Search results for: unsupervised training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4060

Search results for: unsupervised training

1870 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 365
1869 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 150
1868 Academia as Creator of Emerging, Innovative Communities of Practice and Learning

Authors: Francisco Julio Batle Lorente

Abstract:

The present paper aims at presenting a new category of role for academia: proactive creator/promoter of communities of practice in emerging areas of innovation. It is based in research among practitioners in three different areas: social entrepreneurship, alumni engaged in entrepreneurship and innovation, and digital nomads. The concept of CoP is related to an intentionally created space to share experiences and collectively reflect on the cases arising from practice. Such an endeavour is not contemplated in the literature on academic roles in an explicit way. The goal of the paper is providing a framework for this function and throw some light on the perception and priorities of members of emerging communities (78 alumni, 154 social entrepreneurs, and 231 digital nomads) regarding community, learning, engagement, and networking, areas in which the university can help and, by doing so, contributing to signal the emerging area and creating new opportunities for the academia. The research methodology was based in Survey research. It is a specific type of field study that involves the collection of data from a sample of elements drawn from a well-defined population through the use of a questionnaire. It was considered that survey research might be valuable to the present project and help outline the utility of various study designs and future projects with the emerging communities that are the object of the investigation. Open questions were used for different topics, as well as critical incident technique. It was used a standard technique for survey sampling and questionnaire design. Finally, it was defined a procedure for pretesting questionnaires and for data collection. The questionnaire was channelled by means of google forms. The results indicate that the members of emerging, innovative CoPs and learning such the ones that were selected for this investigation lack cohesion, inspiration, networking, opportunities for creation of social capital, opportunities for collaboration beyond their existing and close network. The opportunity that arises for the academia from proactively helping articulate CoP (and Communities of learning) are related to key elements of any CoP/ CoL: community construction approaches, technological infrastructure, benefits, participation issues and urgent challenges, trust, networking, technical ability/training/development and collaboration. Beyond training, other three areas (networking, collaboration and urgent challenges) were the ones in which the contribution of universities to the communities were considered more interesting and workable to practitioners. The analysis of the responses for the open questions related to perception of the universities offer options for terra incognita to be explored for universities (signalling new areas, establishing broader collaborations with research, government, media and corporations, attracting investment). Based on the findings from this research, there is some evidence that CoPs can offer a formal and informal method of professional and interprofessional development for member of any emerging and innovative community and can decrease social and professional isolation. The opportunity that it offers to academia can increase the entrepreneurial and engaged university identity. It also moves to academia into a realm of civic confrontation of present and future challenges in a more proactive way.

Keywords: social innovation, new roles of academia, community of learning, community of practice

Procedia PDF Downloads 83
1867 The Results of the Archaeological Excavations at the Site of Qurh in Al Ula Region

Authors: Ahmad Al Aboudi

Abstract:

The Department of Archaeology at King Saud University conduct a long Term excavations since 2004 at the archaeological site of (Qurh) in Al-Ula area. The history of the site goes back to the eighth century AD. The main aim of the excavations is the training of the students on the archaeological field work associated with the scientific skills of exploring, surveying, classifying, documentations and other necessary in the field archaeology. During the 12th Season of Excavations, an area of 20 × 40 m2 of the site was excavated. The depth of the excavating the site was reached to 2-3 m. Many of the architectural features of a residential area in the northern part of the site were excavated this season. Circular walls made of mud-brick and a brick column drums and tiles made of clay were revealed this season. Additionally, lots of findings such as Gemstones, jars, ceramic plates, metal, glass, and fabric, as well as some jewelers and coins were discovered. This paper will deal with the main results of this field project including the architectural features and phenomena and their interpretations, the classification of excavated material culture remains and stratigraphy.

