Search results for: standard 2-wire capacitor circuit system
129 Host Preference, Impact of Host Transfer and Insecticide Susceptibility among Aphis gossypii Group (Order: Hemiptera) in Jamaica
Authors: Desireina Delancy, Tannice Hall, Eric Garraway, Dwight Robinson
Abstract:
Aphis gossypii, as a pest, directly damages its host plant by extracting phloem sap (sucking) and indirectly damages it by the transmission of viruses, ultimately affecting the yield of the host. Due to its polyphagous nature, this species affects a wide range of host plants, some of which may serve as a reservoir for colonisation of important crops. In Jamaica, there have been outbreaks of viral plant pathogens that were transmitted by Aphis gossypii. Three such examples are Citrus tristeza virus, the Watermelon mosaic virus, and Papaya ringspot virus. Aphis gossypii also heavily colonized economically significant host plants, including pepper, eggplant, watermelon, cucumber, and hibiscus. To facilitate integrated pest management, it is imperative to understand the biology of the aphid and its host preference. Preliminary work in Jamaica has indicated differences in biology and host preference, as well as host variety within the species. However, specific details of fecundity, colony growth, host preference, distribution, and insecticide resistance of Aphis gossypii were unknown to the best of our knowledge. The aim was to investigate the following in relation to Aphis gossypii: influence of the host plant on colonization, life span, fecundity, population size, and morphology; the impact of host transfer on fecundity and population size as a measure of host preference and host transfer success and susceptibility to four commonly used insecticides. Fecundity and colony size were documented daily from aphids acclimatized on Capsicum chinense Jacquin 1776, Cucumis sativus Linnaeus 1630, Gossypium hirsutum Linnaeus 1751 and Abelmoschus esculentus (L.) Moench 1794 for three generations. The same measures were used after third instar aphids were transferred among the hosts as a measure of suitability and success. Mortality, and fecundity of survivors, were determined after aphids were exposed to varying concentrations of Actara®, Diazinon™, Karate Zeon®, and Pegasus®. Host preference results indicated that, over a 24-day period, Aphis gossypii reached its largest colony size on G. hirsutum (x̄ 381.80), with January – February being the most fecund period. Host transfer experiments were all significantly different, with the most significant occurring between transfers from C. chinense to C. sativus (p < 0.05). Colony sizes were found to increase significantly every 5 days, which has implications for regimes implemented to monitor and evaluate plots. Insecticides ranked on lethality are Karate Zeon®> Actara®> Pegasus® > Diazinon™. The highest LC50 values were obtained for aphids on G. hirsutum and C. chinense was with Pegasus® and for those on C. sativus with Diazinon™. Survivors of insecticide treatments had colony sizes on average that were 98 % less than untreated aphids. Cotton was preferred both in the field and in the glasshouse. It is on cotton the aphids settled first, had the highest fecundity, and the lowest mortality. Cotton can serve as reservoir for (re)populating other cotton or different host species based on migration due to overcrowding, heavy showers, high wind, or ant attendance. Host transfer success between all three hosts is highly probable within an intercropping system. Survivors of insecticide treatments can successfully repopulate host plants.Keywords: Aphis gossypii, host-plant preference, colonization sequence, host transfers, insecticide susceptibility
Procedia PDF Downloads 98128 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers
Authors: Margarita Dufresne
Abstract:
This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel
Procedia PDF Downloads 72127 Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India
Authors: Rajkumar Ghosh
Abstract:
The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region.Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust
Procedia PDF Downloads 103126 Gene Expression Meta-Analysis of Potential Shared and Unique Pathways Between Autoimmune Diseases Under anti-TNFα Therapy
Authors: Charalabos Antonatos, Mariza Panoutsopoulou, Georgios K. Georgakilas, Evangelos Evangelou, Yiannis Vasilopoulos
Abstract:
The extended tissue damage and severe clinical outcomes of autoimmune diseases, accompanied by the high annual costs to the overall health care system, highlight the need for an efficient therapy. Increasing knowledge over the pathophysiology of specific chronic inflammatory diseases, namely Psoriasis (PsO), Inflammatory Bowel Diseases (IBD) consisting of Crohn’s disease (CD) and Ulcerative colitis (UC), and Rheumatoid Arthritis (RA), has provided insights into the underlying mechanisms that lead to the maintenance of the inflammation, such as Tumor Necrosis Factor alpha (TNF-α). Hence, the anti-TNFα biological agents pose as an ideal therapeutic approach. Despite the efficacy of anti-TNFα agents, several clinical trials have shown that 20-40% of patients do not respond to treatment. Nowadays, high-throughput technologies have been recruited in order to elucidate the complex interactions in multifactorial phenotypes, with the most ubiquitous ones referring to transcriptome quantification analyses. In this context, a random effects meta-analysis of available gene expression cDNA microarray datasets was performed between responders and non-responders to anti-TNFα therapy in patients with IBD, PsO, and RA. Publicly available datasets were systematically searched from inception to 10th of November 2020 and selected for further analysis if they assessed the response to anti-TNFα therapy with clinical score indexes from inflamed biopsies. Specifically, 4 IBD (79 responders/72 non-responders), 3 PsO (40 responders/11 non-responders) and 2 RA (16 responders/6 non-responders) datasetswere selected. After the separate pre-processing of each dataset, 4 separate meta-analyses were conducted; three disease-specific and a single combined meta-analysis on the disease-specific results. The MetaVolcano R package (v.1.8.0) was utilized for a random-effects meta-analysis through theRestricted Maximum Likelihood (RELM) method. The top 1% of the most consistently perturbed genes in the included datasets was highlighted through the TopConfects approach while maintaining a 5% False Discovery Rate (FDR). Genes were considered as Differentialy Expressed (DEGs) as those with P ≤ 0.05, |log2(FC)| ≥ log2(1.25) and perturbed in at least 75% of the included datasets. Over-representation analysis was performed using Gene Ontology and Reactome Pathways for both up- and down-regulated genes in all 4 performed meta-analyses. Protein-Protein interaction networks were also incorporated in the subsequentanalyses with STRING v11.5 and Cytoscape v3.9. Disease-specific meta-analyses detected multiple distinct pro-inflammatory and immune-related down-regulated genes for each disease, such asNFKBIA, IL36, and IRAK1, respectively. Pathway analyses revealed unique and shared pathways between each disease, such as Neutrophil Degranulation and Signaling by Interleukins. The combined meta-analysis unveiled 436 DEGs, 86 out of which were up- and 350 down-regulated, confirming the aforementioned shared pathways and genes, as well as uncovering genes that participate in anti-inflammatory pathways, namely IL-10 signaling. The identification of key biological pathways and regulatory elements is imperative for the accurate prediction of the patient’s response to biological drugs. Meta-analysis of such gene expression data could aid the challenging approach to unravel the complex interactions implicated in the response to anti-TNFα therapy in patients with PsO, IBD, and RA, as well as distinguish gene clusters and pathways that are altered through this heterogeneous phenotype.Keywords: anti-TNFα, autoimmune, meta-analysis, microarrays
