Search results for: wave function
4004 Foil Bearing Stiffness Estimation with Pseudospectral Scheme
Authors: Balaji Sankar, Sadanand Kulkarni
Abstract:
Compliant foil gas lubricated bearings are used for the support of light loads in the order of few kilograms at high speeds, in the order of 50,000 RPM. The stiffness of the foil bearings depends both on the stiffness of the compliant foil and on the lubricating gas film. The stiffness of the bearings plays a crucial role in the stable operation of the supported rotor over a range of speeds. This paper describes a numerical approach to estimate the stiffness of the bearings using pseudo spectral scheme. Methodology to obtain the stiffness of the foil bearing as a function of weight of the shaft is given and the results are presented.Keywords: foil bearing, simulation, numerical, stiffness estimation
Procedia PDF Downloads 3424003 Sea Level Rise and Implications for Low-lying areas: Coastal Evolution and Impact of Future Sea Level Rise Scenarios in Mirabello Gulf - NE Crete
Authors: Maria Kazantzaki, Evangelos Tsakalos, Eleni Filippaki, Yannis Bassiakos
Abstract:
Mediterranean areas are characterized by intense seismic and volcanic activity as well as eustatic changes, the result of which is the creation of particularly vulnerable coastal zones. The most vulnerable are low-lying coastal areas, the geomorphological evolution of which are highly affected by natural processes and anthropogenic interventions. Therefore, assessing changes that take place along coastal zones is of great importance in order to enable the development of integrated coastal management plans. A characteristic case is the gulf of Mirabello in N.E Crete, where intense coastal erosion, in combination with the tectonic subsidence of the area, threatens a large part of the coastal zone, resulting in direct socio-economic impacts. The present study assesses the temporal geomorphological changes that have taken place in the coastal zone of Mirabello gulf to provide a clear frame of the coastal zone evolution over time and performs a vulnerability assessment based on the coastal vulnerability index (CVI) methodology by Thieler and Hammar-Klose, considering geological features, coastal slope, relative sea-level change, shoreline erosion/accretion rates and mean significant wave height as well as mean tide range in the area. In light of this, an impact assessment, based on three different sea level rise scenarios, is also performed and presented.Keywords: coastal vulnerability index, coastal erosion, GIS, sea level rise
Procedia PDF Downloads 1714002 Inclusion of Transgender in Mainstream Secondary Schools of Bangladesh: Perceptions and Issues
Authors: Shanaj Parvin Jonaki
Abstract:
After the first wave of the feminist movement, gender has become one of the most important issues to be researched in social science. Many gender theories have been invented and opened a new window to look at. These works showed how gender is a social construct, how gender has been used to oppress, how to rule. While it's the education system’s duty to guide students to understand the concept of gender, it sometimes shows gender-based discrimination. Transgenders exclusion from educational institutes of Bangladesh justifies this very statement. This study aims to figure out how people perceive transgenders’ identity, their inclusion in secondary schools, as well as the underlying barriers in the pathway of inclusion in the context of Bangladesh. A qualitative approach was taken to explore different perspectives towards transgender inclusion from several stakeholders such as students, parents, and teachers of secondary schools and transgenders as well. Data were collected through focus group discussion and interview by convenient sampling. 15 students, 10 parents, and 5 teachers were selected from Bangla Medium school as well as from Madrasha. Collected data were analyzed thematically and were run by experts of gender, education, and psychology to identify the core barriers of inclusion. The study revealed that most of the students, teachers, and parents lacked the knowledge of non-binary gender identities, and they showed unwillingness towards the inclusion of transgender in schools because of the cultural context of Bangladesh. Moreover, this study suggests future initiatives to be taken to ensure the inclusion of transgenders in a secondary school in our country and analyzes it through the lens of feminist theories.Keywords: education, gender, inclusion, transgender
Procedia PDF Downloads 1914001 Functionalization of the Surface of Porous Titanium Nickel Alloy
Authors: Gulsharat A. Baigonakova, Ekaterina S. Marchenko, Venera R. Luchsheva
Abstract:
The preferred materials for bone grafting are titanium-nickel alloys. They have a porous, permeable structure similar to that of bone tissue, can withstand long-term physiological stress in the body, and retain the scaffolding function for bone tissue ingrowth. Despite the excellent functional properties of these alloys, there is a possibility of post-operative infectious complications that prevent the newly formed bone tissue from filling the spaces created in a timely manner and prolong the rehabilitation period of patients. In order to minimise such consequences, it is necessary to use biocompatible materials capable of simultaneously fulfilling the function of a long-term functioning implant and an osteoreplacement carrier saturated with drugs. Methods to modify the surface by saturation with bioactive substances, in particular macrocyclic compounds, for the controlled release of drugs, biologically active substances, and cells are becoming increasingly important. This work is dedicated to the functionalisation of the surface of porous titanium nickelide by the deposition of macrocyclic compounds in order to provide titanium nickelide with antibacterial activity and accelerated osteogenesis. The paper evaluates the effect of macrocyclic compound deposition methods on the continuity, structure, and cytocompatibility of the surface properties of porous titanium nickelide. Macrocyclic compounds were deposited on the porous surface of titanium nickelide under the influence of various physical effects. Structural research methods have allowed the evaluation of the surface morphology of titanium nickelide and the nature of the distribution of these compounds. The method of surface functionalisation of titanium nickelide influences the size of the deposited bioactive molecules and the nature of their distribution. The surface functionalisation method developed has enabled titanium nickelide to be deposited uniformly on the inner and outer surfaces of the pores, which will subsequently enable the material to be uniformly saturated with various drugs, including antibiotics and inhibitors. The surface-modified porous titanium nickelide showed high biocompatibility and low cytotoxicity in in vitro studies. The research was carried out with financial support from the Russian Science Foundation under Grant No. 22-72-10037.Keywords: biocompatibility, NiTi, surface, porous structure
Procedia PDF Downloads 844000 Analysis of High Resolution Seismic Reflection Data to Identify Different Regional Lithologies of the Zaria Batholith Located in the Basement Complex of North Central Nigeria
Authors: Collins C. Chiemeke, A. Onugba, P. Sule
Abstract:
High resolution seismic reflection has recently been carried out on Zaria batholith, with the aim of characterizing the granitic Zaria batholiths in terms of its lithology. The geology of the area has revealed that the older granite outcrops in the vicinity of Zaria are exposures of a syntectonics to late-tectonic granite batholiths which intruded a crystalline gneissic basement during the Pan-African Orogeny. During the data acquisition the geophone were placed at interval of 1 m, variable offset of 1 and 10 m was used. The common midpoint (CMP) method with 12 fold coverage was employed for the survey. Analysis of the generated 3D surface of the p wave velocities from different profiles for densities and bulk modulus revealed that the rock material is more consolidated in South East part of the batholith and less consolidated in the North Western part. This was in conformity with earlier identified geology of the area, with the South Eastern part majorly of granitic outcrop, while the North Western part is characterized with the exposure of gneisses and thick overburden cover. The difference in lithology was also confirmed by the difference in seismic sections and Arial satellite photograph. Hence two major lithologies were identified, the granitic and gneisses complex which are characterized by gradational boundaries.Keywords: basement complex, batholith, high resolution, lithologies, seismic reflection
Procedia PDF Downloads 2963999 Thermal Conductivity and Optical Absorption of GaAsPN/GaP for Tandem Solar Cells: Effect of Rapid Thermal Annealing
Authors: S. Ilahi, S. Almosni, F. Chouchene, M. Perrin, K. Zelazna, N. Yacoubi, R. Kudraweic, P. Rale, L. Lombez, J. F. Guillemoles, O. Durand, C. Cornet
Abstract:
Great efforts have been dedicated to obtain high quality of GaAsPN. The properties of GaAsPN have played a great part on the development of solar cells devices based in Si substrate. The incorporation of N in GaAsPN that having a band gap around of 1.7 eV is of special interest in view of growing in Si substrate. In fact, post-growth and rapid thermal annealing (RTA) could be an effective way to improve the quality of the layer. Then, the influence of growth conditions and post-growth annealing on optical and thermal parameters is considered. We have used Photothermal deflection spectroscopy PDS to investigate the impact of rapid thermal annealing on thermal and optical properties of GaAsPN. In fact, the principle of the PDS consists to illuminate the sample by a modulated monochromatic light beam. Then, the absorbed energy is converted into heat through the nonradiative recombination process. The generated thermal wave propagates into the sample and surrounding media creating a refractive-index gradient giving rise to the deflection of a laser probe beam skimming the sample surface. The incident light is assumed to be uniform, and only the sample absorbs the light. In conclusion, the results are promising revealing an improvement in absorption coefficient and thermal conductivity.Keywords: GaAsPN absorber, photothermal defelction technique PDS, photonics on silicon, thermal conductivity
