Authors: Lauretta Ighedo, Bukola Okunade, Monisade Okunade

Abstract:

In order to determine the effect of spent oil on the growth rates of indigenous phytoplankton in an aquaculture pond, a study was carried out on varying concentrations of samples using the bioassay procedure for a period of 14 days. Four divisions Cyanophyta, Chlorophyta, Euglenophyta and Bacillariophyta were observed in the water samples collected from the Aquaculture pond. The growth response was measured using a microprocessor photocolorimeter at optical density of 680nm. A general assessment of spent oil contaminated samples showed either a sharp rise or fall in growth rate from day 0 to day 2 followed by increased growth response for most higher concentration of pollutants up to Day 8, then fluctuations in the growth response pattern for the other days. There was no marked significant difference in the growth response of phytoplankton in the spent oil impacted water samples. The lowest and highest phytoplankton abundance was recorded in 10/90ml and 2.5/97.5ml spent oil impacted water sample respectively. Oscillatoria limosa, Chlorella sp., Microcystis aeruginosa, Nitzschia sp. and Navicula sp. showed high tolerance to oil pollution and these species used as bioindicators of an organic polluted environment increased abundantly and can therefore be employed in the cleanup and bioremediation process of an oil polluted freshwater body.

Keywords: phytoplankton, pollution, species abundance, environmental characteristics

Procedia PDF Downloads 372
2904 Comparative Study of Wear and Friction Behavior of Tricalcium Phosphate-Fluorapatite Bioceramic

Authors: Rym Taktak, Achwek Elghazel, Jamel Bouaziz

Abstract:

In the present work, we explored the potential of tribological behavior of tricalcium phosphate-Fluorapatite (β Tcp-Fap) bioceramic which has attracted considerable attention for orthopedics and dental applications. The approximate representatives Fap-βTcp were respectively [{13.26 wt%, 86.74 wt%} {19.9 wt%, 80.1 wt%},{ 26.52 wt%, 73.48 wt%}, {33.16 wt%, 66.84 wt%} and {40 wt%, 60 wt%}. The effects of Fluorapatite additives on friction and wear behavior were studied and discussed. The wear test was conducted using pion-disk tribometer at room temperature under dry condition using a constant sliding speed of 0,063 m/s, and three loads 3, 5 and 8 N. The wear rate and friction coefficient of β Tcp with different additive amounts were compared. An Alumina ball specimens were used as the pin and flat surface β Tcp-Fap specimens as the antagonist counterface. The results show a huge difference between the wear rate of β TCP samples and the other β TCP-Fap composites for all normal forces applied. This result shows the beneficial effect of fluorapatite on the tribological behavior of the β TCP. Moreover, we note that β Tcp-26% Fap specimens exhibit, under dry condition, the lower friction coefficient and the smaller wear rate than other biocomposites. Thereby, the friction and wear behavior is influenced by the addition of fluorapatite, the applied normal force, and the sliding velocity. To extend the understanding of the wear process, the surface topography of β Tcp-26% Fap specimens and the wear track obtained during the wear tests were studied using a surface profilometer, optical microscopy, and scanning electron microscopy.

Keywords: alumina, bioceramic, friction and wear test, tricalcium phosphate

Procedia PDF Downloads 234
2903 Variations in % Body Fat, the Amount of Skeletal Muscle and the Index of Physical Fitness in Relation to Sports Activity/Inactivity in Different Age Groups of the Adult Population in the Czech Republic

Authors: Hřebíčková Sylva, Grasgruber Pavel, Ondráček Jan, Cacek Jan, Kalina Tomáš

Abstract:

The aim of this study was to describe typical changes in several parameters of body composition – the amount of skeletal muscle mass (SMM), % body fat (BF) and body mass index (BMI) - in selected age categories (30+ years) of men and women in the Czech Republic, depending on the degree of sports activity. Study (n = 823, M = 343, F = 480) monitored differences in BF, SM and BMI in five age groups (from 30-39 years to 70+ years). Physically inactive individuals have (p < 0.05) higher % BF in comparison with physically active individuals (29.5 ± 0.59 vs. 27 ± 0.38%), higher BMI (27.3 ± 0.32 vs. 26.1 ± 0.20 kg/m2), but lower SM (39.0 ± 0.33 vs. 40.4 ± 0.21%). The results indicate that with an increasing age, there is a trend towards increasing values of BMI and % BF, and decreasing values of SMM.

