Search results for: water distribution networks
13287 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 5513286 Water Management of Polish Agriculture and Adaptation to Climate Change
Authors: Dorota M. Michalak
Abstract:
The agricultural sector, due to the growing demand for food and over-exploitation of the natural environment, contributes to the deepening of climate change, on the one hand, and on the other hand, shrinking freshwater resources, as a negative effect of climate change, threaten the food security of each country. Therefore, adaptation measures to climate change should take into account effective water management and seek solutions ensuring food production at an unchanged or higher level, while not burdening the environment and not contributing to the worsening of the negative consequences of climate change. The problems of Poland's water management result not only from relatively small, natural water resources but to a large extent on the low efficiency of their use. Appropriate agricultural practices and state solutions in this field can contribute to achieving significant benefits in terms of economical water management in agriculture, providing a greater amount of water that could also be used for other purposes, including for purposes related to environmental protection. The aim of the article is to determine the level of use of water resources in Polish agriculture and the advancement of measures aimed at adapting Polish agriculture in the field of water management to climate change. The study provides knowledge about Polish legal regulations and water management tools, the shaping of water policy of Polish agriculture against the background of EU countries and other sources of energy, and measures supporting Polish agricultural holdings in the effective management of water resources run by state budget institutions. In order to achieve the above-mentioned goals, the author used research tools such as the analysis of existing sources and a survey conducted among five groups of entities, i.e. agricultural advisory centers and departments, agricultural, rural and environmental protection departments, regional water management boards, provincial agricultural chambers and restructuring and modernization of agriculture. The main conclusion of the analyses carried out is the low use of water in Polish agriculture in relation to other EU countries, other sources of intake in Poland, as well as irrigation. The analysis allows us to observe another problem, which is the lack of reporting and data collection, which is extremely important from the point of view of the effectiveness of adaptation measures to climate change. The results obtained from the survey indicate a very low level of support for government institutions in the implementation of adaptation measures to climate change and the water management of Polish farms. Some of the basic problems of the adaptation policy to change climate with regard to water management in Polish agriculture include a lack of knowledge regarding climate change, the possibilities of adapting, the available tools or ways to rationalize the use of water resources. It also refers to the lack of ordering procedures and the separation of responsibility with a proper territorial unit, non-functioning channels of information flow and practically low effects.Keywords: water management, adaptation policy, agriculture, climate change
Procedia PDF Downloads 14213285 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps
Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany
Abstract:
In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.Keywords: groundwater quality, self-organizing maps, drinking water, irrigation water
Procedia PDF Downloads 25813284 Effects of Temperature and Mechanical Abrasion on Microplastics
Authors: N. Singh, G. K. Darbha
Abstract:
Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering
Procedia PDF Downloads 17413283 Analysis of a Discrete-time Geo/G/1 Queue Integrated with (s, Q) Inventory Policy at a Service Facility
Authors: Akash Verma, Sujit Kumar Samanta
Abstract:
This study examines a discrete-time Geo/G/1 queueing-inventory system attached with (s, Q) inventory policy. Assume that the customers follow the Bernoulli process on arrival. Each customer demands a single item with arbitrarily distributed service time. The inventory is replenished by an outside supplier, and the lead time for the replenishment is determined by a geometric distribution. There is a single server and infinite waiting space in this facility. Demands must wait in the specified waiting area during a stock-out period. The customers are served on a first-come-first-served basis. With the help of the embedded Markov chain technique, we determine the joint probability distributions of the number of customers in the system and the number of items in stock at the post-departure epoch using the Matrix Analytic approach. We relate the system length distribution at post-departure and outside observer's epochs to determine the joint probability distribution at the outside observer's epoch. We use probability distributions at random epochs to determine the waiting time distribution. We obtain the performance measures to construct the cost function. The optimum values of the order quantity and reordering point are found numerically for the variety of model parameters.Keywords: discrete-time queueing inventory model, matrix analytic method, waiting-time analysis, cost optimization