Procedia PDF Downloads 3543998 Increasing of Gain in Unstable Thin Disk Resonator
Authors: M. Asl. Dehghan, M. H. Daemi, S. Radmard, S. H. Nabavi
Abstract:
Thin disk lasers are engineered for efficient thermal cooling and exhibit superior performance for this task. However the disk thickness and large pumped area make the use of this gain format in a resonator difficult when constructing a single-mode laser. Choosing an unstable resonator design is beneficial for this purpose. On the other hand, the low gain medium restricts the application of unstable resonators to low magnifications and therefore to a poor beam quality. A promising idea to enable the application of unstable resonators to wide aperture, low gain lasers is to couple a fraction of the out coupled radiation back into the resonator. The output coupling gets dependent on the ratio of the back reflection and can be adjusted independently from the magnification. The excitation of the converging wave can be done by the use of an external reflector. The resonator performance is numerically predicted. First of all the threshold condition of linear, V and 2V shape resonator is investigated. Results show that the maximum magnification is 1.066 that is very low for high quality purposes. Inserting an additional reflector covers the low gain. The reflectivity and the related magnification of a 350 micron Yb:YAG disk are calculated. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically by the Fox and Li algorithm. Results show that with back reflection mechanism in combination with increasing the number of beam incidents on disk, high gain and high magnification can occur.Keywords: unstable resonators, thin disk lasers, gain, external reflector
Procedia PDF Downloads 4133997 Critical Study on the Sensitivity of Corrosion Fatigue Crack Growth Rate to Cyclic Waveform and Microstructure in Marine Steel
Authors: V. C. Igwemezie, A. N. Mehmanparast
Abstract:
The primary focus of this work is to understand how variations in the microstructure and cyclic waveform affect the corrosion fatigue crack growth (CFCG) in steel, especially in the Paris region of the da/dN vs. ΔK curve. This work is important because it provides fundamental information on the modelling, design, selection, and use of steels for various engineering applications in the marine environment. The corrosion fatigue tests data on normalized and thermomechanical control process (TMCP) ferritic-pearlitic steels by the authors were compared with several studies on different microstructures in the literature. The microstructures of these steels are radically different and general comparative fatigue crack growth resistance performance study on the effect of microstructure in these materials are very scarce and where available are limited to few studies. The results, for purposes of engineering application, in this study show less dependency of fatigue crack growth rate (FCGR) on yield strength, tensile strength, ductility, frequency and stress ratio in the range 0.1 – 0.7. The nature of the steel microstructure appears to be a major factor in determining the rate at which fatigue cracks propagate in the entire da/dN vs. ΔK sigmoidal curve. The study also shows that the sine wave shape is the most damaging fatigue waveform for ferritic-pearlitic steels. This tends to suggest that the test under sine waveform would be a conservative approach, regardless of the waveform for design of engineering structures.Keywords: BS7910, corrosion-fatigue crack growth rate, cyclic waveform, microstructure, steel
Procedia PDF Downloads 1553996 CONDUCTHOME: Gesture Interface Control of Home Automation Boxes
Authors: J. Branstett, V. Gagneux, A. Leleu, B. Levadoux, J. Pascale
Abstract:
This paper presents the interface CONDUCTHOME which controls home automation systems with a Leap Motion using ‘invariant gesture protocols’. The function of this interface is to simplify the interaction of the user with its environment. A hardware part allows the Leap Motion to be carried around the house. A software part interacts with the home automation box and displays the useful information for the user. An objective of this work is the development a natural/invariant/simple gesture control interface to help elder people/people with disabilities.Keywords: automation, ergonomics, gesture recognition, interoperability
Procedia PDF Downloads 4313995 Rounded-off Measurements and Their Implication on Control Charts
Authors: Ran Etgar
Abstract:
The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.Keywords: inaccurate measurement, SPC, statistical process control, rounded-off, control chart
Procedia PDF Downloads 413994 Calpains; Insights Into the Pathogenesis of Heart Failure
Authors: Mohammadjavad Sotoudeheian
Abstract:
Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte
Procedia PDF Downloads 683993 Determination of Tide Height Using Global Navigation Satellite Systems (GNSS)
Authors: Faisal Alsaaq
Abstract:
Hydrographic surveys have traditionally relied on the availability of tide information for the reduction of sounding observations to a common datum. In most cases, tide information is obtained from tide gauge observations and/or tide predictions over space and time using local, regional or global tide models. While the latter often provides a rather crude approximation, the former relies on tide gauge stations that are spatially restricted, and often have sparse and limited distribution. A more recent method that is increasingly being used is Global Navigation Satellite System (GNSS) positioning which can be utilised to monitor height variations of a vessel or buoy, thus providing information on sea level variations during the time of a hydrographic survey. However, GNSS heights obtained under the dynamic environment of a survey vessel are affected by “non-tidal” processes such as wave activity and the attitude of the vessel (roll, pitch, heave and dynamic draft). This research seeks to examine techniques that separate the tide signal from other non-tidal signals that may be contained in GNSS heights. This requires an investigation of the processes involved and their temporal, spectral and stochastic properties in order to apply suitable recovery techniques of tide information. In addition, different post-mission and near real-time GNSS positioning techniques will be investigated with focus on estimation of height at ocean. Furthermore, the study will investigate the possibility to transfer the chart datums at the location of tide gauges.Keywords: hydrography, GNSS, datum, tide gauge
Procedia PDF Downloads 2653992 Sigma-Delta ADCs Converter a Study Case
Authors: Thiago Brito Bezerra, Mauro Lopes de Freitas, Waldir Sabino da Silva Júnior
Abstract:
The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim.Keywords: analysis, oversampling modulator, A/D converters, sigma-delta
Procedia PDF Downloads 3293991 Analysys of Some Solutions to Protect the Tombolo of Giens
Authors: Yves Lacroix, Van Van Than, Didier Léandri, Pierre Liardet
Abstract:
The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydro-sedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.Keywords: Almanarre beach, coastal erosion, hydro-sedimentological, numerical model
Procedia PDF Downloads 3193990 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level
Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni
Abstract:
In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.Keywords: tropocollagen, multiscale model, fibrils, knee ligaments
Procedia PDF Downloads 1283989 Measurement and Analysis of Human Hand Kinematics
Authors: Tamara Grujic, Mirjana Bonkovic
Abstract:
Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement
Procedia PDF Downloads 4643988 The Oppressive Boss and Employees' Authoritarianism: The Relation between Suppression of Voice by Employers and Employees' Preferences for Authoritarian Political Leadership
Authors: Antonia Stanojević, Agnes Akkerman
Abstract:
In contemporary society, economically active people typically spend most of their waking hours doing their job. Having that in mind, this research examines how socialization at the workplace shapes political preferences. Innovatively, it examines, in particular, the possible relationship between employees’ voice suppression by the employer and the formation of their political preferences. Since the employer is perceived as an authority figure, their behavior might induce spillovers to attitudes about political authorities and authoritarian governance. Therefore, a positive effect of suppression of voice by employers on employees' preference for authoritarian governance is expected. Furthermore, this relation is expected to be mediated by two mechanisms: system justification and power distance. Namely, it is expected that suppression of voice would create a power distance organizational climate and increase employees’ acceptance of unequal distribution of power, as well as evoke attempts of oppression rationalization through system justification. The hypotheses will be tested on the data gathered within the first wave of Work and Politics Dataset 2017 (N=6000), which allows for a wide range of demographic and psychological control variables. Although a cross-sectional analysis to be used at this point does not allow for causal inferences, the confirmation of expected relationships would encourage and justify further longitudinal research on the same panel dataset, in order to get a clearer image of the causal relationship between employers' suppression of voice and workers' political preferences.Keywords: authoritarian values, political preferences, power distance, system justification, voice suppression
Procedia PDF Downloads 2693987 Pastoralist Transhumance and Conflict along the Nigeria-niger Borderlands: Towards New Perspective for Effective Border Management in Africa
Authors: Abubakar Samaila
Abstract:
Pastoralism has been an old practice in the Sahel region of west Africa. In recent years, pastoralists in Nigeria have increasingly been migrating on seasonal transhumance southward from the neighboring countries, especially Niger Republic, in search of better grazing conditions due to mainly, climate change. This has increased pressure on farm lands which instigate farmer-herder conflicts. These conflicts occur mainly between farmers and pastoralists but also between pastoralist groups themselves. However, there has been a shift in these conflicts recently to involve traditional institutions and, in some cases, the local authorities along the borderlands. The involvement of local institutions in the conflict has created an incentive to local actors, particularly pastoralcommunity-based groups, in responding to these violent threats. As pastoralists are mobile, these conflicts became difficult to contain and, thus, spill across borders. Consequently, the conflict has now transformed into an urbanized regional conflicts that involve some major cities along the Nigeria-Niger borderlands; Sokoto, Zamfara, and Katsina on the Nigerian side andDosso, Tahoa andMaradi in Niger republic. These areas are now experiencing unprecedented growing wave of violence that have become complex and escalates into a hydra-social conflict. The aim of this research is to investigate how the fluidities of Nigeria-Niger borderland intensified armed conflicts between the local pastoral organizations and sedentary populationspreading to some urban cities along the borderlands. The paper further suggests alternative approaches towards addressing the perennial crisis in African borderlands.Keywords: pastoralism, climate change, conflict, nigeria, niger, borderlands
Procedia PDF Downloads 923986 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer
Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo
Abstract:
Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer
Procedia PDF Downloads 2083985 Applications of Artificial Intelligence (AI) in Cardiac imaging
Authors: Angelis P. Barlampas
Abstract:
The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine
Procedia PDF Downloads 793984 Using Coupled Oscillators for Implementing Frequency Diverse Array
Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk
Abstract:
Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state
Procedia PDF Downloads 863983 Equipment Design for Lunar Lander Landing-Impact Test
Authors: Xiaohuan Li, Wangmin Yi, Xinghui Wu
Abstract:
In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved.Keywords: landing-impact test, lunar lander, releasing device, test equipment
Procedia PDF Downloads 6223982 High Rise Building Vibration Control Using Tuned Mass Damper
Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor
Abstract:
This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper
Procedia PDF Downloads 3403981 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves
Authors: E. Arcos, E. Bautista, F. Méndez
Abstract:
In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.Keywords: approximation U-P, porous seabed, scaling analysis, water waves
Procedia PDF Downloads 3493980 An Assistive Robotic Arm for Defence and Rescue Application
Authors: J. Harrison Kurunathan, R. Jayaparvathy
Abstract:
"Assistive Robotics" is the field that deals with the study of robots that helps in human motion and also empowers human abilities by interfacing the robotic systems to be manipulated by human motion. The proposed model is a robotic arm that works as a haptic interface on the basis on accelerometers and DC motors that will function with respect to the movement of the human muscle. The proposed model would effectively work as a haptic interface that would reduce human effort in the field of defense and rescue. This can be used in very critical conditions like fire accidents to avoid causalities.Keywords: accelerometers, haptic interface, servo motors, signal processing
Procedia PDF Downloads 3973979 The Generalized Pareto Distribution as a Model for Sequential Order Statistics
Authors: Mahdy Esmailian, Mahdi Doostparast, Ahmad Parsian
Abstract:
In this article, sequential order statistics (SOS) censoring type II samples coming from the generalized Pareto distribution are considered. Maximum likelihood (ML) estimators of the unknown parameters are derived on the basis of the available multiple SOS data. Necessary conditions for existence and uniqueness of the derived ML estimates are given. Due to complexity in the proposed likelihood function, a useful re-parametrization is suggested. For illustrative purposes, a Monte Carlo simulation study is conducted and an illustrative example is analysed.Keywords: bayesian estimation, generalized pareto distribution, maximum likelihood estimation, sequential order statistics
Procedia PDF Downloads 5103978 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks
Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia
Abstract:
PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.Keywords: zinc extraction, efficiency, neural networks, operating condition
Procedia PDF Downloads 5453977 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall
Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos
Abstract:
The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization
Procedia PDF Downloads 1563976 Power Generation from Sewage by a Micro-Hydraulic Turbine
Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide
Abstract:
This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.Keywords: micro-hydraulic turbine, power generation, sewage, sewer pipe
Procedia PDF Downloads 3923975 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting
Authors: Karim Kheloufi, El Hachemi Amara
Abstract:
In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.Keywords: laser cutting, numerical simulation, heat transfer, fluid flow
Procedia PDF Downloads 339