Procedia PDF Downloads 183125 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers
Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison
Abstract:
Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing
Procedia PDF Downloads 128124 Monte Carlo Risk Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gases, power plants
Procedia PDF Downloads 473123 A Comprehensive Approach to Create ‘Livable Streets’ in the Mixed Land Use of Urban Neighborhoods: A Case Study of Bangalore Street
Authors: K. C. Tanuja, Mamatha P. Raj
Abstract:
"People have always lived on streets. They have been the places where children first learned about the world, where neighbours met, the social centres of towns and cities, the rallying points for revolts, the scenes of repression. The street has always been the scene of this conflict, between living and access, between resident and traveller, between street life and the threat of death.” Livable Streets by Donald Appleyard. Urbanisation is happening rapidly all over the world. As population increasing in the urban settlements, its required to provide quality of life to all the inhabitants who live in. Urban design is a place making strategic planning. Urban design principles promote visualising any place environmentally, socially and economically viable. Urban design strategies include building mass, transit development, economic viability and sustenance and social aspects. Cities are wonderful inventions of diversity- People, things, activities, ideas and ideologies. Cities should be smarter and adjustable to present technology and intelligent system. Streets represent the community in terms of social and physical aspects. Streets are an urban form that responds to many issues and are central to urban life. Streets are for livability, safety, mobility, place of interest, economic opportunity, balancing the ecology and for mass transit. Urban streets are places where people walk, shop, meet and engage in different types of social and recreational activities which make urban community enjoyable. Streets knit the urban fabric of activities. Urban streets become livable with the introduction of social network enhancing the pedestrian character by providing good design features which in turn should achieve the minimal impact of motor vehicle use on pedestrians. Livable streets are the spatial definition to the public right of way on urban streets. Streets in India have traditionally been the public spaces where social life happened or created from ages. Streets constitute the urban public realm where people congregate, celebrate and interact. Streets are public places that can promote social interaction, active living and community identity. Streets as potential contributors to a better living environment, knitting together the urban fabric of people and places that make up a community. Livable streets or complete streets are making our streets as social places, roadways and sidewalks accessible, safe, efficient and useable for all people. The purpose of this paper is to understand the concept of livable street and parameters of livability on urban streets. Streets to be designed as the pedestrians are the main users and create spaces and furniture for social interaction which serves for the needs of the people of all ages and abilities. The problems of streets like congestion due to width of the street, traffic movement and adjacent land use and type of movement need to be redesigned and improve conditions defining the clear movement path for vehicles and pedestrians. Well-designed spatial qualities of street enhances the street environment, livability and then achieves quality of life to the pedestrians. A methodology been derived to arrive at the typologies in street design after analysis of existing situation and comparing with livable standards. It was Donald Appleyard‟s Livable Streets laid out the social effects on streets creating the social network to achieve Livable Streets.Keywords: livable streets, social interaction, pedestrian use, urban design
Procedia PDF Downloads 152122 Quality in Healthcare: An Autism-Friendly Hospital Emergency Waiting Room
Authors: Elena Bellini, Daniele Mugnaini, Michele Boschetto
Abstract:
People with an Autistic Spectrum Disorder and an Intellectual Disability who need to attend a Hospital Emergency Waiting Room frequently present high levels of discomfort and challenging behaviors due to stress-related hyperarousal, sensory sensitivity, novelty-anxiety, communication and self-regulation difficulties. Increased agitation and acting out also disturb the diagnostic and therapeutic processes, and the emergency room climate. Architectural design disciplines aimed at reducing distress in hospitals or creating autism-friendly environments are called for to find effective answers to this particular need. A growing number of researchers are considering the physical environment as an important point of intervention for people with autism. It has been shown that providing the right setting can help enhance confidence and self-esteem and can have a profound impact on their health and wellbeing. Environmental psychology has evaluated the perceived quality of care, looking at the design of hospital rooms, paths and circulation, waiting rooms, services and devices. Furthermore, many studies have investigated the influence of the hospital environment on patients, in terms of stress-reduction and therapeutic intervention’ speed, but also on health professionals and their work. Several services around the world are organizing autism-friendly hospital environments which involve the architecture and the specific staff training. In Italy, the association Spes contra spem has promoted and published, in 2013, the ‘Chart of disabled people in the hospital’. It stipulates that disabled people should have equal rights to accessible and high-quality care. There are a few Italian examples of therapeutic programmes for autistic people as the Dama project in Milan and the recent experience of Children and Autism Foundation in Pordenone. Careggi’s Emergency Waiting Room in Florence has been built to satisfy this challenge. This project of research comes from a collaboration between the technical staff of Careggi Hospital, the Center for autism PAMAPI and some architects expert in the sensory environment. The methodology of focus group involved architects, psychologists and professionals through a transdisciplinary research, centered on the links between the spatial characteristics and clinical state of people with ASD. The relationship between architectural space and quality of life is studied to pay maximum attention to users’ needs and to support the medical staff in their work by a specific program of training. The result of this research is a sum of criteria used to design the emergency waiting room, that will be illustrated. A protected room, with a clear space design, maximizes comprehension and predictability. The multisensory environment is thought to help sensory integration and relaxation. Visual communication through Ipad allows an anticipated understanding of medical procedures, and a specific technological system supports requests, choices and self-determination in order to fit sensory stimulation to personal preferences, especially for hypo and hypersensitive people. All these characteristics should ensure a better regulation of the arousal, less behavior problems, improving treatment accessibility, safety, and effectiveness. First results about patient-satisfaction levels will be presented.Keywords: accessibility of care, autism-friendly architecture, personalized therapeutic process, sensory environment
