Search results for: MR image of brain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3881

Search results for: MR image of brain

1631 Electroencephalography Activity during Sensory Organization Balance Test

Authors: Tariq Ali Gujar, Anita Hökelmann

Abstract:

Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.

Keywords: balance, electroencephalography activity, somatosensory, visual, vestibular

Procedia PDF Downloads 585
1630 Efficient Photodegradation of Methyl Red Dye by Kaolin Clay Supported Zinc Oxide Nanoparticles with Their Antibacterial and Antioxidant Activities

Authors: Idrees Khan, Zhang Baoliang

Abstract:

Kaolin clay (KC) supported Zinc oxide (ZnO/KC) and ZnO nanoparticles (NPs) were prepared by a chemical reduction process and used for the photodegradation of methyl red (MR) as photocatalysts. Due to the interlayered porous structure of KC, we achieved a perfect association between ZnO NPs and KC. SEM image showed the irregular morphology of ZnO NPs, while ZnO/KC NCs were predominately round-shaped. Moreover, in both cases, NPs were present in dispersed and agglomerated forms with an average particle size way below 100 nm. The results acquired from photodegradation analyses showed that ZnO NPs and ZnO/KC NCs degraded about 82% and 99% of MR under UV light in a short irradiation time within 10 min. The recovered and re-recovered ZnO NPs and ZnO/KC NCs were also considerably photodegraded MR in an aqueous medium. The same NPs also exhibit promising bioactivities against two pathogenic bacteria, i.e., Citrobacter and Providencia. ZnO/KC NCs' antioxidant activity reached a reasonable 70% compared to the 88% activity of the standard ascorbic acid.

Keywords: nanoparticles, photocatalyst, photodegradation, zinc oxide, methyl red

Procedia PDF Downloads 81
1629 Investigation on Optical Performance of Operational Shutter Panels for Transparent Displays

Authors: Jaehong Kim, Sunhee Park, HongSeop Shin, Kyongho Lim, Suhyun Kwon, Don-Gyou Lee, Pureum Kim, Moojong Lim, JongSang Baek

Abstract:

Transparent displays with OLEDs are the most commonly produced forms of see-through displays on the market or in development. In order to block the visual interruption caused by the light coming from the background, the special panel is combined with transparent displays with OLEDs. There is, however, few studies optical performance of operational shutter panel for transparent displays until now. This paper, therefore, describes the optical performance of operational shutter panels. The novel evaluation method was developed by measuring the amount of light which can form a transmitted background image. The new proposed method could tell how recognize transmitted background images cannot be seen, and is consistent with viewer’s perception.

Keywords: transparent display, operational shutter panel, optical performance, OLEDs

Procedia PDF Downloads 446
1628 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 434
1627 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data

Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau

Abstract:

Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.

Keywords: calcium imaging, computer vision, neural activity, neural networks

Procedia PDF Downloads 84
1626 Numerical Experiments for the Purpose of Studying Space-Time Evolution of Various Forms of Pulse Signals in the Collisional Cold Plasma

Authors: N. Kh. Gomidze, I. N. Jabnidze, K. A. Makharadze

Abstract:

The influence of inhomogeneities of plasma and statistical characteristics on the propagation of signal is very actual in wireless communication systems. While propagating in the media, the deformation and evaluation of the signal in time and space take place and on the receiver we get a deformed signal. The present article is dedicated to studying the space-time evolution of rectangular, sinusoidal, exponential and bi-exponential impulses via numerical experiment in the collisional, cold plasma. The presented method is not based on the Fourier-presentation of the signal. Analytically, we have received the general image depicting the space-time evolution of the radio impulse amplitude that gives an opportunity to analyze the concrete results in the case of primary impulse.

Keywords: collisional, cold plasma, rectangular pulse signal, impulse envelope

Procedia PDF Downloads 385
1625 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing

Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar

Abstract:

The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.