Procedia PDF Downloads 4613282 Moisture Absorption Analysis of LLDPE-NR Nanocomposite for HV Insulation
Authors: M. S. Kamarulzaman, N. A. Muhamad, N. A. M. Jamail, M. A. M. Piah, N. F. Kasri
Abstract:
Insulation for high voltage application that has been service for a very long time is subjected to several types of degradation. The degradation can lead to premature breakdown and definitely will spent highly cost to replace the cable. Thus, there are many research on nano composite material get serious attention attention due to their abilities to enhance electrical performance by addition of nano filler. In this paper, water absorption of Low Linear Density Polyethyelene (LLDPE) with different amount of nano filler added is studied. This study is necessary to be conducted since most of electrical apparatus such as cable insulation are dominant used especially in high voltage application. The cable insulation are continuously exposed in uncontrolled environment may suffer degradation process. Three type of nano fillers, was used in this study are: Silicon dioxide (SiO2), Titanium dioxide (TiO2) and Monmorillonite (MMT). The percentage absorption of water was measured by weighted using high precision scales for absorption process up to 92 days. Experimental result demonstrate that SiO2 absorb less water than other filler while, the MMT has hydrophilic properties which it absorbs more water compare to another sample.Keywords: nano composite, nano filler, water absorption, hydrophilic properties
Procedia PDF Downloads 35713281 An Evaluation Method of Accelerated Storage Life Test for Typical Mechanical and Electronic Products
Authors: Jinyong Yao, Hongzhi Li, Chao Du, Jiao Li
Abstract:
Reliability of long-term storage products is related to the availability of the whole system, and the evaluation of storage life is of great necessity. These products are usually highly reliable and little failure information can be collected. In this paper, an analytical method based on data from accelerated storage life test is proposed to evaluate the reliability index of the long-term storage products. Firstly, singularities are eliminated by data normalization and residual analysis. Secondly, with the pre-processed data, the degradation path model is built to obtain the pseudo life values. Then by life distribution hypothesis, we can get the estimator of parameters in high stress levels and verify failure mechanisms consistency. Finally, the life distribution under the normal stress level is extrapolated via the acceleration model and evaluation of the true average life available. An application example with the camera stabilization device is provided to illustrate the methodology we proposed.Keywords: accelerated storage life test, failure mechanisms consistency, life distribution, reliability
Procedia PDF Downloads 38813280 Assessing the Channel Design of the Eco-Friendly ‘Falaj’ Water System in Meeting the Optimal Water Demand: A Case Study of Falaj Al-Khatmain, Sultanate of Oman
Authors: Omer Al-Kaabi, Ahmed Nasr, Abdullah Al-Ghafri, Mohammed Abdelfattah
Abstract:
The Falaj system, derived from natural water sources, is a man-made canal system designed to supply communities of farmers with water for domestic and agricultural purposes. For thousands of years, Falaj has served communities by harnessing the force of gravity; it persists as a vital water management system in numerous regions across the Sultanate of Oman. Remarkably, predates the establishment of many fundamental hydraulic principles used today. Al-Khatmain Falaj, with its accessibility and historical significance spanning over 2000 years, was chosen as the focal point of this study. The research aimed to investigate the efficiency of Al-Khatmain Falaj in meeting specific water demands. The HEC-RAS model was utilized to visualize water flow dynamics within the Falaj channels, accompanied by graphical representations of pertinent variables. The application of HEC-RAS helped to measure different water flow scenarios within the channel, enabling a clear comparison with the demand area catchment. The cultivated land of Al-Khatmain is 723,124 m² and consists of 16,873 palm trees representing 91% of the total area and the remaining 9% is mixed types of trees counted 3,920 trees. The study revealed a total demand of 8,244 m³ is required to irrigate the cultivated land. Through rigorous analysis, the study has proven that the Falaj system in Al-Khatmain operates with high efficiency, as the average annual water supply is 9676.8 m3/day. Additionally, the channel designed at 0.6m width x 0.3m height efficiently holds the optimal water supply, with an average flow depth of 0.21m. Also, the system includes an overflow drainage channel to mitigate floods and prevent crop damage based on seasonal requirements. This research holds promise for examining diverse hydrological conditions and devising effective strategies to manage scenarios of both high and low flow rates.Keywords: Al-Khatmain, sustainability, Falaj, HEC-RAS, water management system
Procedia PDF Downloads 4713279 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: social network, link prediction, granular computing, type-2 fuzzy sets
Procedia PDF Downloads 32713278 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 12413277 Polysaccharides as Pour Point Depressants