Procedia PDF Downloads 268121 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica
Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat
Abstract:
Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.Keywords: carmustine, silica, controlled, release
Procedia PDF Downloads 264120 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties
Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer
Abstract:
Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory
Procedia PDF Downloads 129119 Gis Based Flash Flood Runoff Simulation Model of Upper Teesta River Besin - Using Aster Dem and Meteorological Data
Authors: Abhisek Chakrabarty, Subhraprakash Mandal
Abstract:
Flash flood is one of the catastrophic natural hazards in the mountainous region of India. The recent flood in the Mandakini River in Kedarnath (14-17th June, 2013) is a classic example of flash floods that devastated Uttarakhand by killing thousands of people.The disaster was an integrated effect of high intensityrainfall, sudden breach of Chorabari Lake and very steep topography. Every year in Himalayan Region flash flood occur due to intense rainfall over a short period of time, cloud burst, glacial lake outburst and collapse of artificial check dam that cause high flow of river water. In Sikkim-Derjeeling Himalaya one of the probable flash flood occurrence zone is Teesta Watershed. The Teesta River is a right tributary of the Brahmaputra with draining mountain area of approximately 8600 Sq. km. It originates in the Pauhunri massif (7127 m). The total length of the mountain section of the river amounts to 182 km. The Teesta is characterized by a complex hydrological regime. The river is fed not only by precipitation, but also by melting glaciers and snow as well as groundwater. The present study describes an attempt to model surface runoff in upper Teesta basin, which is directly related to catastrophic flood events, by creating a system based on GIS technology. The main object was to construct a direct unit hydrograph for an excess rainfall by estimating the stream flow response at the outlet of a watershed. Specifically, the methodology was based on the creation of a spatial database in GIS environment and on data editing. Moreover, rainfall time-series data collected from Indian Meteorological Department and they were processed in order to calculate flow time and the runoff volume. Apart from the meteorological data, background data such as topography, drainage network, land cover and geological data were also collected. Clipping the watershed from the entire area and the streamline generation for Teesta watershed were done and cross-sectional profiles plotted across the river at various locations from Aster DEM data using the ERDAS IMAGINE 9.0 and Arc GIS 10.0 software. The analysis of different hydraulic model to detect flash flood probability ware done using HEC-RAS, Flow-2D, HEC-HMS Software, which were of great importance in order to achieve the final result. With an input rainfall intensity above 400 mm per day for three days the flood runoff simulation models shows outbursts of lakes and check dam individually or in combination with run-off causing severe damage to the downstream settlements. Model output shows that 313 Sq. km area were found to be most vulnerable to flash flood includes Melli, Jourthang, Chungthang, and Lachung and 655sq. km. as moderately vulnerable includes Rangpo,Yathang, Dambung,Bardang, Singtam, Teesta Bazarand Thangu Valley. The model was validated by inserting the rain fall data of a flood event took place in August 1968, and 78% of the actual area flooded reflected in the output of the model. Lastly preventive and curative measures were suggested to reduce the losses by probable flash flood event.Keywords: flash flood, GIS, runoff, simulation model, Teesta river basin
Procedia PDF Downloads 318118 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design
Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus
Abstract:
Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor
Procedia PDF Downloads 358117 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach
Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa
Abstract:
Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation
Procedia PDF Downloads 189116 Evaluation of Polymerisation Shrinkage of Randomly Oriented Micro-Sized Fibre Reinforced Dental Composites Using Fibre-Bragg Grating Sensors and Their Correlation with Degree of Conversion
Authors: Sonam Behl, Raju, Ginu Rajan, Paul Farrar, B. Gangadhara Prusty
Abstract:
Reinforcing dental composites with micro-sized fibres can significantly improve the physio-mechanical properties of dental composites. The short fibres can be oriented randomly within dental composites, thus providing quasi-isotropic reinforcing efficiency unlike unidirectional/bidirectional fibre reinforced composites enhancing anisotropic properties. Thus, short fibres reinforced dental composites are getting popular among practitioners. However, despite their popularity, resin-based dental composites are prone to failure on account of shrinkage during photo polymerisation. The shrinkage in the structure may lead to marginal gap formation, causing secondary caries, thus ultimately inducing failure of the restoration. The traditional methods to evaluate polymerisation shrinkage using strain gauges, density-based measurements, dilatometer, or bonded-disk focuses on average value of volumetric shrinkage. Moreover, the results obtained from traditional methods are sensitive to the specimen geometry. The present research aims to evaluate the real-time shrinkage strain at selected locations in the material with the help of optical fibre Bragg grating (FBG) sensors. Due to the miniature size (diameter 250 µm) of FBG sensors, they can be easily embedded into small samples of dental composites. Furthermore, an FBG array into the system can map the real-time shrinkage strain at different regions of the composite. The evaluation of real-time monitoring of shrinkage values may help to optimise the physio-mechanical properties of composites. Previously, FBG sensors have been able to rightfully measure polymerisation strains of anisotropic (unidirectional or bidirectional) reinforced dental composites. However, very limited study exists to establish the validity of FBG based sensors to evaluate volumetric shrinkage for randomly oriented fibres reinforced composites. The present study aims to fill this research gap and is focussed on establishing the usage of FBG based sensors for evaluating the shrinkage of dental composites reinforced with randomly oriented fibres. Three groups of specimens were prepared by mixing the resin (80% UDMA/20% TEGDMA) with 55% of silane treated BaAlSiO₂ particulate fillers or by adding 5% of micro-sized fibres of diameter 5 µm, and length 250/350 µm along with 50% of silane treated BaAlSiO₂ particulate fillers into the resin. For measurement of polymerisation shrinkage strain, an array of three fibre Bragg grating sensors was embedded at a depth of 1 mm into a circular Teflon mould of diameter 15 mm and depth 2 mm. The results obtained are compared with the traditional method for evaluation of the volumetric shrinkage using density-based measurements. Degree of conversion was measured using FTIR spectroscopy (Spotlight 400 FT-IR from PerkinElmer). It is expected that the average polymerisation shrinkage strain values for dental composites reinforced with micro-sized fibres can directly correlate with the measured degree of conversion values, implying that more C=C double bond conversion to C-C single bond values also leads to higher shrinkage strain within the composite. Moreover, it could be established the photonics approach could help assess the shrinkage at any point of interest in the material, suggesting that fibre-Bragg grating sensors are a suitable means for measuring real-time polymerisation shrinkage strain for randomly fibre reinforced dental composites as well.Keywords: dental composite, glass fibre, polymerisation shrinkage strain, fibre-Bragg grating sensors
