Search results for: water-efficient techniques
4582 Gamification: A Guideline to Design an Effective E-Learning
Authors: Rattama Rattanawongsa
Abstract:
As technologies continue to develop and evolve, online learning has become one of the most popular ways of gaining access to learning. Worldwide, many students are engaging in both online and blended courses in growing numbers through e-learning. However, online learning is a form of teaching that has many benefits for learners but still has some limitations. The high attrition rates of students tend to be due to lack of motivation to succeed. Gamification is the use of game design techniques, game thinking and game mechanics in non-game context, such as learning. The gamifying method can motivate students to learn with fun and inspire them to continue learning. This paper aims to describe how the gamification work in the context of learning. The first part of this paper present the concept of gamification. The second part is described the psychological perspectives of gamification, especially motivation and flow theory for gamifying design. The result from this study will be described into the guidelines for effective learning design using a gamification concept.Keywords: gamification, e-learning, motivation, flow theory
Procedia PDF Downloads 5264581 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1794580 Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer
Authors: Xing Feng, Yuanbin Li
Abstract:
Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform.Keywords: curved plane oil skimmer, flow channel, CFD, VOF
Procedia PDF Downloads 2964579 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images
Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets
Procedia PDF Downloads 4874578 Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain
Authors: Ahmed A. Elshami, Stephanie Bonnet, Abdelhafid Khelidj
Abstract:
Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain.Keywords: Zamzam water, corrosion inhibitor, rain water, simulated acid rain
Procedia PDF Downloads 3974577 Science and Monitoring Underpinning River Restoration: A Case Study
Authors: Geoffrey Gilfillan, Peter Barham, Lisa Smallwood, David Harper
Abstract:
The ‘Welland for People and Wildlife’ project aimed to improve the River Welland’s ecology and water quality, and to make it more accessible to the community of Market Harborough. A joint monitoring project by the Welland Rivers Trust & University of Leicester was incorporated into the design. The techniques that have been used to measure its success are hydrological, geomorphological, and water quality monitoring, species and habitat surveys, and community engagement. Early results show improvements to flow and habitat diversity, water quality and biodiversity of the river environment. Barrier removal has increased stickleback mating activity, and decreased parasitically infected fish in sample catches. The habitats provided by the berms now boast over 25 native plant species, and the river is clearer, cleaner and with better-oxygenated water.Keywords: community engagement, ecological monitoring, river restoration, water quality
Procedia PDF Downloads 2334576 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques
Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi
Abstract:
An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel
Procedia PDF Downloads 4704575 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 4874574 Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation
Authors: O. P. Yadav
Abstract:
Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics.Keywords: degradation, nanocomposite, photocatalyst, spectroscopy, XRD
Procedia PDF Downloads 4994573 Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions
Authors: Sujith Rajashekar Swamy, Meghana Rajashekara Swamy
Abstract:
Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint.Keywords: susceptibility weighted, T1 weighted, brain lesions, gadolinium contrast
Procedia PDF Downloads 1304572 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 2694571 Logistics Support as a Key Success Factor in Gastronomy
Authors: Hanna Zietara
Abstract:
Gastronomy is one of the oldest forms of commercial activity. It is currently one of the most popular and still dynamically developing branches of business. Socio-economic changes, its widespread occurrence, new techniques, or culinary styles affect the almost unlimited possibilities of its development. Importantly, regardless of the form of business adopted, food service is strongly related to logistics processes, and areas of food service that are closely linked to logistics are of strategic importance. Any inefficiency in logistics processes results in reduced chances for success and achieving competitive advantage by companies belonging to the catering industry. The aim of the paper is to identify the areas of logistic support occurring in the catering business, affecting the scope of the logistic processes implemented. The aim of the paper is realized through a plural homogeneous approach, based on: direct observation, text analysis of current documents, in-depth free targeted interviews.Keywords: gastronomy, competitive advantage, logistics, logistics support
Procedia PDF Downloads 1664570 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements
Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky
Abstract:
Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes
Procedia PDF Downloads 4954569 Quantitative Analysis of the Trade Potential of the United States with Members of the European Union: A Gravity Model Approach
Authors: Zahid Ahmad, Nauman Ali
Abstract:
This study has estimated the trade between USA and individual members of European Union using Gravity Model of Trade as The USA has a complex trade relationship with the European countries consist of a large number of consumers, which make USA dependent on EU for major of its total world trade. However, among the member of EU, the trade potential of USA with individual members of EU is not known. Panel data techniques e.g. Random Effect, Fixed Effect and Pooled Panel have been applied to secondary quantitative data to analyze the Trade between USA and EU. Trade Potential of USA with individual members of EU has been obtained using the ratio of Actual trade of USA with EU members and the trade as predicted by Gravity Model. The Study concluded that the USA has greater trade potential with 16 members of EU, including Croatia, Portugal and United Kingdom on top. On the other hand, Finland, Ireland, and France are the top countries with which the USA has exhaustive trade potential.Keywords: analytical technique, economic, gravity, international trade, significant
Procedia PDF Downloads 3084568 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches
Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand
Abstract:
Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis
Procedia PDF Downloads 804567 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite
Authors: Maciej Szeląg, Stanisław Fic
Abstract:
The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters
Procedia PDF Downloads 3914566 Teachers and Innovations in Information and Communication Technology
Authors: Martina Manenova, Lukas Cirus
Abstract:
This article introduces research focused on elementary school teachers’ approach to innovations in ICT. The diffusion of innovations theory, which was written by E. M. Rogers, captures the processes of innovation adoption. The research method derived from this theory and the Rogers’ questionnaire focused on the diffusion of innovations was used as the basic research method. The research sample consisted of elementary school teachers. The comparison of results with the Rogers’ results shows that among the teachers in the research sample the so-called early majority, as well as the overall division of the data, was rather central (early adopter, early majority, and later majority). The teachers very rarely appeared on the edge positions (innovator, laggard). The obtained results can be applied to teaching practice and used especially in the implementation of new technologies and techniques into the educational process.Keywords: innovation, diffusion of innovation, information and communication technology, teachers
Procedia PDF Downloads 2964565 Numerical Study on the Heat Transfer Characteristics of Composite Phase Change Materials
Authors: Gui Yewei, Du Yanxia, Xiao Guangming, Liu Lei, Wei Dong, Yang Xiaofeng
Abstract:
A phase change material (PCM) is a substance which absorbs a large amount of energy when undergoing a change of solid-liquid phase. The good physical and chemical properties of C or SiC foam reveal the possibility of using them as a thermal conductivity enhancer for the PCM. C or SiC foam composite PCM has a high effective conductivity and becomes one of the most interesting thermal storage techniques due to its advantage of simplicity and reliability. The paper developed a numerical method to simulate the heat transfer of SiC and C foam composite PCM, a finite volume technique was used to discretize the heat diffusion equation while the phase change process was modeled using the equivalent specific heat method. The effects of the porosity were investigated based on the numerical method, and the effects of the geometric model of the microstructure on the equivalent thermal conductivity was studies.Keywords: SiC foam, composite, phase change material, heat transfer
Procedia PDF Downloads 5154564 Investigating Causes of Pavement Deterioration in Khartoum State, Sudan
Authors: Magdi Mohamed Eltayeb Zumrawi
Abstract:
It is quite essential to investigate the causes of pavement deterioration in order to select the proper maintenance technique. The objective of this study was to identify factors cause deterioration of recently constructed roads in Khartoum state. A comprehensive literature concerning the factors of road deterioration, common road defects and their causes were reviewed. Three major road projects with different deterioration reasons were selected for this study. The investigation involved field survey and laboratory testing on those projects to examine the existing pavement conditions. The results revealed that the roads investigated experienced severe failures in the forms of cracks, potholes and rutting in the wheel path. The causes of those failures were found mainly linked to poor drainage, traffic overloading, expansive subgrade soils and the use of low quality materials in construction. Based on the results, recommendations were provided to help highway engineers in selecting the most effective repair techniques for specific kinds of distresses.Keywords: pavement, deterioration, causes, failures
Procedia PDF Downloads 3574563 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring
Procedia PDF Downloads 5594562 Screens Design and Application for Sustainable Buildings
Authors: Fida Isam Abdulhafiz
Abstract:
Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education
Procedia PDF Downloads 3024561 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 304560 Increase Productivity by Using Work Measurement Technique
Authors: Mohammed Al Awadh
Abstract:
In order for businesses to take advantage of the opportunities for expanded production and trade that have arisen as a result of globalization and increased levels of competition, productivity growth is required. The number of available sources is decreasing with each passing day, which results in an ever-increasing demand. In response to this, there will be an increased demand placed on firms to improve the efficiency with which they utilise their resources. As a scientific method, work and time research techniques have been employed in all manufacturing and service industries to raise the efficiency of use of the factors of production. These approaches focus on work and time. The goal of this research is to improve the productivity of a manufacturing industry's production system by looking at ways to measure work. The work cycles were broken down into more manageable and quantifiable components. On the observation sheet, these aspects were noted down. The operation has been properly analysed in order to identify value-added and non-value-added components, and observations have been recorded for each of the different trails.Keywords: time study, work measurement, work study, efficiency