Keywords: body composition, body fat, physical activity, skeletal muscle

Procedia PDF Downloads 316
2902 Effects of Some Fungicides on Mycelial Growth of Fusarium spp.

Authors: M. Djekoun, H. Berrebah, M. R. Djebar

Abstract:

Fusarium wilt is destructive disease of cereal crops with small grains. It affects yields but also the quality of the crop and economic losses arising are often very heavy. Chemical control is currently one of the most effective ways to fight against these diseases. In this study, the efficacy of three fungicides (tebuconazole, thiram, and fludioxonil-difenoconazole mixture) was tested. In vitro, on the phytopathogenic Fusarium spp. isolated from seeds of wheat. The active ingredients were tested at different concentrations: 0.06, 1.39, 2.79, 5.58, and 11.16 mg/l for tebuconazole, 0.035, 0.052, 0.105, 0.21, and 0.42 mg/l for thiram and finally, for the mixture fludioxonil-difenoconazole 4 concentrations were tested: 0.05, 0.1, 0.5 and 1 mg/l. Toxicity responses were expressed as effective concentration, which inhibits mycelial growth by 50%, (EC50). Of the three selected fungicides, thirame proved to be the most effective with EC50 value of the order of 0,15 mg/l followed by the mixture of fludioxonil-difenoconazole with 0,27mg/l and finally tebuconazole with a value of 3.79 mg/l.

Keywords: Fusarium spp., thiram, tebuconazole, fludioxonil, difenoconazole, percentage of inhibition, EC50

Procedia PDF Downloads 366
2901 Bridgeless Boost Power Factor Correction Rectifier with Hold-Up Time Extension Circuit

Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Yuan-Jhen Siao

Abstract:

A bridgeless boost (BLB) power factor correction (PFC) rectifier with hold-up time extension circuit is proposed in this paper. A full bridge rectifier is widely used in the front end of the ac/dc converter. Since the shortcomings of the full bridge rectifier, the bridgeless rectifier is developed. A BLB rectifier topology is utilized with the hold-up time extension circuit. Unlike the traditional hold-up time extension circuit, the proposed extension scheme uses fewer active switches to achieve a longer hold-up time. Simulation results are presented to verify the converter performance.

Keywords: bridgeless boost (BLB), boost converter, power factor correction (PFC), hold-up time

Procedia PDF Downloads 417
2900 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system

Procedia PDF Downloads 177
2899 Improved Ohmic Contact by Li Doping in Electron Transport Layers

Authors: G. Sivakumar, T. Pratyusha, D. Gupta, W. Shen

Abstract:

To get ohmic contact between the cathode and organic semiconductor, transport layers are introduced between the active layer and the electrodes. Generally zinc oxide or titanium dioxide are used as electron transport layer. When electron transport layer is doped with lithium, the resultant film exhibited superior electronic properties, which enables faster electron transport. Doping is accomplished by heat treatment of films with Lithium salts. Li-doped films. We fabricated organic solar cell using PTB7(poly(3-hexylthiopene-2,5- diyl):PCBM(phenyl-C61-butyric acid methyl ester) and found that the solar cells prepared using Li doped films had better performance in terms of efficiency when compared to the undoped transport layers.

Keywords: electron transport layer, higher efficiency, lithium doping, ohmic contact

Procedia PDF Downloads 513
2898 Evaluation of the Effectiveness of Crisis Management Support Bases in Tehran

Authors: Sima Hajiazizi

Abstract:

Tehran is a capital of Iran, with the capitals of the world to natural disasters such as earthquake and flood vulnerable has known. City has stated on three faults, Ray, Mosha, and north according to report of JICA in 2000, the most casualties and destruction was the result of active fault Ray. In 2003, the prevention and management of crisis in Tehran to conduct prevention and rehabilitation of the city, under the Ministry has active. Given the breadth and lack of appropriate access in the city, was considered decentralized management for crisis management support, in each region, in order to position the crisis management headquarters at the time of crises and implementation of programs for prevention and education of the citizens and also to position the bases given in some areas of the neighboring provinces at the time of the accident for help and a number of databases to store food and equipment needed at the time of the disaster. In this study, the bases for one, six, nine and eleven regions of Tehran in the field of management and training are evaluated. Selected areas had local accident and experience of practice for disaster management and local training has been experiencing challenges. The research approach was used qualitative research methods underlying Ground theory. At first, the information obtained through the study of documents and Semi-structured interviews by administrators, officials of training and participant observation in the classroom, line by line, and then it was coded in two stages, by comparing and questioning concepts, categories and extract according to the indicators is obtained from literature studies, subjects were been central. Main articles according to the frequency and importance of the phenomenon were called and they were drawn diagram paradigm and at the end with the intersections phenomena and their causes with indicators extracted from the texts, approach each phenomenon and the effectiveness of the bases was measured. There are two phenomenons in management; 1. The inability to manage the vast and complex crisis events and to resolve minor incidents due to the mismatch between managers. 2. Weaknesses in the implementation of preventive measures and preparedness to manage crisis is causal of situations, fields and intervening. There are five phenomenons in the field of education; 1. In the six-region participation and interest is high. 2. In eleven-region training partnerships for crisis management were to low that next by maneuver in schools and local initiatives such as advertising and use of aid groups have increased. 3. In nine-region, contributions to education in the area of crisis management at the beginning were low that initiatives like maneuver in schools and communities to stimulate and increase participation have increased sensitivity. 4. Managers have been disagreement with the same training in all areas. Finally for the issues that are causing the main issues, with the help of concepts extracted from the literature, recommendations are provided.

Keywords: crises management, crisis management support bases, vulnerability, crisis management headquarters, prevention

Procedia PDF Downloads 174
2897 Controlled Conductivity of Poly (3,4-Ethylenedioxythiophene): Poly (4-Styrene Sulfonate) Composites with Polyester

Authors: Kazui Sasakii, Seira Mormune-Moriya, Hiroaki Tanahashi, Shigeji Kongaya

Abstract:

Poly (3.4-ethylenedioxythiophene) doped with poly (4-styrene sulfonate) (PEDOT: PSS) attracted a great deal of attention because of its unique characteristics of flexibility, optical properties, heat resistance and colloidal dispersion in water. It is well known that when high boiling solvents such as ethylene glycol or dimethyl sulfoxide are added as a secondary dopant to the micellar structure, PEDOT microcrystallizes and becomes highly conductive. In previous study bis(4-hydroxyphenyl) sulfone (BPS) was used as a secondary dopant for PEDOT:PSS and the enhancement of the conductivity was revealed. However, ductility is one of the serious issues which limited the application of PEDOT:PSS/BPS. So far, the composition with polymer binders has been conducted, however, polymer binders decrease the conductivity of the materials. In this study, PEDOT: PSS composites with polyester (PEs) were prepared by a simple aqueous process using PEs emulsion. The structural studies revealed that PEDOT:PSS and PEs were homogeneously distributed in the composites. It was found that the properties of PEDOT:PSS were remarkably enhanced by the incorporation of PEs. According to the tensile test, the ductility of PEDOT:PSS was remarkably improved. Interestingly, the conductivity of PEDOT:PSS/PEs composites was higher than that of neat PEDOT:PSS. For example, the conductivity increased by 8% at PEs content of 25 wt%. Since PEDOT:PSS were homogeneously dispersed on the surface of PEs particles, it was assumed that the conductive pathway was constructed by PEs particles in the nanocomposites. Therefore, a significant increase in conductivity was achieved.

Keywords: polymer composites, conductivity, PEDOT:PSS, polyester

Procedia PDF Downloads 115
2896 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 136
2895 Implementation of ANN-Based MPPT for a PV System and Efficiency Improvement of DC-DC Converter by WBG Devices

Authors: Bouchra Nadji, Elaid Bouchetob

Abstract:

PV systems are common in residential and industrial settings because of their low, upfront costs and operating costs throughout their lifetimes. Buck or boost converters are used in photovoltaic systems, regardless of whether the system is autonomous or connected to the grid. These converters became less appealing because of their low efficiency, inadequate power density, and use of silicon for their power components. Traditional devices based on Si are getting close to reaching their theoretical performance limits, which makes it more challenging to improve the performance and efficiency of these devices. GaN and SiC are the two types of WBG semiconductors with the most recent technological advancements and are available. Tolerance to high temperatures and switching frequencies can reduce active and passive component size. Utilizing high-efficiency dc-dc boost converters is the primary emphasis of this work. These converters are for photovoltaic systems that use wave energy.