Procedia PDF Downloads 155115 A Multi-Model Approach to Assess Atlantic Bonito (Sarda Sarda, Bloch 1793) in the Eastern Atlantic Ocean: A Case Study of the Senegalese Exclusive Economic Zone
Authors: Ousmane Sarr
Abstract:
The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.Keywords: multi-model approach, stock assessment, atlantic bonito, healthy stock, sustainable, SEEZ, temporary management measures
Procedia PDF Downloads 59114 Voices of Dissent: Case Study of a Digital Archive of Testimonies of Political Oppression
Authors: Andrea Scapolo, Zaya Rustamova, Arturo Matute Castro
Abstract:
The “Voices in Dissent” initiative aims at collecting and making available in a digital format, testimonies, letters, and other narratives produced by victims of political oppression from different geographical spaces across the Atlantic. By recovering silenced voices behind the official narratives, this open-access online database will provide indispensable tools for rewriting the history of authoritarian regimes from the margins as memory debates continue to provoke controversy among academic and popular transnational circles. In providing an extensive database of non-hegemonic discourses in a variety of political and social contexts, the project will complement the existing European and Latin-American studies, and invite further interdisciplinary and trans-national research. This digital resource will be available to academic communities and the general audience and will be organized geographically and chronologically. “Voices in Dissent” will offer a first comprehensive study of these personal accounts of persecution and repression against determined historical backgrounds and their impact on collective memory formation in contemporary societies. The digitalization of these texts will allow to run metadata analyses and adopt comparatist approaches for a broad range of research endeavors. Most of the testimonies included in our archive are testimonies of trauma: the trauma of exile, imprisonment, torture, humiliation, censorship. The research on trauma has now reached critical mass and offers a broad spectrum of critical perspectives. By putting together testimonies from different geographical and historical contexts, our project will provide readers and scholars with an extraordinary opportunity to investigate how culture shapes individual and collective memories and provides or denies resources to make sense and cope with the trauma. For scholars dealing with the epistemological and rhetorical analysis of testimonies, an online open-access archive will prove particularly beneficial to test theories on truth status and the formation of belief as well as to study the articulation of discourse. An important aspect of this project is also its pedagogical applications since it will contribute to the creation of Open Educational Resources (OER) to support students and educators worldwide. Through collaborations with our Library System, the archive will form part of the Digital Commons database. The texts collected in this online archive will be made available in the original languages as well as in English translation. They will be accompanied by a critical apparatus that will contextualize them historically by providing relevant background information and bibliographical references. All these materials can serve as a springboard for a broad variety of educational projects and classroom activities. They can also be used to design specific content courses or modules. In conclusion, the desirable outcomes of the “Voices in Dissent” project are: 1. the collections and digitalization of political dissent testimonies; 2. the building of a network of scholars, educators, and learners involved in the design, development, and sustainability of the digital archive; 3. the integration of the content of the archive in both research and teaching endeavors, such as publication of scholarly articles, design of new upper-level courses, and integration of the materials in existing courses.Keywords: digital archive, dissent, open educational resources, testimonies, transatlantic studies
Procedia PDF Downloads 106113 Harnessing the Benefits and Mitigating the Challenges of Neurosensitivity for Learners: A Mixed Methods Study
Authors: Kaaryn Cater
Abstract:
People vary in how they perceive, process, and react to internal, external, social, and emotional environmental factors; some are more sensitive than others. Compassionate people have a highly reactive nervous system and are more impacted by positive and negative environmental conditions (Differential Susceptibility). Further, some sensitive individuals are disproportionately able to benefit from positive and supportive environments without necessarily suffering negative impacts in less supportive environments (Vantage Sensitivity). Environmental sensitivity is underpinned by physiological, genetic, and personality/temperamental factors, and the phenotypic expression of high sensitivity is Sensory Processing Sensitivity. The hallmarks of Sensory Processing Sensitivity are deep cognitive processing, emotional reactivity, high levels of empathy, noticing environmental subtleties, a tendency to observe new and novel situations, and a propensity to become overwhelmed when over-stimulated. Several educational advantages associated with high sensitivity include creativity, enhanced memory, divergent thinking, giftedness, and metacognitive monitoring. High sensitivity can also lead to some educational challenges, particularly managing multiple conflicting demands and negotiating low sensory thresholds. A mixed methods study was undertaken. In the first quantitative study, participants completed the Perceived Success in Study Survey (PSISS) and the Highly Sensitive Person Scale (HSPS-12). Inclusion criteria were current or previous postsecondary education experience. The survey was presented on social media, and snowball recruitment was employed (n=365). The Excel spreadsheets were uploaded to the statistical package for the social sciences (SPSS)26, and descriptive statistics found normal distribution. T-tests and analysis of variance (ANOVA) calculations found no difference in the responses of demographic groups, and Principal Components Analysis and the posthoc Tukey calculations identified positive associations between high sensitivity and three of the five PSISS factors. Further ANOVA calculations found positive associations between the PSISS and two of the three sensitivity subscales. This study included a response field to register interest in further research. Respondents who scored in the 70th percentile on the HSPS-12 were invited to participate in a semi-structured interview. Thirteen interviews were conducted remotely (12 female). Reflexive inductive thematic analysis was employed to analyse data, and a descriptive approach was employed to present data reflective of participant experience. The results of this study found that compassionate students prioritize work-life balance; employ a range of practical metacognitive study and self-care strategies; value independent learning; connect with learning that is meaningful; and are bothered by aspects of the physical learning environment, including lighting, noise, and indoor environmental pollutants. There is a dearth of research investigating sensitivity in the educational context, and these studies highlight the need to promote widespread education sector awareness of environmental sensitivity, and the need to include sensitivity in sector and institutional diversity and inclusion initiatives.Keywords: differential susceptibility, highly sensitive person, learning, neurosensitivity, sensory processing sensitivity, vantage sensitivity
