Regularity and Maximal Congruence in Transformation Semigroups with Fixed Sets

Authors: Chollawat Pookpienlert, Jintana Sanwong

Abstract : An element a of a semigroup S is called left (right) regular if there exists x in S such that $a=xa^2$ ($a=a^2x$) and said to be intra-regular if there exist u,v in such that $a=ua^2v$. Let T(X) be the semigroup of all full transformations on a set X under the composition of maps. For a fixed nonempty subset Y of X, let $Fix(X,Y)=\{\alpha^{TM}\ T(X):y\alpha=y \text{ for all }y^{TM}\ Y\}$, where $y\alpha$ is the image of y under α . Then Fix(X,Y) is a semigroup of full transformations on X which fix all elements in Y. Here, we characterize left regular, right regular and intra-regular elements of Fix(X,Y) which characterizations are shown as follows: For $\alpha^{TM}\ Fix(X,Y)$, (i) α is left regular if and only if $X\alpha Y = X\alpha^2 Y$, (ii) α is right regular if and only if $\pi\alpha = \pi\alpha^2$, (iii) $\pi\alpha = \pi\alpha^2$, (iii) $\pi\alpha = \pi\alpha^2$, in which $\pi\alpha = \pi\alpha^2$. Moreover, those regularities are equivalent if $\pi\alpha = \pi\alpha^2$, in which $\pi\alpha = \pi\alpha^2$, in which $\pi\alpha = \pi\alpha^2$. Moreover, those regularities are equivalent if $\pi\alpha = \pi\alpha^2$, in which $\pi\alpha = \pi\alpha^2$, in which $\pi\alpha = \pi\alpha^2$, when X is a finite set. Finally, we determine the maximal congruence $\pi\alpha = \pi\alpha^2$, when X is finite and Y is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$, then we obtain that $\pi\alpha = \pi\alpha^2$ is $\pi\alpha = \pi\alpha^2$. Fixed Y is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$, then we obtain that $\pi\alpha = \pi\alpha^2$ is $\pi\alpha = \pi\alpha^2$. Fixed Y is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we let $\pi\alpha = \pi\alpha^2$ is a nonempty proper subset of X. If we

Keywords: intra-regular, left regular, maximal congruence, right regular, transformation semigroup **Conference Title:** ICAPM 2017: International Conference on Applied Physics and Mathematics

Conference Location : Prague, Czechia **Conference Dates :** March 23-24, 2017