Authors: Ali M. EL-Soll
Abstract:
Physical properties of Sarir waxy crude oil was investigated, pour-point was determined using ASTM D-79 procedure, paraffin content and carbon number distribution of the paraffin was determined using gas liquid Chromatography(GLC), polymeric additives were prepared and their structures were confirmed using IR spectrophotometer. The molecular weight and molecular weigh distribution of these additives were determined by gel permeation chromatography (GPC). the performance of the synthesized additives as pour-point depressants was evaluated, for the mentioned crude oil.Keywords: sarir, waxy, crude, pour point, depressants
Procedia PDF Downloads 45313276 Gas Separation by Water-Swollen Membrane
Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák
Abstract:
The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane
Procedia PDF Downloads 34213275 Assessment of the Contribution of Geographic Information System Technology in Non Revenue Water: Case Study Dar Es Salaam Water and Sewerage Authority Kawe - Mzimuni Street
Authors: Victor Pesco Kassa
Abstract:
This research deals with the assessment of the contribution of GIS Technology in NRW. This research was conducted at Dar, Kawe Mzimuni Street. The data collection was obtained from existing source which is DAWASA HQ. The interpretation of the data was processed by using ArcGIS software. The data collected from the existing source reveals a good coverage of DAWASA’s water network at Mzimuni Street. Most of residents are connected to the DAWASA’s customer service. Also the collected data revealed that by using GIS DAWASA’s customer Geodatabase has been improved. Through GIS we can prepare customer location map purposely for site surveying also this map will be able to show different type of customer that are connected to DAWASA’s water service. This is a perfect contribution of the GIS Technology to address and manage the problem of NRW in DAWASA. Finally, the study recommends that the same study should be conducted in other DAWASA’s zones such as Temeke, Boko and Bagamoyo not only at Kawe Mzimuni Street. Through this study it is observed that ArcGIS software can offer powerful tools for managing and processing information geographically and in water and sanitation authorities such as DAWASA.Keywords: DAWASA, NRW, Esri, EURA, ArcGIS
Procedia PDF Downloads 8313274 Implementation of ADETRAN Language Using Message Passing Interface
Authors: Akiyoshi Wakatani
Abstract:
This paper describes the Message Passing Interface (MPI) implementation of ADETRAN language, and its evaluation on SX-ACE supercomputers. ADETRAN language includes pdo statement that specifies the data distribution and parallel computations and pass statement that specifies the redistribution of arrays. Two methods for implementation of pass statement are discussed and the performance evaluation using Splitting-Up CG method is presented. The effectiveness of the parallelization is evaluated and the advantage of one dimensional distribution is empirically confirmed by using the results of experiments.Keywords: iterative methods, array redistribution, translator, distributed memory
Procedia PDF Downloads 27213273 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis
Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov
Abstract:
The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).Keywords: alumina distribution, aluminum electrolyzer, cryolie-alumina electrolyte, side ledge
Procedia PDF Downloads 27613272 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production
Authors: N. Laosiripojana, P. Tepamatr
Abstract:
The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.Keywords: bismuth, platinum, water gas shift, ceria
Procedia PDF Downloads 34913271 Synchronous Reference Frame and Instantaneous P-Q Theory Based Control of Unified Power Quality Conditioner for Power Quality Improvement of Distribution System
Authors: Ambachew Simreteab Gebremedhn
Abstract:
Context: The paper explores the use of synchronous reference frame theory (SRFT) and instantaneous reactive power theory (IRPT) based control of Unified Power Quality Conditioner (UPQC) for improving power quality in distribution systems. Research Aim: To investigate the performance of different control configurations of UPQC using SRFT and IRPT for mitigating power quality issues in distribution systems. Methodology: The study compares three control techniques (SRFT-IRPT, SRFT-SRFT, IRPT-IRPT) implemented in series and shunt active filters of UPQC. Data is collected under various control algorithms to analyze UPQC performance. Findings: Results indicate the effectiveness of SRFT and IRPT based control techniques in addressing power quality problems such as voltage sags, swells, unbalance, harmonics, and current harmonics in distribution systems. Theoretical Importance: The study provides insights into the application of SRFT and IRPT in improving power quality, specifically in mitigating unbalanced voltage sags, where conventional methods fall short. Data Collection: Data is collected under various control algorithms using simulation in MATLAB Simulink and real-time operation executed with experimental results obtained using RT-LAB. Analysis Procedures: Performance analysis of UPQC under different control algorithms is conducted to evaluate the effectiveness of SRFT and IRPT based control techniques in mitigating power quality issues. Questions Addressed: How do SRFT and IRPT based control techniques compare in improving power quality in distribution systems? What is the impact of using different control configurations on the performance of UPQC? Conclusion: The study demonstrates the efficacy of SRFT and IRPT based control of UPQC in mitigating power quality issues in distribution systems, highlighting their potential for enhancing voltage and current quality.Keywords: power quality, UPQC, shunt active filter, series active filter, non-linear load, RT-LAB, MATLAB