Procedia PDF Downloads 66112 Examining Three Psychosocial Factors of Tax Compliance in Self-Employed Individuals using the Mindspace Framework - Evidence from Australia and Pakistan
Authors: Amna Tariq Shah
Abstract:
Amid the pandemic, the contemporary landscape has experienced accelerated growth in small business activities and an expanding digital marketplace, further exacerbating the issue of non-compliance among self-employed individuals through aggressive tax planning and evasion. This research seeks to address these challenges by developing strategic tax policies that promote voluntary compliance and improve taxpayer facilitation. The study employs the innovative MINDSPACE framework to examine three psychosocial factors—tax communication, tax literacy, and shaming—to optimize policy responses, address administrative shortcomings, and ensure adequate revenue collection for public goods and services. Preliminary findings suggest that incomprehensible communication from tax authorities drives individuals to seek alternative, potentially biased sources of tax information, thereby exacerbating non-compliance. Furthermore, the study reveals low tax literacy among Australian and Pakistani respondents, with many struggling to navigate complex tax processes and comprehend tax laws. Consequently, policy recommendations include simplifying tax return filing and enhancing pre-populated tax returns. In terms of shaming, the research indicates that Australians, being an individualistic society, may not respond well to shaming techniques due to privacy concerns. In contrast, Pakistanis, as a collectivistic society, may be more receptive to naming and shaming approaches. The study employs a mixed-method approach, utilizing interviews and surveys to analyze the issue in both jurisdictions. The use of mixed methods allows for a more comprehensive understanding of tax compliance behavior, combining the depth of qualitative insights with the generalizability of quantitative data, ultimately leading to more robust and well-informed policy recommendations. By examining evidence from opposite jurisdictions, namely a developed country (Australia) and a developing country (Pakistan), the study's applicability is enhanced, providing perspectives from two disparate contexts that offer insights from opposite ends of the economic, cultural, and social spectra. The non-comparative case study methodology offers valuable insights into human behavior, which can be applied to other jurisdictions as well. The application of the MINDSPACE framework in this research is particularly significant, as it introduces a novel approach to tax compliance behavior analysis. By integrating insights from behavioral economics, the framework enables a comprehensive understanding of the psychological and social factors influencing taxpayer decision-making, facilitating the development of targeted and effective policy interventions. This research carries substantial importance as it addresses critical challenges in tax compliance and administration, with far-reaching implications for revenue collection and the provision of public goods and services. By investigating the psychosocial factors that influence taxpayer behavior and utilizing the MINDSPACE framework, the study contributes invaluable insights to the field of tax policy. These insights can inform policymakers and tax administrators in developing more effective tax policies that enhance taxpayer facilitation, address administrative obstacles, promote a more equitable and efficient tax system, and foster voluntary compliance, ultimately strengthening the financial foundation of governments and communities.Keywords: individual tax compliance behavior, psychosocial factors, tax non-compliance, tax policy
Procedia PDF Downloads 77111 La0.80Ag0.15MnO3 Magnetic Nanoparticles for Self-Controlled Magnetic Fluid Hyperthermia
Authors: Marian Mihalik, Kornel Csach, Martin Kovalik, Matúš Mihalik, Martina Kubovčíková, Maria Zentková, Martin Vavra, Vladimír Girman, Jaroslav Briančin, Marija Perovic, Marija Boškovic, Magdalena Fitta, Robert Pelka
Abstract:
Current nanomaterials for use in biomedicine are based mainly on iron oxides and on present knowledge on magnetic nanostructures. Manganites can represent another material which can be used optionally. Manganites and their unique electronic properties have been extensively studied in the last decades not only due to fundamental interest but to possible applications of colossal magnetoresistance, magnetocaloric effect, and ferroelectric properties. It was found that the oxygen-reduction reaction on perovskite oxide is intimately connected with metal ion e.g., orbital occupation. The effect of oxygen deviation from the stoichiometric composition on crystal structure was studied very carefully by many authors on LaMnO₃. Depending on oxygen content, the crystal structure changes from orthorhombic one to rhombohedric for oxygen content 3.1. In the case of hole-doped manganites, the change from the orthorhombic crystal structure, which is typical for La1-xCaxMnO3 based manganites, to the rhombohedric crystal structure (La1-xMxMnO₃ where M = K, Ag, and Sr based materials) results in an enormous increase of the Curie temperature. In our paper, we study the effect of oxygen content on crystal structure, thermal, and magnetic properties (including magnetocaloric effect) of La1-xAgxMnO₃nano particle system. The content of oxygen in samples was tuned by heat treatment in different thermal regimes and in various environment (air, oxygen, argon). Water nanosuspensions based on La0.80Ag0.15MnO₃ magnetic particles with the Curie temperature of about 43oC were prepared by two different approaches. First, by using a laboratory circulation mill for milling of powder in the presence of sodium dodecyl sulphate (SDS) and subsequent centrifugation. Second nanosuspension was prepared using an agate bowl, etching in citric acid and HNO3, ultrasound homogeniser, centrifugation, and dextran 40 kDA or 15 kDA as surfactant. Electrostatic stabilisation obtained by the first approach did not offer long term kinetic and aggregation colloidal stability and was unable to compensate for attractive forces between particles under a magnetic field. By the second approach, we prepared suspension oversaturated by dextran 40 kDA for steric stabilisation, with evidence of the presence of superparamagnetic behaviour. Low concentration of nanoparticles and not ideal coverage of nanoparticles impacting the stability of ferrofluids was the disadvantage of this approach. Strong steric stabilisation was observable at alcaic conditions under pH = ~10. Application of dextran 15 kDA leads to relatively stable ferrofluid with pH around physiological conditions, but desegregation of powder by HNO₃ was not effective enough, and the average size of fragments was to large of about 150 nm, and we did not see any signature of superparamagnetic behaviour. The prepared ferrofluids were characterised by scanning and transition microscope method, thermogravimetry, magnetization, and AC susceptibility measurements. Specific Absorption Rate measurements were undertaken on powder as well on ferrofluids in order to estimate the potential application of La₀.₈₀Ag₀.₁₅MnO₃ magnetic particles based ferrofluid for hyperthermia. Our complex study contains an investigation of biocompatibility and potential biohazard of this material.Keywords: manganites, magnetic nanoparticles, oxygen content, magnetic phase transition, magnetocaloric effect, ferrofluid, hyperthermia