Procedia PDF Downloads 724559 Evaluation of the Sterilization Practice in Liberal Dental Surgeons at Sidi Bel Abbes- Algeria
Authors: A. Chenafa, S. Boulenouar, M. Zitouni, M. Boukouria
Abstract:
The sterilization of medical devices constitutes for all the medical professions, an inescapable obligation. It has for objective to prevent the infectious risk, both for the patient and for the medical team. The Dental surgeon as every healthcare professional has to master perfectly this subject and to train his staff to the various techniques of sterilization. It is the only way to assure the patients all the security for which they are entitled to wait when they undergo a dental care. It’s for it, that we undertook to lead an investigation aiming at estimating the sterilization practice at the dental surgeon of Sidi bel Abbes. The survey result showed a youth marked with the profession with a majority use of autoclave with cycle B and an almost total absence of the sterilization controls (test of Bowie and Dick). However, the majority of the dentists control and validate their sterilizers. Finally, our survey allowed us to describe some practices which must be improved regarding control, regarding qualification and regarding staff training. And suggestions were made in this sense.Keywords: dental surgeon, medical devices, sterilization, survey
Procedia PDF Downloads 4044558 Optimized Road Lane Detection Through a Combined Canny Edge Detection, Hough Transform, and Scaleable Region Masking Toward Autonomous Driving
Authors: Samane Sharifi Monfared, Lavdie Rada
Abstract:
Nowadays, autonomous vehicles are developing rapidly toward facilitating human car driving. One of the main issues is road lane detection for a suitable guidance direction and car accident prevention. This paper aims to improve and optimize road line detection based on a combination of camera calibration, the Hough transform, and Canny edge detection. The video processing is implemented using the Open CV library with the novelty of having a scale able region masking. The aim of the study is to introduce automatic road lane detection techniques with the user’s minimum manual intervention.Keywords: hough transform, canny edge detection, optimisation, scaleable masking, camera calibration, improving the quality of image, image processing, video processing
Procedia PDF Downloads 994557 Enhancing Students' Utilization of Written Corrective Feedback through Teacher-Student Writing Conferences: A Case Study in English Writing Instruction
Authors: Tsao Jui-Jung
Abstract:
Previous research findings have shown that most students do not fully utilize the written corrective feedback provided by teachers (Stone, 2014). This common phenomenon results in the ineffective utilization of teachers' written corrective feedback. As Ellis (2010) points out, the effectiveness of written corrective feedback depends on the level of student engagement with it. Therefore, it is crucial to understand how students utilize the written corrective feedback from their teachers. Previous studies have confirmed the positive impact of teacher-student writing conferences on students' engagement in the writing process and their writing abilities (Hum, 2021; Nosratinia & Nikpanjeh, 2019; Wong, 1996; Yeh, 2016, 2019). However, due to practical constraints such as time limitations, this instructional activity is not fully utilized in writing classrooms (Alfalagg, 2020). Therefore, to address this research gap, the purpose of this study was to explore several aspects of teacher-student writing conferences, including the frequency of meaning negotiation (i.e., comprehension checks, confirmation checks, and clarification checks) and teacher scaffolding techniques (i.e., feedback, prompts, guidance, explanations, and demonstrations) in teacher-student writing conferences, examining students’ self-assessment of their writing strengths and weaknesses in post-conference journals and their experiences with teacher-student writing conferences (i.e., interaction styles, communication levels, how teachers addressed errors, and overall perspectives on the conferences), and gathering insights from their responses to open-ended questions in the final stage of the study (i.e., their preferences and reasons for different written corrective feedback techniques used by teachers and their perspectives and suggestions on teacher-student writing conferences). Data collection methods included transcripts of audio recordings of teacher-student writing conferences, students’ post-conference journals, and open-ended questionnaires. The participants of this study were sophomore students enrolled in an English writing course for a duration of one school year. Key research findings are as follows: Firstly, in terms of meaning negotiation, students attempted to clearly understand the corrective feedback provided by the teacher-researcher twice as often as the teacher-researcher attempted to clearly understand the students' writing content. Secondly, the most commonly used scaffolding technique in the conferences was prompting (indirect feedback). Thirdly, the majority of participants believed that teacher-student writing conferences had a positive impact on their writing abilities. Fourthly, most students preferred direct feedback from the teacher-research as it directly pointed out their errors and saved them time in revision. However, some students still preferred indirect feedback, as they believed it encouraged them to think and self-correct. Based on the research findings, this study proposes effective teaching recommendations for English writing instruction aimed at optimizing teaching strategies and enhancing students' writing abilities.Keywords: written corrective feedback, student engagement, teacher-student writing conferences, action research