Keywords: hyperspectral, NDNI, nitrogen concentration, regression value

Procedia PDF Downloads 297
1624 Branding in FMCG Sector in India: A Comparison of Indian and Multinational Companies

Authors: Pragati Sirohi, Vivek Singh Rana

Abstract:

Brand is a name, term, sign, symbol or design or a combination of all these which is intended to identify the goods or services of one seller or a group of sellers and to differentiate them from those of the competitors and perception influences purchase decisions here and so building that perception is critical. The FMCG industry is a low margin business. Volumes hold the key to success in this industry. Therefore, the industry has a strong emphasis on marketing. Creating strong brands is important for FMCG companies and they devote considerable money and effort in developing brands. Brand loyalty is fickle. Companies know this and that is why they relentlessly work towards brand building. The purpose of the study is a comparison between Indian and Multinational companies with regard to FMCG sector in India. It has been hypothesized that after liberalization the Indian companies has taken up the challenge of globalization and some of these are giving a stiff competition to MNCs. There is an existence of strong brand image of MNCs compared to Indian companies. Advertisement expenditures of MNCs are proportionately higher compared to Indian counterparts. The operational area of the study is the country as a whole. Continuous time series data is available from 1996-2014 for the selected 8 companies. The selection of these companies is done on the basis of their large market share, brand equity and prominence in the market. Research methodology focuses on finding trend growth rates of market capitalization, net worth, and brand values through regression analysis by the usage of secondary data from prowess database developed by CMIE (Centre for monitoring Indian Economy). Estimation of brand values of selected FMCG companies is being attempted, which can be taken to be the excess of market capitalization over the net worth of a company. Brand value indices are calculated. Correlation between brand values and advertising expenditure is also measured to assess the effect of advertising on branding. Major results indicate that although MNCs enjoy stronger brand image but few Indian companies like ITC is the outstanding leader in terms of its market capitalization and brand values. Dabur and Tata Global Beverages Ltd are competing equally well on these values. Advertisement expenditures are the highest for HUL followed by ITC, Colgate and Dabur which shows that Indian companies are not behind in the race. Although advertisement expenditures are playing a role in brand building process there are many other factors which affect the process. Also, brand values are decreasing over the years for FMCG companies in India which show that competition is intense with aggressive price wars and brand clutter. Implications for Indian companies are that they have to consistently put in proactive and relentless efforts in their brand building process. Brands need focus and consistency. Brand longevity without innovation leads to brand respect but does not create brand value.

Keywords: brand value, FMCG, market capitalization, net worth

Procedia PDF Downloads 358
1623 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)

Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss

Abstract:

In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.

Keywords: recognition, handwriting, Arabic text, HMMs, embedded training

Procedia PDF Downloads 356
1622 Corporate Philanthropy as a Source of Competitive Advantage

Authors: Mateusz Rak

Abstract:

Objective: The paper aims to present various sources of competitive advantage which may occur when an enterprise strategically applies its concept of corporate philanthropy. Methodology: The review of the literature and available reports on the research regarding corporate philanthropy. Results: Strategic philanthropy is a positive phenomenon. Unfortunately, enterprises in Poland do not see all positive sides of such activities yet. Three kinds of corporate philanthropy may be described. They are to fulfil a social duty, improve the company reputation and gain a competitive edge. Practical implications: Showing enterprises the advantages of taking philanthropic actions, in particular, a large role of strategic philanthropy in gaining a competitive edge in the market as well as how to avoid negative consequences of corporate philanthropy. The paper presents corporate philanthropy on a few layers: as a CSR element, actions generating values in products, actions improving a corporate image in the market, altruist actions of employees.

Keywords: corporate philanthropy, corporate social responsibility, corporate foundations, CSR

Procedia PDF Downloads 253
1621 Cigarette Smoke Detection Based on YOLOV3

Authors: Wei Li, Tuo Yang

Abstract:

In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.

Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction

Procedia PDF Downloads 90
1620 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences

Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui

Abstract:

The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.

Keywords: recognition of shape, generalized hough transformation, histogram, spatiogram, learning

Procedia PDF Downloads 159
1619 Indigenous Knowledge Management: Towards Identification of Challenges and Opportunities in Developing Countries

Authors: Desmond Chinedu Oparaku, Emmanuel Uwazie Anyanwu, Oyemike Victor Benson, Ogbonna Isaac-Nnadimele

Abstract:

The purpose of this paper is to provide a theoretical discourse that highlights the challenges associated with management of indigenous knowledge with reference to developing countries. Literature review and brainstorming were used to collect relevant data and draw inferences. The findings indicate that non-existence of indigenous knowledge management policy (IKMP), low level of partnership drive among library and information services providers, non-uniformity of format and content of indigenous knowledge, inadequate funding, and lack of access to ICTs, lack of indigenous people with indigenous expertise and hoarding of knowledge as challenges to indigenous knowledge management. The study is based on literature review and information gathered through brain storming with professional colleagues the geographic scope as developing countries. The study has birth several implication based on the findings made. Professionally, it has necessitated the need for formulating a viable indigenous knowledge management policy (IKMP), creating of collaborative network through partnership, and integration of ICTs to indigenous knowledge management practices by libraries in developing countries etc. The originality of this paper is revealed in its capability as serving as an eye opener to librarians on the need for preserving and managing indigenous knowledge in developing countries. It further unlocks the possibilities of exploring empirical based researches to substantiate the theoretical issues raised in this paper. The findings may be used by library managers to improve indigenous knowledge management (IKM).

Keywords: developing countries, ICTs, indigenous knowledge, knowledge management

Procedia PDF Downloads 344
1618 Regularity and Maximal Congruence in Transformation Semigroups with Fixed Sets

Authors: Chollawat Pookpienlert, Jintana Sanwong

Abstract:

An element a of a semigroup S is called left (right) regular if there exists x in S such that a=xa² (a=a²x) and said to be intra-regular if there exist u,v in such that a=ua²v. Let T(X) be the semigroup of all full transformations on a set X under the composition of maps. For a fixed nonempty subset Y of X, let Fix(X,Y)={α ™ T(X) : yα=y for all y ™ Y}, where yα is the image of y under α. Then Fix(X,Y) is a semigroup of full transformations on X which fix all elements in Y. Here, we characterize left regular, right regular and intra-regular elements of Fix(X,Y) which characterizations are shown as follows: For α ™ Fix(X,Y), (i) α is left regular if and only if Xα\Y = Xα²\Y, (ii) α is right regular if and only if πα = πα², (iii) α is intra-regular if and only if | Xα\Y | = | Xα²\Y | such that Xα = {xα : x ™ X} and πα = {xα⁻¹ : x ™ Xα} in which xα⁻¹ = {a ™ X : aα=x}. Moreover, those regularities are equivalent if Xα\Y is a finite set. In addition, we count the number of those elements of Fix(X,Y) when X is a finite set. Finally, we determine the maximal congruence ρ on Fix(X,Y) when X is finite and Y is a nonempty proper subset of X. If we let | X \Y | = n, then we obtain that ρ = (Fixn x Fixn) ∪ (H ε x H ε) where Fixn = {α ™ Fix(X,Y) : | Xα\Y | < n} and H ε is the group of units of Fix(X,Y). Furthermore, we show that the maximal congruence is unique.

Keywords: intra-regular, left regular, maximal congruence, right regular, transformation semigroup

Procedia PDF Downloads 231
1617 Proximal Method of Solving Split System of Minimization Problem

Authors: Anteneh Getachew Gebrie, Rabian Wangkeeree

Abstract:

The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.