Procedia PDF Downloads 91110 Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1
Authors: Shagufta Jabeen, Faez J. Firdaus Abdullah, Zunita Zakaria, Nurulfiza M. Isa, Yung C. Tan, Wai Y. Yee, Abdul R. Omar
Abstract:
Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals.Keywords: comparative genomics, DNA sequencing, phage, phylogenomics
Procedia PDF Downloads 188109 Culture and Health Equity: Unpacking the Sociocultural Determinants of Eye Health for Indigenous Australian Diabetics
Authors: Aryati Yashadhana, Ted Fields Jnr., Wendy Fernando, Kelvin Brown, Godfrey Blitner, Francis Hayes, Ruby Stanley, Brian Donnelly, Bridgette Jerrard, Anthea Burnett, Anthony B. Zwi
Abstract:
Indigenous Australians experience some of the worst health outcomes globally, with life expectancy being significantly poorer than those of non-Indigenous Australians. This is largely attributed to preventable diseases such as diabetes (prevalence 39% in Indigenous Australian adults > 55 years), which is attributed to a raised risk of diabetic visual impairment and cataract among Indigenous adults. Our study aims to explore the interface between structural and sociocultural determinants and human agency, in order to understand how they impact (1) accessibility of eye health and chronic disease services and (2) the potential for Indigenous patients to achieve positive clinical eye health outcomes. We used Participatory Action Research methods, and aimed to privilege the voices of Indigenous people through community collaboration. Semi-structured interviews (n=82) and patient focus groups (n=8) were conducted by Indigenous Community-Based Researchers (CBRs) with diabetic Indigenous adults (> 40 years) in four remote communities in Australia. Interviews (n=25) and focus groups (n=4) with primary health care clinicians in each community were also conducted. Data were audio recorded, transcribed verbatim, and analysed thematically using grounded theory, comparative analysis and Nvivo 10. Preliminary analysis occurred in tandem with data collection to determine theoretical saturation. The principal investigator (AY) led analysis sessions with CBRs, fostering cultural and contextual appropriateness to interpreting responses, knowledge exchange and capacity building. Identified themes were conceptualised into three spheres of influence: structural (health services, government), sociocultural (Indigenous cultural values, distrust of the health system, ongoing effects of colonialism and dispossession) and individual (health beliefs/perceptions, patient phenomenology). Permeating these spheres of influence were three core determinants: economic disadvantage, health literacy/education, and cultural marginalisation. These core determinants affected accessibility of services, and the potential for patients to achieve positive clinical outcomes at every level of care (primary, secondary, tertiary). Our findings highlight the clinical realities of institutionalised and structural inequities, illustrated through the lived experiences of Indigenous patients and primary care clinicians in the four sampled communities. The complex determinants surrounding inequity in health for Indigenous Australians, are entrenched through a longstanding experience of cultural discrimination and ostracism. Secure and long term funding of Aboriginal Community Controlled Health Services will be valuable, but are insufficient to address issues of inequity. Rather, working collaboratively with communities to build trust, and identify needs and solutions at the grassroots level, while leveraging community voices to drive change at the systemic/policy level are recommended.Keywords: indigenous, Australia, culture, public health, eye health, diabetes, social determinants of health, sociology, anthropology, health equity, aboriginal and Torres strait islander, primary care
Procedia PDF Downloads 303108 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 82107 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan
Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad
Abstract:
Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules
Procedia PDF Downloads 107106 A Microwave Heating Model for Endothermic Reaction in the Cement Industry
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing
Procedia PDF Downloads 141105 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region
Authors: Eman Ghoneim
Abstract:
The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula
Procedia PDF Downloads 247104 Systems Strengthening for Sustainable Family Planning Service Provision in Uganda
Authors: D. Muyama, M. Luyiga, P. Buyungo, D. Chemonges, M. Namukwaya, L. Ssekabembe, B. Lukwago, D. Kyamagwa
Abstract:
Context: The study focuses on the sustainability of health interventions in Uganda, particularly in the private sector, beyond donor-funded project periods. The Population Services International (PSI) implemented the Women Health Project (WHP) to ensure continued access to quality family planning, cervical cancer screening, and post-abortion care services through private clinics. Research Aim: The aim of the study is to assess the continued access to quality family planning, cervical cancer screening, and post-abortion care services through the private sector after the closure or reduction in funding of the WHP. Methodology: PSI trained and mentored 83 clinics to establish functional systems in self-regulatory quality improvement, supply chain, referral, and demand creation. The clinics were also connected to the national reporting system and utilized Ministry of Health reporting tools. An assessment tool with six criteria was designed and used to evaluate the progress of the clinics. Clinics scoring 75% and above were considered independent and graduated from the program. Findings: Out of the 83 private clinics, 56 successfully met the graduation criteria and graduated from the program, while 25 lost interest and were gradually dropped. Two clinics failed to achieve the criteria due to leadership challenges. The 59 graduating clinics continued to provide high-quality family planning services, including IUD, implant, Depo-Provera, oral contraceptives, and post-abortion care. All graduating clinics were reassessed and found to still be capable of offering services, attributing their success to government stock availability and acquired skills through mentorships. The clinics expressed appreciation to PSI for the sustainable plan that allowed them to operate beyond the project period. Theoretical Importance: This study contributes to the understanding of sustainability planning and the importance of clinic owners' attitudes and buy-in for continued service provision. It emphasizes the implementation of sustainability plans through existing structures to leverage available resources and ensure continuity of care. Data Collection and Analysis Procedures: The study collected data through the assessment tool that evaluated the progress of clinics based on the established criteria. The tool was scored out of 100%, and clinics scoring above 75% were deemed independent. The findings were analyzed quantitatively to determine the success rate of clinics in meeting the graduation criteria. Questions Addressed: The study addresses the question of whether private clinics in Uganda can sustain the provision of family planning, cervical cancer screening, and post-abortion care services after the closure or reduction in funding of the WHP. Conclusion: The study concludes that the attitude and buy-in of clinic owners are essential for sustainability planning. Implementing sustainability plans through existing structures and leveraging available resources are crucial for the continuity of care after the end of a project or reduced funding. The findings highlight the importance of establishing sustainable plans to ensure continued access to essential health services beyond the project period. Contributions: This study contributes to the existing knowledge for programmers implementing or intending to implement donor-funded projects. It provides insights into designing sustainable plans that enable the independent operation of clinics even after the end of a project.Keywords: graduation, family planning, systems strengthening, sustainability