Keywords: Islamic architecture, Islamic art, excavations, early Islamic city

Procedia PDF Downloads 274
1866 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition

Procedia PDF Downloads 484
1865 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system

Procedia PDF Downloads 369
1864 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 274
1863 Reimagining Writing as a Healing Art: A Case Study on Emotional Intelligence

Authors: Shawnrece Campbell

Abstract:

Emotional intelligence as an essential job skill is growing in popularity among human resource professionals and hiring managers. Companies value those who have high emotional intelligence because of their personal competences (self-awareness, self-regulation, motivation) and social competences (empathy, social skills). In implementing any training system to teach emotional intelligence, the best methodologies for acquiring and/or improving these competences should be taken into consideration. This study focuses on how students perceived the art of writing as a tool for self-improvement. During this session, participants will engage in a brief activity designed to help students develop emotional intelligence. As a part of the discussion, participants will learn the results of a junior-level literary seminar conducted to better understand students’ thoughts and views about the effectiveness of writing as a tool for emotional healing. An analysis of qualitative textual data is presented. The outcomes indicated that students found using writing as a tool for emotional intelligence development as highly effective. The findings also revealed that students have positive perceptions of using writing as a self-healing art that leads to increased emotional intelligence and believe that writing courses of this nature enhance students’ appreciation of the value of the liberal arts.

Keywords: emotional intelligence quotient, healing, soft skills, writing

Procedia PDF Downloads 205
1862 Revisiting the Donning and Doffing Procedure: Ensuring a Coordinated Practice

Authors: Deanna Ruano-Meas, Laura Shenkman

Abstract:

Variances are seen in the way healthcare personnel (HCP) don and doff PPE risking contamination to self and others. By standardizing practice, variances in technique decrease, and so does the risk of contamination. To implement this change, the Model for Improvement will be used. A system change will be developed that will outline the role of the organizational leader’s support of HCP in the proper donning and doffing of PPE. Interventions will include environmental surveys to assess the safety and work situation ensuring a permissible environment, plan audits to confirm consistency, and the assessment of PPE wear for standardization. The change will also include an educational plan that will involve instruction of the current guidelines recommended by the Centers for Disease Control and Prevention (CDC) to all pertinent HCP, and the incorporation of PPE education in yearly educational training. The goal is a standardized practice and a reduced risk of contamination through education and organizational support. Personal protective equipment has had recent attention with the coming of the SARS-CoV-2. The realization that proper technique is important to decreasing contamination of pathogens has led to the revising of current processes.

Keywords: donning and doffing, HAI, infection control, PPE

Procedia PDF Downloads 205
1861 Entrepreneurial Education in the European Union

Authors: Marko Kolaković, Mladen Turuk

Abstract:

Entrepreneurship is a valuable discipline important for the competitiveness of the European economy. The European Union's economy is constantly changing, and there is an increased demand for special knowledge and skills to help actors cope in a turbulent business environment. By promoting entrepreneurship in education, the citizens of the European Union are encouraged to be enterprising, innovative, and creative in designing solutions to perceived commercial and social problems in the form of offered products and services created as a result of the entrepreneurial process. The European Union has developed a series of guidelines to encourage entrepreneurship in education and training, and it supports entrepreneurship itself through various activities such as Erasmus + and other programs. A number of tools have been developed to support the development of entrepreneurial spirit among the citizens of the European Union. Special emphasis is placed on the methods of developing creativity, critical thinking, and the development of digital competencies. The aim of this paper is to investigate the initiatives of the European Union in the field of entrepreneurship education and to analyze the concept of entrepreneurship education in selected EU member states. Also, an overview of the desired learning outcomes acquired as a result of the successfully completed entrepreneurship education process will be provided.

Keywords: entrepreneurship, entrepreneurial education, EU, croatia

Procedia PDF Downloads 123
1860 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 184
1859 Reformed Curricula for the Religious Educational Institutions in Pakistan and the Muslim World

Authors: Hafiz Khubaib Ur Rehman Awan

Abstract:

Education used to play a central role in the formation and transfiguration of society since early times, owing in part to the centrality of scripture and its study in the human circles. According to the Islamic purpose of education, its pivotal contribution in the society is to produce a balanced growth of the entire persona of an individual through training the spirit, intellect, rational self, feelings, and bodily senses such that faith is infused into the whole personality. The purpose of this study is to attempt the exploration of the development of the Islamic religious curriculum in the Islamic world with an emphasis on Pakistan because this homeland came into existence under the name of Islam. This study persists of necessary historical background on the curricular reform of religious education in Pakistan and their impact on it and the suburban countries. However, the mainstay of this paper bases on reform in the religious education curriculum and the challenges faced by Pakistan and the Islamic world. Some suggestions are positioned at the end for areas of Islamic religious education and the improvement of Islamic curricular reform, especially in Pakistan and generally in Muslim countries.