Keywords: Hilbert Space, minimization problems, Moreau-Yosida approximate, split feasibility problem

Procedia PDF Downloads 145
1616 Application of MRI in Radioembolization Imaging and Dosimetry

Authors: Salehi Zahabi Saleh, Rajabi Hosaien, Rasaneh Samira

Abstract:

Yttrium-90 (90Y) radioembolisation(RE) is increasingly used for the treatment of patients with unresectable primary or metastatic liver tumours. Image-based approaches to assess microsphere distribution after RE have gained interest but are mostly hampered by the limited imaging possibilities of the Isotope 90Y. Quantitative 90Y-SPECT imaging has limited spatial resolution because it is based on 90Y Bremsstrahlung whereas 90Y-PET has better spatial resolution but low sensitivity. As a consequence, new alternative methods of visualizing the microspheres have been investigated, such as MR imaging of iron-labelled microspheres. It was also shown that MRI combines high sensitivity with high spatial and temporal resolution and with superior soft tissue contrast and thus can be used to cover a broad range of clinically interesting imaging parameters.The aim of the study in this article was to investigate the capability of MRI to measure the intrahepatic microsphere distribution in order to quantify the absorbed radiation dose in RE.

Keywords: radioembolisation, MRI, imaging, dosimetry

Procedia PDF Downloads 325
1615 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 208
1614 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 275
1613 Women Characters in Pakistani Films: A Critical Evaluation

Authors: Ali Arshad

Abstract:

The study examines the depiction of women characters in Urdu and Punjabi films. It is a critical evaluation of forty-eight Pakistani films. It explores the characters of women portrays in Urdu and Punjabi film of Pakistan. Using content analysis as methodology with feminist research that helps to investigate the phenomena and supports the study. Finding of the study shows that women characters in Urdu and Punjabi films are not the reflection of true Pakistani women rather this picture represents a negative image of Pakistani women in viewers mind. These characters don’t address the women’s issues nor do they present the solutions to these problems faced by Pakistani women. The characters of Pakistani women are not free from male prejudice, and these films do not portray the social and political role perform by actual Pakistani women. The analysis shows that the characters of women in Urdu and Punjabi films are based on the assumptions.

Keywords: women, Pakistani, film, characters

Procedia PDF Downloads 305
1612 Fields of Power, Visual Culture, and the Artistic Practice of Two 'Unseen' Women of Central Brazil

Authors: Carolina Brandão Piva

Abstract:

In our visual culture, images play a newly significant role in the basis of a complex dialogue between imagination, creativity, and social practice. Insofar as imagination has broken out of the 'special expressive space of art' to become a part of the quotidian mental work of ordinary people, it is pertinent to recognize that visual representation can no longer be assumed as if in a domain detached from everyday life or exclusively 'centered' within the limited frame of 'art history.' The approach of Visual Culture as a field of study is, in this sense, indispensable to comprehend that not only 'the image,' but also 'the imagined' and 'the imaginary' are produced in the plurality of social interactions; crucial enough, this assertion directs us to something new in contemporary cultural processes, namely both imagination and image production constitute a social practice. This paper starts off with this approach and seeks to examine the artistic practice of two women from the State of Goiás, Brazil, who are ordinary citizens with their daily activities and narratives but also dedicated to visuality production. With no formal training from art schools, branded or otherwise, Maria Aparecida de Souza Pires deploys 'waste disposal' of daily life—from car tires to old work clothes—as a trampoline for art; also adept at sourcing raw materials collected from her surroundings, she manipulates raw hewn wood, tree trunks, plant life, and various other pieces she collects from nature giving them new meaning and possibility. Hilda Freire works with sculptures in clay using different scales and styles; her art focuses on representations of women and pays homage to unprivileged groups such as the practitioners of African-Brazilian religions, blue-collar workers, poor live-in housekeepers, and so forth. Although they have never been acknowledged by any mainstream art institution in Brazil, whose 'criterion of value' still favors formally trained artists, Maria Aparecida de Souza Pires, and Hilda Freire have produced visualities that instigate 'new ways of seeing,' meriting cultural significance in many ways. Their artworks neither descend from a 'traditional' medium nor depend on 'canonical viewing settings' of visual representation; rather, they consist in producing relationships with the world which do not result in 'seeing more,' but 'at least differently.' From this perspective, the paper finally demonstrates that grouping this kind of artistic production under the label of 'mere craft' has much more to do with who is privileged within the fields of power in art system, who we see and who we do not see, and whose imagination of what is fed by which visual images in Brazilian contemporary society.