Procedia PDF Downloads 69103 Effect of Cerebellar High Frequency rTMS on the Balance of Multiple Sclerosis Patients with Ataxia
Authors: Shereen Ismail Fawaz, Shin-Ichi Izumi, Nouran Mohamed Salah, Heba G. Saber, Ibrahim Mohamed Roushdi
Abstract:
Background: Multiple sclerosis (MS) is a chronic, inflammatory, mainly demyelinating disease of the central nervous system, more common in young adults. Cerebellar involvement is one of the most disabling lesions in MS and is usually a sign of disease progression. It plays a major role in the planning, initiation, and organization of movement via its influence on the motor cortex and corticospinal outputs. Therefore, it contributes to controlling movement, motor adaptation, and motor learning, in addition to its vast connections with other major pathways controlling balance, such as the cerebellopropriospinal pathways and cerebellovestibular pathways. Hence, trying to stimulate the cerebellum by facilitatory protocols will add to our motor control and balance function. Non-invasive brain stimulation, both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), has recently emerged as effective neuromodulators to influence motor and nonmotor functions of the brain. Anodal tDCS has been shown to improve motor skill learning and motor performance beyond the training period. Similarly, rTMS, when used at high frequency (>5 Hz), has a facilitatory effect on the motor cortex. Objective: Our aim was to determine the effect of high-frequency rTMS over the cerebellum in improving balance and functional ambulation of multiple sclerosis patients with Ataxia. Patients and methods: This was a randomized single-blinded placebo-controlled prospective trial on 40 patients. The active group (N=20) received real rTMS sessions, and the control group (N=20) received Sham rTMS using a placebo program designed for this treatment. Both groups received 12 sessions of high-frequency rTMS over the cerebellum, followed by an intensive exercise training program. Sessions were given three times per week for four weeks. The active group protocol had a frequency of 10 Hz rTMS over the cerebellar vermis, work period 5S, number of trains 25, and intertrain interval 25s. The total number of pulses was 1250 pulses per session. The control group received Sham rTMS using a placebo program designed for this treatment. Both groups of patients received an intensive exercise program, which included generalized strengthening exercises, endurance and aerobic training, trunk abdominal exercises, generalized balance training exercises, and task-oriented training such as Boxing. As a primary outcome measure the Modified ICARS was used. Static Posturography was done with: Patients were tested both with open and closed eyes. Secondary outcome measures included the expanded Disability Status Scale (EDSS) and 8 Meter walk test (8MWT). Results: The active group showed significant improvements in all the functional scales, modified ICARS, EDSS, and 8-meter walk test, in addition to significant differences in static Posturography with open eyes, while the control group did not show such differences. Conclusion: Cerebellar high-frequency rTMS could be effective in the functional improvement of balance in MS patients with ataxia.Keywords: brain neuromodulation, high frequency rTMS, cerebellar stimulation, multiple sclerosis, balance rehabilitation
Procedia PDF Downloads 92102 Human Wildlife Conflict Outside Protected Areas of Nepal: Causes, Consequences and Mitigation Strategies
Authors: Kedar Baral
Abstract:
This study was carried out in Mustang, Kaski, Tanahun, Baitadi, and Jhapa districts of Nepal. The study explored the spatial and temporal pattern of HWC, socio economic factors associated with it, impacts of conflict on life / livelihood of people and survival of wildlife species, and impact of climate change and forest fire onHWC. Study also evaluated people’s attitude towards wildlife conservation and assessed relevant policies and programs. Questionnaire survey was carried out with the 250 respondents, and both socio-demographic and HWC related information werecollected. Secondary information were collected from Divisional Forest Offices and Annapurna Conservation Area Project.HWC events were grouped by season /months/sites (forest type, distances from forest, and settlement), and the coordinates of the events were exported to ArcGIS. Collected data were analyzed using descriptive statistics in Excel and R Program. A total of 1465 events were recorded in 5 districts during 2015 and 2019. Out of that, livestock killing, crop damage, human attack, and cattle shed damage events were 70 %, 12%, 11%, and 7%, respectively. Among 151 human attack cases, 23 people were killed, and 128 were injured. Elephant in Terai, common leopard and monkey in Middle Mountain, and snow leopard in high mountains were found as major problematic animals. Common leopard attacks were found more in the autumn, evening, and on human settlement area. Whereas elephant attacks were found higher in winter, day time, and on farmland. Poor people farmers were found highly victimized, and they were losing 26% of their income due to crop raiding and livestock depredation. On the other hand, people are killing many wildlife in revenge, and this number is increasing every year. Based on the people's perception, climate change is causing increased temperature and forest fire events and decreased water sources within the forest. Due to the scarcity of food and water within forests, wildlife are compelled to dwell at human settlement area, hence HWC events are increasing. Nevertheless, more than half of the respondents were found positive about conserving entire wildlife species. Forests outside PAs are under the community forestry (CF) system, which restored the forest, improved the habitat, and increased the wildlife.However, CF policies and programs were found to be more focused on forest management with least priority on wildlife conservation and HWC mitigation. Compensation / relief scheme of government for wildlife damage was found some how effective to manage HWC, but the lengthy process, being applicable to the damage of few wildlife species and highly increasing events made it necessary to revisit. Based on these facts, the study suggest to carry out awareness generation activities to the poor farmers, linking the property of people with the insurance scheme, conducting habitat management activities within CF, promoting the unpalatable crops, improvement of shed house of livestock, simplifying compensation scheme and establishing a fund at the district level and incorporating the wildlife conservation and HWCmitigation programs in CF. Finally, the study suggests to carry out rigorous researches to understand the impacts of current forest management practices on forest, biodiversity, wildlife, and HWC.Keywords: community forest, conflict mitigation, wildlife conservation, climate change