Procedia PDF Downloads 1413270 Molluscicidal Effect of Cassia occidentalis and Physalis angulata Leaf Extract in the Elimination of Water Snail
Authors: Haruna Karamba, Nafisa Muhammad Danyaro
Abstract:
The study describe the action of natural latex (extract) of two sub-aquatic macrophytes plants i.e., Cassia occidentalis and Physalis angulata which were tested against two water snail species; Bulinus globusus and Lymnaea natalensis, the intermediate host of Bilharziasis (chistosomiasis) in the tropical countries. Bilherziasis is a disease prevalent and endermic to tropical Africa, seriously undermining health status of Nigerian youth. The easiest way to eradicate the disease is to eliminate the secondary host of the pathogen, chistosoma species. Therefore we carried out a research to investigate the molluscicidal effect of the leaf extract of C. occidentalis and P. angulata on mortality rate of B. globusus and L. natalensis water snails using pond water in the laboratory of science laboratory department of Kano State Polytechnic, Nigeria. One hundred and fifty juveniles’ snails were collected from Jakara Dam in the Northeastern part of Kano, Nigeria. The snails were put inside a plastic container and transported immediately to the laboratory where they were transferred into reservoir tank containing pond water and kept for 48 hours to get acclimatized with laboratory environment. Twelve water bathes 2/3 filled with pond water were prepared and kept in the laboratory. Leaf extract of the plants were obtained by blending and homogenizing the leaf tissue from which the extract were obtained and prepared in 10, 20, 30, 40 and 50 ppm, in addition to 0 ppm, which served as control. Ten snails were placed in each of the twelve water bathes. Six water bathes for the species of C. accidentalis extract and other six for P. angulata. The treatment combinations were maintained for 2 days after which the number of living snails present in each water bathes were counted and subsequently at 2 days intervals. The result indicated that extracts from both plants were lethal to the snails as concentration of the extract increases particularly mortality rate was highest at 40 and 50 ppm. Conclusively the toxicity of the extracts from these plants proven lethal to snails and hence can be used as molluscicides for cheap and easy method of eliminating water snails and therefore reducing the incidence of Bilharziasis.Keywords: schistosomiasis, bilharziasis, Bulinus globusus, Lymnea natalensis, Physalis angulata, Cassia occidentalis, Kano
Procedia PDF Downloads 35713269 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farming as Web of Things to Cloud Interface Using Platform as a Service
Authors: Sumaya Iqbal, Aijaz Ahmad Reshi
Abstract:
The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made the resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular Representational State Transfer protocol (REST) was extended for the specific requirements of the application. Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway
Procedia PDF Downloads 12413268 The Connection Between the International Law and the Legal Consultation on the Social Media
Authors: Amir Farouk Ahmed Ali Hussin
Abstract:
Social media, such as Facebook, LinkedIn and Ex-Twitter have experienced exponential growth and a remarkable adoption rate in recent years. They give fantastic means of online social interactions and communications with family, friends, and colleagues from around the corner or across the globe, and they have become an important part of daily digital interactions for more than one and a half billion users around the world. The personal information sharing practices that social network providers encourage have led to their success as innovative social interaction platforms. Moreover, these practices have outcome in concerns with respect to privacy and security from different stakeholders. Guiding these privacy and security concerns in social networks is a must for these networks to be sustainable. Real security and privacy tools may not be enough to address existing concerns. Some points should be followed to protect users from the existing risks. In this research, we have checked the various privacy and security issues and concerns pertaining to social media. However, we have classified these privacy and security issues and presented a thorough discussion of the effects of these issues and concerns on the future of the social networks. In addition, we have presented a set of points as precaution measures that users can consider to address these issues.Keywords: international legal, consultation mix, legal research, small and medium-sized enterprises, strategic International law, strategy alignment, house of laws, deployment, production strategy, legal strategy, business strategy