Keywords: visual culture, artistic practice, women's art in the Brazilian State of Goiás, Maria Aparecida de Souza Pires, Hilda Freire

Procedia PDF Downloads 153
1611 Low Complexity Deblocking Algorithm

Authors: Jagroop Singh Sidhu, Buta Singh

Abstract:

A low computational deblocking filter including three frequency related modes (smooth mode, intermediate mode, and non-smooth mode for low-frequency, mid-frequency, and high frequency regions, respectively) is proposed. The suggested approach requires zero additions, zero subtractions, zero multiplications (for intermediate region), no divisions (for non-smooth region) and no comparison. The suggested method thus keeps the computation lower and thus suitable for image coding systems based on blocks. Comparison of average number of operations for smooth, non-smooth, intermediate (per pixel vector for each block) using filter suggested by Chen and the proposed method filter suggests that the proposed filter keeps the computation lower and is thus suitable for fast processing algorithms.

Keywords: blocking artifacts, computational complexity, non-smooth, intermediate, smooth

Procedia PDF Downloads 465
1610 An Examination of Thai Tourists' Motivation Behavior and Perception of Cultural Heritage in Chiang Mai Province

Authors: Sujui Yang, Peeraya Somsak, Markus Blut

Abstract:

This research examines the international tourists in Chiang Mai, Thailand. It aims to study non-Thai tourists’ of this region to better understand their behavior and motives influencing the choice of cultural heritage tourists in Chiang Mai, Thailand. The data includes questionnaires of 250 tourists in the study area. The most important motives influencing decisions choices are several concerning customers’ perspectives on tourist destinations in cultural heritage in Chiang Mai province. Thai tourists in Chiang Mai are single, 72.5 percent are in the age of 21-40 years old and 50% of sample group are from central and northern of Thailand. Tourists’ motives capture the factor loading as well as the corresponding show 5 components: relaxation motives, place/ physical motives, learning motives, image motives, and achievement motives.

Keywords: tourists motives, cultural heritage, Chiang Mai, customers’ perspectives

Procedia PDF Downloads 391
1609 5iD Viewer: Observation of Fish School Behaviour in Labyrinths and Use of Semantic and Syntactic Entropy for School Structure Definition

Authors: Dalibor Štys, Kryštof M. Stys, Maryia Chkalova, Petr Kouba, Aliaxandr Pautsina, Dalibor Štys Jr., Jana Pečenková, Denis Durniev, Tomáš Náhlík, Petr Císař

Abstract:

In this article, a construction and some properties of the 5iD viewer, the system recording simultaneously five views of a given experimental object is reported. Properties of the system are demonstrated on the analysis of fish schooling behavior. It is demonstrated the method of instrument calibration which allows inclusion of image distortion and it is proposed and partly tested also the method of distance assessment in the case that only two opposite cameras are available. Finally, we demonstrate how the state trajectory of the behavior of the fish school may be constructed from the entropy of the system.

Keywords: 3D positioning, school behavior, distance calibration, space vision, space distortion

Procedia PDF Downloads 391
1608 Hybrid EMPCA-Scott Approach for Estimating Probability Distributions of Mutual Information

Authors: Thuvanan Borvornvitchotikarn, Werasak Kurutach

Abstract:

Mutual information (MI) is widely used in medical image registration. In the different medical images analysis, it is difficult to choose an optimal bins size number for calculating the probability distributions in MI. As the result, this paper presents a new adaptive bins number selection approach that named a hybrid EMPCA-Scott approach. This work combines an expectation maximization principal component analysis (EMPCA) and the modified Scott’s rule. The proposed approach solves the binning problem from the various intensity values in medical images. Experimental results of this work show the lower registration errors compared to other adaptive binning approaches.