Procedia PDF Downloads 117101 Post COVID-19 Multi-System Inflammatory Syndrome Masquerading as an Acute Abdomen
Authors: Ali Baker, Russel Krawitz
Abstract:
This paper describes a rare occurrence where a potentially fatal complication of COVID-19 infection (MIS-A) was misdiagnosed as an acute abdomen. As most patients with this syndrome present with fever and gastrointestinal symptoms, they may inadvertently fall under the care of the surgical unit. However, unusual imaging findings and a poor response to anti-microbial therapy should prompt clinicians to suspect a non-surgical etiology. More than half of MIS-A patients require ICU admission and vasopressor support. Prompt referral to a physician is key, as the cornerstone of treatment is IVIG and corticosteroid therapy. A 32 year old woman presented with right sided abdominal pain and fevers. She had also contracted COVID-19 two months earlier. Abdominal examination revealed generalised right sided tenderness. The patient had raised inflammatory markers, but other blood tests were unremarkable. CT scan revealed extensive lymphadenopathy along the ileocolic chain. The patient proved to be a diagnostic dilemma. She was reviewed by several surgical consultants and discussed with several inpatient teams. Although IV antibiotics were commenced, the right sided abdominal pain, and fevers persisted. Pan-culture returned negative. A mild cholestatic derangement developed. On day 5, the patient underwent preparation for colonoscopy to assess for a potential intraluminal etiology. The following day, the patient developed sinus tachycardia and hypotension that was refractory to fluid resuscitation. That patient was transferred to ICU and required vasopressor support. Repeat CT showed peri-portal edema and a thickened gallbladder wall. On re-examination, the patient was Murphy’s sign positive. Biliary ultrasound was equivocal for cholecystitis. The patient was planned for diagnostic laparoscopy. The following morning, a marked rise in cardiac troponin was discovered, and a follow-up echocardiogram revealed moderate to severe global systolic dysfunction. The impression was post-COVID MIS with myocardial involvement. IVIG and Methylprednisolone infusions were commenced. The patient had a great response. Vasopressor support was weaned, and the patient was discharged from ICU. The patient continued to improve clinically with oral prednisolone, and was discharged on day 17. Although MIS following COVID-19 infection is well-described syndrome in children, only recently has it come to light that it can occur in adults. The exact incidence is unknown, but it is thought to be rare. A recent systematic review found only 221 cases of MIS-A, which could be included for analysis. Symptoms vary, but the most frequent include fever, gastrointestinal, and mucocutaneous. Many patients progress to multi-organ failure and require vasopressor support. 7% succumb to the illness. The pathophysiology of MIS is only partly understood. It shares similarities with Kawasaki disease, macrophage activation syndrome, and cytokine release syndrome. Importantly, by definition, the patient must have an absence of severe respiratory symptoms. It is thought to be due to a dysregulated immune response to the virus. Potential mechanisms include reduced levels of neutralising antibodies and autoreactive antibodies that promote inflammation. Further research into MIS-A is needed. Although rare, this potentially fatal syndrome should be considered in the unwell surgical patient who has recently contracted COVID-19 and poses a diagnostic dilemma.Keywords: acute-abdomen, MIS, COVID-19, ICU
Procedia PDF Downloads 125100 Silk Fibroin-PVP-Nanoparticles-Based Barrier Membranes for Tissue Regeneration
Authors: Ivone R. Oliveira, Isabela S. Gonçalves, Tiago M. B. Campos, Leandro J. Raniero, Luana M. R. Vasconcellos, João H. Lopes
Abstract:
Originally, the principles of guided tissue/bone regeneration (GTR/GBR) were followed to restore the architecture and functionality of the periodontal system. In essence, a biocompatible polymer-based occlusive membrane is used as a barrier to prevent migration of epithelial and connective tissue to the regenerating site. In this way, progenitor cells located in the remaining periodontal ligament can recolonize the root area and differentiate into new periodontal tissues, alveolar bone, and new connective attachment. The use of synthetic or collagen-derived membranes with or without calcium phosphate-based bone graft materials has been the treatment used. Ideally, these membranes need to exhibit sufficient initial mechanical strength to allow handling and implantation, withstand the various mechanical stresses suffered during surgery while maintaining their integrity, and support the process of bone tissue regeneration and repair by resisting cellular traction forces and wound contraction forces during tissue healing in vivo. Although different RTG/ROG products are available on the market, they have serious deficiencies in terms of mechanical strength. Aiming to improve the mechanical strength and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the natural polymer (silk fibroin - FS) and the synthetic polymer poly(vinyl pyrrolidone - PVP) with graphene nanoplates (NPG) and gold nanoparticles (AuNPs), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of high voltage spinning and/or solution blowing and with a high production rate, enabling development on an industrial scale. Silk fibroin uniquely solved many of the problems presented by collagen and was used in this work because it has unique combined merits, such as programmable biodegradability, biocompatibility and sustainable large-scale production. Graphene has attracted considerable attention in recent years as a potential biomaterial for mechanical reinforcement because of its unique physicochemical properties and was added to improve the mechanical properties of the membranes associated or not with the presence of AuNPs, which have shown great potential in regulating osteoblast activity. The preparation of FS from silkworm cocoons involved cleaning, degumming, dissolution in lithium bromide, dialysis, lyophilization and dissolution in hexafluoroisopropanol (HFIP) to prepare the solution for electrospinning, and crosslinking tests were performed in methanol. The NPGs were characterized and underwent treatment in nitric acid for functionalization to improve the adhesion of the nanoplates to the PVP fibers. PVP-NPG membranes were produced with 0.5, 1.0 and 1.5 wt% functionalized or not and evaluated by SEM/FEG, FTIR, mechanical strength and cell culture assays. Functionalized GNP particles showed stronger binding, remaining adhered to the fibers. Increasing the graphene content resulted in higher mechanical strength of the membrane and greater biocompatibility. The production of FS-PVP-NPG-AuNPs hybrid membranes was performed by electrospinning in separate syringes and simultaneously the FS solution and the solution containing PVP-NPG 1.5 wt% in the presence or absence of AuNPs. After cross-linking, they were characterized by SEM/FEG, FTIR and behavior in cell culture. The presence of NPG-AuNPs increased the viability and the presence of mineralization nodules.Keywords: barrier membranes, silk fibroin, nanoparticles, tissue regeneration.
Procedia PDF Downloads 15