Regularity and Maximal Congruence in Transformation Semigroups with Fixed Sets

[^0]
[^0]: Authors : Chollawat Pookpienlert, Jintana Sanwong
 Abstract : An element a of a semigroup S is called left (right) regular if there exists x in S such that $a=x a^{2}\left(a=a^{2} x\right)$ and said to be intra-regular if there exist u, v in such that $a=u a^{2} v$. Let $T(X)$ be the semigroup of all full transformations on a set X under the composition of maps. For a fixed nonempty subset Y of X, let $\operatorname{Fix}(X, Y)=\left\{\alpha^{T M} T(X): y \alpha=y\right.$ for all $\left.y^{T M} Y\right\}$, where y α is the image of y under α. Then $\operatorname{Fix}(\mathrm{X}, \mathrm{Y})$ is a semigroup of full transformations on X which fix all elements in Y . Here, we characterize left regular, right regular and intra-regular elements of $\operatorname{Fix}(\mathrm{X}, \mathrm{Y})$ which characterizations are shown as follows: For $\alpha^{\mathrm{TM}} \mathrm{Fix}(\mathrm{X}, \mathrm{Y})$, (i) α is left regular if and only if $\mathrm{X} \alpha \backslash \mathrm{Y}=\mathrm{X} \alpha^{2} \backslash \mathrm{Y}$, (ii) α is right regular if and only if $\Pi \alpha=\Pi \alpha^{2}$, (iii) α is intra-regular if and only if \mid $\mathrm{X} \alpha|\mathrm{Y}|=\left|\mathrm{X} \alpha^{2} \backslash \mathrm{Y}\right|$ such that $\mathrm{X} \alpha=\left\{\mathrm{x} \alpha: \mathrm{X}^{\mathrm{TM}} \mathrm{X}\right\}$ and $\Pi \alpha=\left\{\mathrm{x} \alpha^{-1}: \mathrm{X}^{\mathrm{TM}} \mathrm{X} \alpha\right\}$ in which $\mathrm{x} \alpha^{-1}=\left\{\mathrm{a}^{\mathrm{TM}} \mathrm{X}: \mathrm{a} \alpha=\mathrm{x}\right\}$. Moreover, those regularities are equivalent if $\mathrm{X} \alpha \backslash \mathrm{Y}$ is a finite set. In addition, we count the number of those elements of Fix (X, Y) when X is a finite set. Finally, we determine the maximal congruence ρ on $\operatorname{Fix}(\mathrm{X}, \mathrm{Y})$ when X is finite and Y is a nonempty proper subset of X . If we let $|\mathrm{X} \backslash \mathrm{Y}|=\mathrm{n}$, then we obtain that $\rho=$ (Fixn \times Fixn $) \cup\left(\mathrm{H} \varepsilon \times \mathrm{H} \varepsilon\right.$) where Fixn $=\left\{\alpha^{\mathrm{TM}} \operatorname{Fix}(\mathrm{X}, \mathrm{Y}):|\mathrm{X} \alpha \backslash \mathrm{Y}|<\mathrm{n}\right\}$ and $\mathrm{H} \varepsilon$ is the group of units of $\operatorname{Fix}(\mathrm{X}, \mathrm{Y})$. Furthermore, we show that the maximal congruence is unique.
 Keywords : intra-regular, left regular, maximal congruence, right regular, transformation semigroup
 Conference Title : ICAPM 2017 : International Conference on Applied Physics and Mathematics
 Conference Location : Prague, Czechia
 Conference Dates: March 23-24, 2017