Keywords: component, Artificial intelligence, PV System, ANN MPPT, DC-DC converter

Procedia PDF Downloads 60
2894 Microstructural and Mechanical Property Investigation on SS316L-Cu Graded Deposition Prepared using Wire Arc Additive Manufacturing

Authors: Bunty Tomar, Shiva S.

Abstract:

Fabrication of steel and copper-based functionally graded material (FGM) through cold metal transfer-based wire arc additive manufacturing is a novel exploration. Components combining Cu and steel show significant usage in many industrial applications as they combine high corrosion resistance, ductility, thermal conductivity, and wear resistance to excellent mechanical properties. Joining steel and copper is challenging due to the mismatch in their thermo-mechanical properties. In this experiment, a functionally graded material (FGM) structure of pure copper (Cu) and 316L stainless steel (SS) was successfully developed using cold metal transfer-based wire arc additive manufacturing (CMT-WAAM). The interface of the fabricated samples was characterized under optical microscopy, field emission scanning electron microscopy, and X-ray diffraction techniques. Detailed EBSD and TEM analysis was performed to analyze the grain orientation, strain distribution, grain boundary misorientations, and formation of metastable and intermetallic phases. Mechanical characteristics of deposits was also analyzed using tensile and wear testing. This works paves the way to use CMT-WAAM to fabricate steel/copper FGMs.

Keywords: wire arc additive manufacturing (waam), cold metal transfer (cmt), metals and alloys, mechanical properties, characterization

Procedia PDF Downloads 80
2893 Influence of La on Increasing the ORR Activity of LaNi Supported with N and S Co-doped Carbon Black Electrocatalyst for Fuel Cells and Batteries

Authors: Maryam Kiani

Abstract:

Non-precious electrocatalysts play a crucial role in the oxygen reduction reaction (ORR) for regenerative fuel cells and rechargeable metal-air batteries. To enhance ORR activity, La (a less active element) is added to modify the activity of Ni. This addition increases the surface contents of Ni2+, N, and S species in LaNi/N-S-C, while still maintaining a substantial specific surface area and hierarchical porosity. Therefore, the additional La is essential for the successful ORR process.In addition, the presence of extra La in the LaNi/N-S-C electrocatalyst enhances the efficiency of charge transfer and improves the surface acid-base characteristics, facilitating the adsorption of oxygen molecules during the ORR process. As a result, this superior and desirable electrocatalyst exhibits significantly enhanced ORR bifunctional activity. In fact, its ORR activity is comparable to that of the 20 wt% Pt/C.

Keywords: fuel cells, batteries, dual-doped carbon black, ORR

Procedia PDF Downloads 103
2892 Investigation on Corrosion Behavior of Copper Brazed Joints

Authors: A. M. Aminazad, A. M. Hadian, F. Ghasimakbari

Abstract:

DHP (Deoxidized High Phosphorus )copper is widely used in various heat transfer units such as, air conditioners refrigerators, evaporators and condensers. Copper sheets and tubes (ISODHP) were brazed with four different brazing alloys. Corrosion resistances of the joints were examined by polarization and salt spray tests. The selected fillers consisted of three silver-based brazing alloys (hard solder); AWS-BCu5 BAg8, DINLAg30, and a copper-based filler AWS BCuP2. All the joints were brazed utilizing four different brazing processes including furnace brazing under argon, vacuum, air atmosphere and torch brazing. All of the fillers were used with and without flux. The microstructure of the brazed sheets was examined using both optical and scanning electron microscope (SEM). Hardness and leak tests were carried out on all the brazed tubes. In all three silver brazing alloys selective and galvanic corrosion were observed in filler metals, but in copper phosphor alloys the copper adjacent to the joints were noticeably corroded by pitting method. Microstructure of damaged area showed selective attack of copper lamellae as well. Interfacial attack was observed along boundaries as well as copper attack within the filler metal itself. It was found that the samples brazed with BAg5 filler metal using vacuum furnace show a higher resistance to corrosion. They also have a good ductility in the brazed zone.

Keywords: copper, brazing, corrosion, filler metal

Procedia PDF Downloads 470
2891 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA

Authors: Catelyn Coyle, Helena Kwakwa

Abstract:

Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.