Procedia PDF Downloads 6513267 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration
Authors: Zohreh Fallah, Edward P. L. Roberts
Abstract:
One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water
Procedia PDF Downloads 58213266 Evaluation of Washing Performance of Household Wastewater Purified by Advanced Oxidation Process
Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır
Abstract:
Stressing the importance of water conservation, emphasizing the need for efficient management of household water, and underlining the significance of alternative solutions are important. In this context, advanced solutions based on technologies such as the advanced oxidation process have emerged as promising methods for treating household wastewater. Evaluating household water usage holds critical importance for the sustainability of water resources. Researchers and experts are examining various technological approaches to effectively treat and reclaim water for reuse. In this framework, the advanced oxidation process has proven to be an effective method for the removal of various organic and inorganic pollutants in the treatment of household wastewater. In this study, performance will be evaluated by comparing it with the reference case. This international criterion simulates the washing of home textile products, determining various performance parameters. The specially designed stain strips, including sebum, carbon black, blood, cocoa, and red wine, used in experiments, represent various household stains. These stain types were carefully selected to represent challenging stain scenarios, ensuring a realistic assessment of washing performance. Experiments conducted under different temperatures and program conditions successfully demonstrate the practical applicability of the advanced oxidation process for treating household wastewater. It is important to note that both adherence to standards and the use of real-life stain types contribute to the broad applicability of the findings. In conclusion, this study strongly supports the effectiveness of treating household wastewater with the advanced oxidation process in terms of washing performance under both standard and practical application conditions. The study underlines the importance of alternative solutions for sustainable water resource management and highlights the potential of the advanced oxidation process in the treatment of household water, contributing significantly to optimizing water usage and developing sustainable water management solutions.Keywords: advanced oxidation process, household water usage, household appliance waste water, modelling, water reuse
Procedia PDF Downloads 6613265 Groundwater Quality in the Rhiss-Nekor Plain, Morocco: Impacts of Human Activities
Authors: Ali Ait Boughrous, Said Benyoussef, Hossain El Ouarghi, Moulay Abdelazize Aboulhassan, Samah Aitbnichou, Said Benguamra
Abstract:
The Rhiss-Nekor aquifer represents a primary water source for the central Rif region. Many operating structures were built for irrigation and drinking water supply. Because of the vulnerability of this aquifer, a thorough knowledge of the environment is needed to evaluate and protect resources. This work aims at the quality assessment of the water table of the plain Ghiss-Nekor and determination of pollution sources in order to establish a map of the web. The plain-Rhiss Nekor, with an area of 100 km2, is located on the Mediterranean coast of Morocco. It has a particular geological structure resulting from the opening of a graben at the end of the Tertiary, which is filled by the accumulation of hundreds of meters of sediment, generating considerable heterogeneity in deposits. This heterogeneity gives various hydrodynamic properties within the aquifer of the plain. The analysis of the water quality of twenty water points, well distributed over the plain, showed high natural salinity linked to the geological nature of the area. This salinity increases in the littoral area by the seawater intrusion phenomenon. This is accentuated by overexploitation of the ground water due to the growing demand. Some wells, located inland, are characterized by organic pollution caused by wastewater seepage from septic tanks and lost wells widespread in the region.Keywords: anthropogenic factors, groundwater quality, marine intrusion, Rhiss-Nekor aquifer
Procedia PDF Downloads 14313264 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities
Authors: Paul Barasa Wanyama, Tom Wanyama
Abstract:
Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities
Procedia PDF Downloads 2413263 Characterization of Brewery Wastewater Composition
Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux
Abstract:
With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition
Procedia PDF Downloads 45613262 Dynamic Model for Forecasting Rainfall Induced Landslides
Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan
Abstract:
Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.Keywords: factor of safety, geographic information system, hydrological model, slope stability
Procedia PDF Downloads 42413261 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks
Authors: Mazarine Roquet, Pierre Dewallef
Abstract:
The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating
Procedia PDF Downloads 8513260 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.
Authors: Najih Amina
Abstract:
Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.