Keywords: mutual information, EMPCA, Scott, probability distributions

Procedia PDF Downloads 250
1607 In Situ Production of Nano-Cu on a Cotton Fabric Surface by Ink-Jet Printing

Authors: N. Zoghi, Laleh Maleknia , M. E. Olya

Abstract:

The nano-Cu particles were produced on cotton fabric substrate by ink-jet printing technology with water-soluble ink, which was based on copper. The surface tension and viscosity of the prepared inks were evaluated. The ink-jet printing process was repeated 1, 3, and 5 times in order to evaluate variations in the optical properties by changing thickness of printed film. Following initial drying of the printed film, the samples were annealed at different temperatures (150 °C, 200 °C and 250 °C) to determine the optimum temperature for the parameters set out in this experiment. The prepared nano-Cu particles were characterized by XRD and UV spectroscopy. The appearance of printed image and the nano-Cu particles morphology were observed by SEM. The results demonstrated that the ink-jet printing technology can be used to produce nano-particles on the cotton fabrics surface.

Keywords: ink-jet printing, nano-cu, fabric ink, in situ production, cotton fabric, water-soluble ink, morphology

Procedia PDF Downloads 432
1606 Parametric Template-Based 3D Reconstruction of the Human Body

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu

Abstract:

This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.

Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint

Procedia PDF Downloads 82
1605 Singularization: A Technique for Protecting Neural Networks

Authors: Robert Poenaru, Mihail Pleşa

Abstract:

In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.

Keywords: machine learning, ANE, CNN, security

Procedia PDF Downloads 19
1604 Clicking Based Graphical Password Scheme Resistant to Spyware

Authors: Bandar Alahmadi

Abstract:

The fact that people tend to remember pictures better than texts, motivates researchers to develop graphical passwords as an alternative to textual passwords. Graphical passwords as such were introduced as a possible alternative to traditional text passwords, in which users prove their identity by clicking on pictures rather than typing alphanumerical text. In this paper, we present a scheme for graphical passwords that are resistant to shoulder surfing attacks and spyware attacks. The proposed scheme introduces a clicking technique to chosen images. First, the users choose a set of images, the images are then included in a grid where users can click in the cells around each image, the location of the click and the number of clicks are saved. As a result, the proposed scheme can be safe from shoulder surface and spyware attacks.

Keywords: security, password, authentication, attack, applications

Procedia PDF Downloads 169
1603 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.

Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis

Procedia PDF Downloads 294
1602 The Ordinary Way of the Appeal in Penalty Part

Authors: Abdelkadir Elhaouari

Abstract:

The priciest thing in human life since his birth is his freedom, basing on this idea, the conflict exists till now, the fight against oppression, injustice, tyranny and slavery, searching for freedom and political resistances, and this makes the freedom is deeply related to the defense for its existence all over years. This project attempts using any way to preserve this freedom, and building and maintaining bases and rules to organize this life. Appeal is a one of the most important method that human uses to protect his freedom, and we will mention in this thesis our attempt to clarify this aspect to the individual. We can say that the law does not know just one color or one logic, and is not based on one rule to be taken by heart, but the law is neutrality, the diversity, abstraction and diligence diversity. The penal law is a valued law and it deserves to be studied and searched more… so that to attempt to master it. Our thesis is just a brief explanation of an important point in this law, where we attempt to clarify and simplify the image to the normal person, so that he can preserve his rights, and we hope that we had succeeded to choose the right topic for that.

Keywords: appeal, penalization, judgement, criminal

Procedia PDF Downloads 285