Keywords: HCV, routine testing, linkage to care, community health centers

Procedia PDF Downloads 357
2890 Synthesis and Characterization of Some New Diamines and Their Thermally Stable Polyimides

Authors: Zill-E-Huma, Humaira Siddiqi

Abstract:

This paper comprises of synthesis of thermally stable, mechanically strong polyimides. The polyimides were considered as most diverse class of polymers having unlimited applications. They were widely used as optical wave guides, in aerospace, for gas separation, as biomaterials and in electronics. Here the focus was to increase thermal stability and mechanical strength of polyimides. For this purpose two monomers were synthesized and were further polymerized via anhydrides to polyimides. The monomer diamines were synthesized by nucleophilic attack of aniline/2-fluoro aniline on hydroxy benzaldehydes. The two diamines synthesized were 3-(bis(4-aminophenyl) methyl) phenol (3OHDA) and 4-(bis(4-amino-3-fluorophenyl) methyl) phenol (2F4OHDA). These diamines were then reacted with dianhydrides to get polyimides. Two neat polyimides of both diamines with pyromellitic dianhydride (PMDA) and one neat polyimide of 4'-(Hexafluoroisopropylidene) diphthalic dianhydride (6FDA) with 3OHDA were synthesized. To compare the properties of synthesized polyimides like thermal stability, rigidity, flexibility, toughness etc. a commercial diamine oxydianiline (ODA) was used. Polyimides from oxydianiline were basically rigid. Nine different polyimide blends were synthesized from 3OHDA and commercial diamines ODA to have a better comparison of properties. TGA and mechanical testing results showed that with the increase in the percentage of 3OHDA in comparison to ODA the flexibility, toughness, strength of polyimide, thermal stability goes on increasing. So, synthesized diamines were responsible for improvement of properties of polyimides.

Keywords: diamines, dianhydrides, oxydianiline, polyimides

Procedia PDF Downloads 303
2889 Human Beta Defensin 1 as Potential Antimycobacterial Agent against Active and Dormant Tubercle Bacilli

Authors: Richa Sharma, Uma Nahar, Sadhna Sharma, Indu Verma

Abstract:

Counteracting the deadly pathogen Mycobacterium tuberculosis (M. tb) effectively is still a global challenge. Scrutinizing alternative weapons like antimicrobial peptides to strengthen existing tuberculosis artillery is urgently required. Considering the antimycobacterial potential of Human Beta Defensin 1 (HBD-1) along with isoniazid, the present study was designed to explore the ability of HBD-1 to act against active and dormant M. tb. HBD-1 was screened in silico using antimicrobial peptide prediction servers to identify its short antimicrobial motif. The activity of both HBD-1 and its selected motif (Pep B) was determined at different concentrations against actively growing M. tb in vitro and ex vivo in monocyte derived macrophages (MDMs). Log phase M. tb was grown along with HBD-1 and Pep B for 7 days. M. tb infected MDMs were treated with HBD-1 and Pep B for 72 hours. Thereafter, colony forming unit (CFU) enumeration was performed to determine activity of both peptides against actively growing in vitro and intracellular M. tb. The dormant M. tb models were prepared by following two approaches and treated with different concentrations of HBD-1 and Pep B. Firstly, 20-22 days old M. tbH37Rv was grown in potassium deficient Sauton media for 35 days. The presence of dormant bacilli was confirmed by Nile red staining. Dormant bacilli were further treated with rifampicin, isoniazid, HBD-1 and its motif for 7 days. The effect of both peptides on latent bacilli was assessed by colony forming units (CFU) and most probable number (MPN) enumeration. Secondly, human PBMC granuloma model was prepared by infecting PBMCs seeded on collagen matrix with M. tb(MOI 0.1) for 10 days. Histopathology was done to confirm granuloma formation. The granuloma thus formed was incubated for 72 hours with rifampicin, HBD-1 and Pep B individually. Difference in bacillary load was determined by CFU enumeration. The minimum inhibitory concentrations of HBD-1 and Pep B restricting growth of mycobacteria in vitro were 2μg/ml and 20μg/ml respectively. The intracellular mycobacterial load was reduced significantly by HBD-1 and Pep B at 1μg/ml and 5μg/ml respectively. Nile red positive bacterial population, high MPN/ low CFU count and tolerance to isoniazid, confirmed the formation of potassium deficienybaseddormancy model. HBD-1 (8μg/ml) showed 96% and 99% killing and Pep B (40μg/ml) lowered dormant bacillary load by 68.89% and 92.49% based on CFU and MPN enumeration respectively. Further, H&E stained aggregates of macrophages and lymphocytes, acid fast bacilli surrounded by cellular aggregates and rifampicin resistance, indicated the formation of human granuloma dormancy model. HBD-1 (8μg/ml) led to 81.3% reduction in CFU whereas its motif Pep B (40μg/ml) showed only 54.66% decrease in bacterial load inside granuloma. Thus, the present study indicated that HBD-1 and its motif are effective antimicrobial players against both actively growing and dormant M. tb. They should be further explored to tap their potential to design a powerful weapon for combating tuberculosis.