Procedia PDF Downloads 40913259 Potential of Water Purification of Turbid Surface Water Sources in Remote Arid and Semi-Arid Rural Areas of Rajasthan by Moringa Oleifera (Drumstick) Tree Seeds
Authors: Pomila Sharma
Abstract:
Rajasthan is among regions with greatest climate sensitivity and lowest adaptive capabilities. In many parts of the Rajasthan surface water which can be highly turbid and contaminated with fecal coliform bacteria is used for drinking purposes. The majority rely almost exclusively upon traditional sources of highly turbid and untreated pathogenic surface water for their domestic water needs. In many parts of rural areas of Rajasthan, it is still difficult to obtain clean water, especially remote habitations with no groundwater due to quality issues or depletion and limited feasibility to connect with surface water schemes due to low density of population in these areas to justify large infrastructure investment. The most viable sources are rain water harvesting, community managed open wells, private wells, ponds and small-scale irrigation reservoirs have often been the main traditional sources of rural drinking water. Turbidity is conventionally removed by treating the water with expensive chemicals. This study has to investigate the use of crushed seeds from the tree Moringa oleifera (drumstick) as a natural alternative to conventional coagulant chemicals. The use of Moringa oleifera seed powder can produce potable water of higher quality than the original source. Moringa oleifera a native species of northern India, the tree is now grown extensively throughout the tropics and found in many countries of Africa, Asia & South America. The seeds of tree contains significant quantities of low molecular weight, water soluble proteins which carries the positive charge when the crushed seeds are added to water. This protein binds in raw water with negatively charged turbid water with bacteria, clay, algae, etc. Under proper mixing, these particles make flocks, which may be left to settle by gravity or be removed by filtration. Using Moringa oleifera as a replacement coagulation in such surface sources of arid and semi-arid areas can meet the need for water purification in remote places of Rajasthan state of India. The present study accesses to find out laboratory based investigation of the effect of seeds of Moringa tree on its coagulation effectiveness (purification) using turbid water samples of surface source of the Rajasthan state. In this study, moringa seed powder showed that filtering with seed powder may diminish water pollution and bacterial counts. Results showed Moringa oleifera seeds coagulate 90-95% of turbidity and color efficiently leading to an aesthetically clear supernatant & reduced about 85-90% of bacterial load reduction in samples.Keywords: bacterial load, coagulant, turbidity, water purification
Procedia PDF Downloads 14613258 Modelling Volatility of Cryptocurrencies: Evidence from GARCH Family of Models with Skewed Error Innovation Distributions
Authors: Timothy Kayode Samson, Adedoyin Isola Lawal
Abstract:
The past five years have shown a sharp increase in public interest in the crypto market, with its market capitalization growing from $100 billion in June 2017 to $2158.42 billion on April 5, 2022. Despite the outrageous nature of the volatility of cryptocurrencies, the use of skewed error innovation distributions in modelling the volatility behaviour of these digital currencies has not been given much research attention. Hence, this study models the volatility of 5 largest cryptocurrencies by market capitalization (Bitcoin, Ethereum, Tether, Binance coin, and USD Coin) using four variants of GARCH models (GJR-GARCH, sGARCH, EGARCH, and APARCH) estimated using three skewed error innovation distributions (skewed normal, skewed student- t and skewed generalized error innovation distributions). Daily closing prices of these currencies were obtained from Yahoo Finance website. Finding reveals that the Binance coin reported higher mean returns compared to other digital currencies, while the skewness indicates that the Binance coin, Tether, and USD coin increased more than they decreased in values within the period of study. For both Bitcoin and Ethereum, negative skewness was obtained, meaning that within the period of study, the returns of these currencies decreased more than they increased in value. Returns from these cryptocurrencies were found to be stationary but not normality distributed with evidence of the ARCH effect. The skewness parameters in all best forecasting models were all significant (p<.05), justifying of use of skewed error innovation distributions with a fatter tail than normal, Student-t, and generalized error innovation distributions. For Binance coin, EGARCH-sstd outperformed other volatility models, while for Bitcoin, Ethereum, Tether, and USD coin, the best forecasting models were EGARCH-sstd, APARCH-sstd, EGARCH-sged, and GJR-GARCH-sstd, respectively. This suggests the superiority of skewed Student t- distribution and skewed generalized error distribution over the skewed normal distribution.Keywords: skewed generalized error distribution, skewed normal distribution, skewed student t- distribution, APARCH, EGARCH, sGARCH, GJR-GARCH
Procedia PDF Downloads 122