Keywords: curricula, religious educational institutions, Pakistan, Muslim world, educational, religious , curricula

Procedia PDF Downloads 135
1858 A Positive Neuroscience Perspective for Child Development and Special Education

Authors: Amedeo D'Angiulli, Kylie Schibli

Abstract:

Traditionally, children’s brain development research has emphasized the limitative aspects of disability and impairment, electing as an explanatory model the classical clinical notions of brain lesion or functional deficit. In contrast, Positive Educational Neuroscience (PEN) is a new approach that emphasizes strengths and human flourishing related to the brain by exploring how learning practices have the potential to enhance neurocognitive flexibility through neuroplastic overcompensation. This mini-review provides an overview of PEN and shows how it links to the concept of neurocognitive flexibility. We provide examples of how the present concept of neurocognitive flexibility can be applied to special education by exploring examples of neuroplasticity in the learning domain, including: (1) learning to draw in congenitally totally blind children, and (2) music training in children from disadvantaged neighborhoods. PEN encourages educators to focus on children’s strengths by recognizing the brain’s capacity for positive change and to incorporate activities that support children’s individual development.

Keywords: neurocognitive development, positive educational neuroscience, sociocultural approach, special education

Procedia PDF Downloads 241
1857 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 349
1856 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 57
1855 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 80
1854 Predictors of School Safety Awareness among Malaysian Primary School Teachers

Authors: Ssekamanya, Mastura Badzis, Khamsiah Ismail, Dayang Shuzaidah Bt Abduludin

Abstract:

With rising incidents of school violence worldwide, educators and researchers are trying to understand and find ways to enhance the safety of children at school. The purpose of this study was to investigate the extent to which the demographic variables of gender, age, length of service, position, academic qualification, and school location predicted teachers’ awareness about school safety practices in Malaysian primary schools. A stratified random sample of 380 teachers was selected in the central Malaysian states of Kuala Lumpur and Selangor. Multiple regression analysis revealed that none of the factors was a good predictor of awareness about school safety training, delivery methods of school safety information, and available school safety programs. Awareness about school safety activities was significantly predicted by school location (whether the school was located in a rural or urban area). While these results may reflect a general lack of awareness about school safety among primary school teachers in the selected locations, a national study needs to be conducted for the whole country.

Keywords: school safety awareness, predictors of school safety, multiple regression analysis, malaysian primary schools

Procedia PDF Downloads 468
1853 Occupational Safety in Construction Projects

Authors: Heba Elbibas, Esra Gnijeewa, Zedan Hatush

Abstract:

This paper presents research on occupational safety in construction projects, where the importance of safety management in projects was studied, including the preparation of a safety plan and program for each project and the identification of the responsibilities of each party to the contract. The research consists of two parts: 1-Field visits: which were field visits to three construction projects, including building projects, road projects, and tower installation. The safety level of these projects was evaluated through a checklist that includes the most important safety elements in terms of the application of these items in the projects. 2-Preparation of a questionnaire: which included supervisors and engineers and aimed to determine the level of awareness and commitment of different project categories to safety standards. The results showed the following: i) There is a moderate occupational safety policy. ii) The preparation and storage of maintenance reports are not fully complied with. iii) There is a moderate level of training on occupational safety for project workers. iv) The company does not impose penalties on safety violators permanently. v) There is a moderate policy for equipment and machinery safety. vi) Self-injuries occur due to (fatigue, lack of attention, deliberate error, and emotional factors), with a rate of 82.4%.

Keywords: management, safety, occupational safety, classification

Procedia PDF Downloads 106
1852 Stress and Distress among Physician Trainees: A Wellbeing Workshop

Authors: Carmen Axisa, Louise Nash, Patrick Kelly, Simon Willcock

Abstract:

Introduction: Doctors experience high levels of burnout, stress and psychiatric morbidity. This can affect the health of the doctor and impact patient care. Study Aims: To evaluate the effectiveness of a workshop intervention to promote wellbeing for Australian Physician Trainees. Methods: A workshop was developed in consultation with specialist clinicians to promote health and wellbeing for physician trainees. The workshop objectives were to improve participant understanding about factors affecting their health and wellbeing, to outline strategies on how to improve health and wellbeing and to encourage participants to apply these strategies in their own lives. There was a focus on building resilience and developing long term healthy behaviours as part of the physician trainee daily lifestyle. Trainees had the opportunity to learn practical strategies for stress management, gain insight into their behaviour and take steps to improve their health and wellbeing. The workshop also identified resources and support systems available to trainees. The workshop duration was four and a half hours including a thirty- minute meal break where a catered meal was provided for the trainees. Workshop evaluations were conducted at the end of the workshop. Sixty-seven physician trainees from Adult Medicine and Paediatric training programs in Sydney Australia were randomised into intervention and control groups. The intervention group attended a workshop facilitated by specialist clinicians and the control group did not. Baseline and post intervention measurements were taken for both groups to evaluate the impact and effectiveness of the workshop. Forty-six participants completed all three measurements (69%). Demographic, personal and self-reported data regarding work/life patterns was collected. Outcome measures include Depression Anxiety Stress Scale (DASS), Professional Quality of Life Scale (ProQOL) and Alcohol Use Disorders Identification Test (AUDIT). Results: The workshop was well received by the physician trainees and workshop evaluations showed that the majority of trainees strongly agree or agree that the training was relevant to their needs (96%) and met their expectations (92%). All trainees strongly agree or agree that they would recommend the workshop to their medical colleagues. In comparison to the control group we observed a reduction in alcohol use, depression and burnout but an increase in stress, anxiety and secondary traumatic stress in the intervention group, at the primary endpoint measured at 6 months. However, none of these differences reached statistical significance (p > 0.05). Discussion: Although the study did not reach statistical significance, the workshop may be beneficial to physician trainees. Trainees had the opportunity to share ideas, gain insight into their own behaviour, learn practical strategies for stress management and discuss approach to work, life and self-care. The workshop discussions enabled trainees to share their experiences in a supported environment where they learned that other trainees experienced stress and burnout and they were not alone in needing to acquire successful coping mechanisms and stress management strategies. Conclusion: These findings suggest that physician trainees are a vulnerable group who may benefit from initiatives that promote wellbeing and from a more supportive work environment.

Keywords: doctors' health, physician burnout, physician resilience, wellbeing workshop

Procedia PDF Downloads 191
1851 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation

Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita

Abstract:

In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during changes in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain equal power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.

Keywords: droop control, droop characteristic, grid-connected inverter, microgrid, power control

Procedia PDF Downloads 886
1850 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 150
1849 Green Human Recourse Environment Performance, Circular Performance Environment Reputation and Economics Performance: The Moderating Role of CEO Ethical Leadership

Authors: Muhammad Umair Ahmed, Aftab Shoukat

Abstract:

Today the global economy has become one of the key strategies in dealing with environmental issues. To allow for a round economy, organizations have begun to work to improve their sustainability management. The contribution of green resource management to the transformation of the global economy has not been investigated. The purpose of the study was to evaluate the effects of green labor management on the global economy, environmental and economic performance, and the organisation's environmental dignity. We strongly evaluate the different roles of the various processes of green personnel management (i.e., green recruitment, training, and engagement green, as well as green performance management and reward) in organizational operations. We are also investigating the leadership role of CEO Ethical. Our outcome will have a positive impact on the performance of the organization. Green Human Resource Management contributes to the evolution of a roundabout economy without the influence of different external factors such as market demand and commitment. Finally, the results of our research will provide a few aspects for future research, both academic and human.

Keywords: sustainability, green human resource management, circular economy, human capital

Procedia PDF Downloads 90
1848 The Importance of Value Added Services Provided by Science and Technology Parks to Boost Entrepreneurship Ecosystem in Turkey

Authors: Faruk Inaltekin, Imran Gurakan

Abstract:

This paper will aim to discuss the importance of value-added services provided by Science and Technology Parks for entrepreneurship development in Turkey. Entrepreneurship is vital subject for all countries. It has not only fostered economic development but also promoted innovation at local and international levels. To foster high tech entrepreneurship ecosystem, Technopark (Science and Technology Park/STP) concept was initiated with the establishment of Silicon Valley in the 1950s. The success and rise of Silicon Valley led to the spread of technopark activities. Developed economies have been setting up projects to plan and build STPs since the 1960s and 1970s. To promote the establishment of STPs, necessary legislations were made by Ministry of Science, Industry, and Technology in 2001, Technology Development Zones Law (No. 4691) and it has been revised in 2016 to provide more supports. STPs’ basic aim is to provide customers high-quality office spaces with various 'value added services' such as business development, network connections, cooperation programs, investor/customers meetings and internationalization services. For this aim, STPs should help startups deal with difficulties in the early stages and to support mature companies’ export activities in the foreign market. STPs should support the production, commercialization and more significantly internationalization of technology-intensive business and foster growth of companies. Nowadays within this value-added services, internationalization is very popular subject in the world. Most of STPs design clusters or accelerator programs in order to support their companies in the foreign market penetration. If startups are not ready for international competition, STPs should help them to get ready for foreign market with training and mentoring sessions. These training and mentoring sessions should take a goal based approach to working with companies. Each company has different needs and goals. Therefore the definition of ‘success' varies for each company. For this reason, it is very important to create customized value added services to meet the needs of startups. After local supports, STPs should also be able to support their startups in foreign market. Organizing well defined international accelerator program plays an important role in this mission. Turkey is strategically placed between key markets in Europe, Russia, Central Asia and the Middle East. Its population is young and well educated. So both government agencies and the private sectors endeavor to foster and encourage entrepreneurship ecosystem with many supports. In sum, the task of technoparks with these and similar value added services is very important for developing entrepreneurship ecosystem. The priorities of all value added services are to identify the commercialization and growth obstacles faced by entrepreneurs and get rid of them with the one-to-one customized services. Also, in order to have a healthy startup ecosystem and create sustainable entrepreneurship, stakeholders (technoparks, incubators, accelerators, investors, universities, governmental organizations etc.) should fulfill their roles and/or duties and collaborate with each other. STPs play an important role as bridge for these stakeholders & entrepreneurs. STPs always should benchmark and renew services offered to how to help the start-ups to survive, develop their business and benefit from these stakeholders.

Keywords: accelerator, cluster, entrepreneurship, startup, technopark, value added services

Procedia PDF Downloads 143
1847 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 324
1846 Strategies and Problems of Teachers in Using Mother Tongue-Based Multilingual Education

Authors: Ezayra Dubria, Leonora Yambao

Abstract:

Mother Tongue–Based Multilingual Education (MTB-MLE) is a salient part of the recent reform in the country’s Education system which is the implementation of the K to 12 Basic Education Program. Its importance is highlighted by the passing of Republic Act 10523, otherwise known as the ‘Enhanced Basic Education Act of 2013’. However, teachers, especially new teachers encounter problems in using mother tongue as medium of instruction. Fortunately, teachers are able to create strategies which address these problems. Specifically, this paper gathered the viewpoints of teachers in using mother tongue and analyzed the different problems and strategies used. The problems encountered by teachers are lack of instructional materials written in mother tongue, especially books, lack of vocabulary, lack of teacher training, and influences of social media to learners. The strategies which address these problems are translation of literary pieces and other instructional materials, vocabulary enrichment through the use of word-of-the-day and picture-word association, remedial class, storytelling, differentiated instruction, explicit teaching, individual and group activities, and utilization of multilingual teaching.

Keywords: mother tongue-based instruction, multilingualism, problems, strategies

Procedia PDF Downloads 295
1845 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
1844 A Practical Guide to Collaborative Writing Assignments as a Pedagogical Technique in Higher Education Implemented in an Economics Course

Authors: Bahia Braktia, Belkacem Braktia

Abstract:

Collaborative writing is now an established pedagogical technique in higher education. Since most educators do not have training in the design, execution, and evaluation of writing assignments, implementing such tasks has proven difficult. This paper firstly proposes a framework for a collaborative writing assignment based on a literature study and adopting a writing-to-learn concept. It then describes the research undertaken and shows how this framework is implemented in an economics course, at an Algerian university, with undergraduate students. Finally, using a mixed methods design, it examines the students’ perceptions of what they have learned about collaborative writing. Preliminary results show that group assignments will always be a challenge, but with careful planning and structure, a collaborative writing assignment can be used effectively to help students improve their analytical and critical thinking abilities, research and group work skills, as well as writing proficiency. Students have a positive experience of working in a team and identified a wide variety of different team skills that they have learned through the process.