Procedia PDF Downloads 814556 Validation of Mapping Historical Linked Data to International Committee for Documentation (CIDOC) Conceptual Reference Model Using Shapes Constraint Language
Authors: Ghazal Faraj, András Micsik
Abstract:
Shapes Constraint Language (SHACL), a World Wide Web Consortium (W3C) language, provides well-defined shapes and RDF graphs, named "shape graphs". These shape graphs validate other resource description framework (RDF) graphs which are called "data graphs". The structural features of SHACL permit generating a variety of conditions to evaluate string matching patterns, value type, and other constraints. Moreover, the framework of SHACL supports high-level validation by expressing more complex conditions in languages such as SPARQL protocol and RDF Query Language (SPARQL). SHACL includes two parts: SHACL Core and SHACL-SPARQL. SHACL Core includes all shapes that cover the most frequent constraint components. While SHACL-SPARQL is an extension that allows SHACL to express more complex customized constraints. Validating the efficacy of dataset mapping is an essential component of reconciled data mechanisms, as the enhancement of different datasets linking is a sustainable process. The conventional validation methods are the semantic reasoner and SPARQL queries. The former checks formalization errors and data type inconsistency, while the latter validates the data contradiction. After executing SPARQL queries, the retrieved information needs to be checked manually by an expert. However, this methodology is time-consuming and inaccurate as it does not test the mapping model comprehensively. Therefore, there is a serious need to expose a new methodology that covers the entire validation aspects for linking and mapping diverse datasets. Our goal is to conduct a new approach to achieve optimal validation outcomes. The first step towards this goal is implementing SHACL to validate the mapping between the International Committee for Documentation (CIDOC) conceptual reference model (CRM) and one of its ontologies. To initiate this project successfully, a thorough understanding of both source and target ontologies was required. Subsequently, the proper environment to run SHACL and its shape graphs were determined. As a case study, we performed SHACL over a CIDOC-CRM dataset after running a Pellet reasoner via the Protégé program. The applied validation falls under multiple categories: a) data type validation which constrains whether the source data is mapped to the correct data type. For instance, checking whether a birthdate is assigned to xsd:datetime and linked to Person entity via crm:P82a_begin_of_the_begin property. b) Data integrity validation which detects inconsistent data. For instance, inspecting whether a person's birthdate occurred before any of the linked event creation dates. The expected results of our work are: 1) highlighting validation techniques and categories, 2) selecting the most suitable techniques for those various categories of validation tasks. The next plan is to establish a comprehensive validation model and generate SHACL shapes automatically.Keywords: SHACL, CIDOC-CRM, SPARQL, validation of ontology mapping
Procedia PDF Downloads 2564555 Estimation of Fuel Cost Function Characteristics Using Cuckoo Search
Authors: M. R. Al-Rashidi, K. M. El-Naggar, M. F. Al-Hajri
Abstract:
The fuel cost function describes the electric power generation-cost relationship in thermal plants, hence, it sheds light on economical aspects of power industry. Different models have been proposed to describe this relationship with the quadratic function model being the most popular one. Parameters of second order fuel cost function are estimated in this paper using cuckoo search algorithm. It is a new population based meta-heuristic optimization technique that has been used in this study primarily as an accurate estimation tool. Its main features are flexibility, simplicity, and effectiveness when compared to other estimation techniques. The parameter estimation problem is formulated as an optimization one with the goal being minimizing the error associated with the estimated parameters. A case study is considered in this paper to illustrate cuckoo search promising potential as a valuable estimation and optimization technique.Keywords: cuckoo search, parameters estimation, fuel cost function, economic dispatch
Procedia PDF Downloads 5834554 Iraq Water Resources Planning: Perspectives and Prognoses
Authors: Nadhir Al-Ansari, Ammar A. Ali, Sven Knutsson
Abstract:
Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning.Keywords: Iraq, Tigris River, Euphrates River, water scarcity, water resources management
Procedia PDF Downloads 4524553 Preparation of Carbon Monoliths from PET Waste and Their Use in Solar Interfacial Water Evaporation
Authors: Andrea Alfaro Barajas, Arturo I. Martinez
Abstract:
3D photothermal structure of carbon was synthesized using PET bottles waste and sodium chloride through controlled carbonization. Characterization techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, spectrophotometry, and mechanical compression were carried out. The carbon showed physical integrity > 90%, an absorbance > 90% between 300-1000nm of the solar spectrum, and a high specific surface area from 450 to 620 m2/g. The X-ray was employed to examine the phase structure; the obtained pattern shows an amorphous material. A higher intensity of band D with respect to band G was confirmed by Raman Spectroscopy. C-OH, COOH, C-O, and C-C bonds were obtained from the deconvolution of the high-resolution C1s orbital. Macropores of 160 to 180µm and micropores of 0.5 to 2nm were observed by SEM and TEM images, respectively. Such combined characteristics of carbon confer efficient evaporation of water under 1 sun irradiation > 60%.Keywords: solar-absorber, carbon, water-evaporation, interfacial
Procedia PDF Downloads 153