Keywords: antimicrobial peptides, dormant, human beta defensin 1, tuberculosis

Procedia PDF Downloads 263
2888 Reverence Posture at Darius’ Relief in Persepolis

Authors: Behzad Moeini Sam, Sara Mohammadi Avendi

Abstract:

The beliefs of the ancient peoples about gods and kings and how to perform rituals played an active part in the ancient civilizations. One of them in the ancient Near Eastern civilizations, which were accomplished, was paying homage to the gods and kings. The reverence posture during the Achaemenid period consisted of raising one right hand with the palm and the extended fingers facing the mouth. It is worth paying attention to the fact that the ancient empires such as Akkadian, Assyrian, Babylonian, and Persian should be regarded as successive versions of the same multinational power structure, each resulting from an internal power struggle within this structure. This article tries to show the reverence gesture with those of the ancient Near East. The working method is to study Darius one in Persepolis and pay homage to him and his similarities to those of the ancient Near East. Thus, it is logical to assume that the Reverence gesture follows the Sumerian and Akkadian ones.

Keywords: Darius, Persepolis, Achaemenid, Proskynesis

Procedia PDF Downloads 50
2887 Impact of Normative Institutional Factors on Sustainability Reporting

Authors: Lina Dagilienė

Abstract:

The article explores the impact of normative institutional factors on the development of sustainability reporting. The vast majority of research in the scientific literature focuses on mandatory institutional factors, i.e. how public institutions and market regulators affect sustainability reporting. Meanwhile, there is lack of empirical data for the impact of normative institutional factors. The effect of normative factors in this paper is based on the role of non-governmental organizations (NGO) and institutional theory. The case of Global Compact Local Network in the developing country was examined. The research results revealed that in the absence of regulated factors, companies were not active with regard to social disclosures; they presented non-systemized social information of a descriptive nature. Only 10% of sustainability reports were prepared using the GRI methodology. None of the reports were assured by third parties.

Keywords: institutional theory, normative, sustainability reporting, Global Compact Local Network

Procedia PDF Downloads 382
2886 Creating a Virtual Perception for Upper Limb Rehabilitation

Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee

Abstract:

This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.

Keywords: physical rehabilitation, mirror neuron, virtual reality, stroke therapy

Procedia PDF Downloads 432
2885 Perovskite-Type La1−xCaxAlO3 (x=0, 0.2, 0.4, 0.6) as Active Anode Materials for Methanol Oxidation in Alkaline Solutions

Authors: M. Diafi, M. Omari, B. Gasmi

Abstract:

Perovskite-type La1−xCaxAlO3 were synthesized at 1000◦C by a co- precipitation method. The synthesized oxide powders were characterized by X-ray diffraction (XRD) and the oxide powders were produced in the form of films on pretreated Ni-supports by an oxide-slurry painting technique their electrocatalytic activities towards methanol oxidation in alkaline solutions at 25°C using cyclic voltammetry, chronoamperometry, and anodic Tafel polarization techniques. The oxide catalysts followed the rhombohedral hexagonal crystal geometry. The rate of electro-oxidation of methanol was found to increase with increasing substitution of La by Ca in the oxide matrix. The reaction indicated a Tafel slope of ~2.303RT/F, The electrochemical apparent activation energy (〖∆H〗_el^(°#)) was observed to decrease on increasing Ca content. The results point out the optimum electrode activity and stability of the Ca is x=0.6 of composition.

Keywords: electrocatalysis, oxygen evolution, perovskite-type La1−x Cax AlO3, methanol oxidation

Procedia PDF Downloads 439