Keywords: collaborative writing, research assignment, students’ perception, survey

Procedia PDF Downloads 205
1843 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
1842 Comparisons of Drop Jump and Countermovement Jump Performance for Male Basketball Players with and without Low-Dye Taping Application

Authors: Chung Yan Natalia Yeung, Man Kit Indy Ho, Kin Yu Stan Chan, Ho Pui Kipper Lam, Man Wah Genie Tong, Tze Chung Jim Luk

Abstract:

Excessive foot pronation is a well-known risk factor of knee and foot injuries such as patellofemoral pain, patellar and Achilles tendinopathy, and plantar fasciitis. Low-Dye taping (LDT) application is not uncommon for basketball players to control excessive foot pronation for pain control and injury prevention. The primary potential benefits of using LDT include providing additional supports to medial longitudinal arch and restricting the excessive midfoot and subtalar motion in weight-bearing activities such as running and landing. Meanwhile, restrictions provided by the rigid tape may also potentially limit functional joint movements and sports performance. Coaches and athletes need to weigh the potential benefits and harmful effects before making a decision if applying LDT technique is worthwhile or not. However, the influence of using LDT on basketball-related performance such as explosive and reactive strength is not well understood. Therefore, the purpose of this study was to investigate the change of drop jump (DJ) and countermovement jump (CMJ) performance before and after LDT application for collegiate male basketball players. In this within-subject crossover study, 12 healthy male basketball players (age: 21.7 ± 2.5 years) with at least 3-year regular basketball training experience were recruited. Navicular drop (ND) test was adopted as the screening and only those with excessive pronation (ND ≥ 10mm) were included. Participants with recent lower limb injury history were excluded. Recruited subjects were required to perform both ND, DJ (on a platform of 40cm height) and CMJ (without arms swing) tests in series during taped and non-taped conditions in the counterbalanced order. Reactive strength index (RSI) was calculated by using the flight time divided by the ground contact time measured. For DJ and CMJ tests, the best of three trials was used for analysis. The difference between taped and non-taped conditions for each test was further calculated through standardized effect ± 90% confidence intervals (CI) with clinical magnitude-based inference (MBI). Paired samples T-test showed significant decrease in ND (-4.68 ± 1.44mm; 95% CI: -3.77, -5.60; p < 0.05) while MBI demonstrated most likely beneficial and large effect (standardize effect: -1.59 ± 0.27) in LDT condition. For DJ test, significant increase in both flight time (25.25 ± 29.96ms; 95% CI: 6.22, 44.28; p < 0.05) and RSI (0.22 ± 0.22; 95% CI: 0.08, 0.36; p < 0.05) were observed. In taped condition, MBI showed very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.49) in flight time, possibly beneficial and small effect (standardized effect: -0.26 ± 0.29) in ground contact time and very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.42) in RSI. No significant difference in CMJ was observed (95% CI: -2.73, 2.08; p > 0.05). For basketball players with pes planus, applying LDT could substantially support the foot by elevating the navicular height and potentially provide acute beneficial effects in reactive strength performance. Meanwhile, no significant harmful effect on CMJ was observed. Basketball players may consider applying LDT before the game or training to enhance the reactive strength performance. However since the observed effects in this study could not generalize to other players without excessive foot pronation, further studies on players with normal foot arch or navicular height are recommended.

Keywords: flight time, pes planus, pronated foot, reactive strength index

Procedia PDF Downloads 155
1841 Analyzing the Readiness of Resuscitation Team during Cardiac Arrest

Authors: J. Byimana, I. A. Muhire, J. E. Nzabahimana, A. Nyombayire

Abstract:

Introduction: A successful cardiopulmonary resuscitation during a sudden cardiac arrest can be delayed by different components including new hospital setting, lack of adequate training, lack of pre-established resuscitation team and ineffective communication and lead to an unexpected outcome which is death. The main objective of the study was to assess the readiness of resuscitation teams during cardiac arrest and the organizational approaches that would best support their functioning in a new hospital facility, and to detect any factor that may have contributed to responses. This study analyses the readiness of Resuscitation Team (RT) during cardiac arrest. —Material and methods: A prospective Analytic design was carried out at a newly established United Nations level 2 hospital facility, on four RTM (resuscitation team member). A semi structured questionnaire was used to collect data. —Results: This study highlights indicate that the response time during cardiac arrest simulation meet both American heart association (AHA) and European resuscitation council guidelines. The study offers useful evidence about the impact of a new facility on RTM performance and provides an exposure of staff to emergency events within the Work setting.

Keywords: cardiac arrest, code blue, simulation, resuscitation team member

Procedia PDF Downloads 221