Search results for: metal chacogenides
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2461

Search results for: metal chacogenides

301 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 294
300 Bioengineering of a Plant System to Sustainably Remove Heavy Metals and to Harvest Rare Earth Elements (REEs) from Industrial Wastes

Authors: Edmaritz Hernandez-Pagan, Kanjana Laosuntisuk, Alex Harris, Allison Haynes, David Buitrago, Michael Kudenov, Colleen Doherty

Abstract:

Rare Earth Elements (REEs) are critical metals for modern electronics, green technologies, and defense systems. However, due to their dispersed nature in the Earth’s crust, frequent co-occurrence with radioactive materials, and similar chemical properties, acquiring and purifying REEs is costly and environmentally damaging, restricting access to these metals. Plants could serve as resources for bioengineering REE mining systems. Although there is limited information on how REEs affect plants at a cellular and molecular level, plants with high REE tolerance and hyperaccumulation have been identified. This dissertation aims to develop a plant-based system for harvesting REEs from industrial waste material with a focus on Acid Mine Drainage (AMD), a toxic coal mining product. The objectives are 1) to develop a non-destructive, in vivo detection method for REE detection in Phytolacca plants (REE hyperaccumulator) plants utilizing fluorescence spectroscopy and with a primary focus on dysprosium, 2) to characterize the uptake of REE and Heavy Metals in Phytolacca americana and Phytolacca acinosa (REE hyperaccumulator) in AMD for potential implementation in the plant-based system, 3) to implement the REE detection method to identify REE-binding proteins and peptides for potential enhancement of uptake and selectivity for targeted REEs in the plants implemented in the plant-based system. The candidates are known REE-binding peptides or proteins, orthologs of known metal-binding proteins from REE hyperaccumulator plants, and novel proteins and peptides identified by comparative plant transcriptomics. Lanmodulin, a high-affinity REE-binding protein from methylotrophic bacteria, is used as a benchmark for the REE-protein binding fluorescence assays and expression in A. thaliana to test for changes in REE plant tolerance and uptake.

Keywords: phytomining, agromining, rare earth elements, pokeweed, phytolacca

Procedia PDF Downloads 15
299 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 181
298 Comparison of Zinc Amino Acid Complex and Zinc Sulfate in Diet for Asian Seabass (Lates calcarifer)

Authors: Kanokwan Sansuwan, Orapint Jintasataporn, Srinoy Chumkam

Abstract:

Asian seabass is one of the economically important fish of Thailand and other countries in the Southeast Asia. Zinc is an essential trace metal to fish and vital to various biological processes and function. It is required for normal growth and indispensable in the diet. Therefore, the artificial diets offered to intensively cultivated fish must possess the zinc content required by the animal metabolism for health maintenance and high weight gain rates. However, essential elements must also be in an available form to be utilized by the organism. Thus, this study was designed to evaluate the application of different zinc forms, including organic Zinc (zinc amino acid complex) and inorganic Zinc (zinc sulfate), as feed additives in diets for Asian seabass. Three groups with five replicates of fish (mean weight 22.54 ± 0.80 g) were given a basal diet either unsupplemented (control) or supplemented with 50 mg Zn kg−¹ sulfate (ZnSO₄) or Zinc Amino Acid Complex (ZnAA) respectively. Feeding regimen was initially set at 3% of body weight per day, and then the feed amount was adjusted weekly according to the actual feeding performance. The experiment was conducted for 10 weeks. Fish supplemented with ZnAA had the highest values in all studied growth indicators (weight gain, average daily growth and specific growth rate), followed by fish fed the diets with the ZnSO₄, and lowest in fish fed the diets with the control. Lysozyme and superoxide dismutase (SOD) activity of fish supplemented with ZnAA were significantly higher compared with all other groups (P < 0.05). Fish supplemented with ZnSO₄ exhibited significant increase in digestive enzyme activities (protease, pepsin and trypsin) compared with ZnAA and the control (P < 0.05). However, no significant differences were observed for RNA and protein in muscle (P > 0.05). The results of the present work suggest that ZnAA are a better source of trace elements for Asian seabass, based on growth performance and immunity indices examined in this study.

Keywords: Asian seabass, growth performance, zinc amino acid complex (ZnAA), zinc sulfate (ZnSO₄)

Procedia PDF Downloads 182
297 Disabilities in Railways: Proposed Changes to the Design of Railway Compartments for the Inclusion of Differently Abled Persons

Authors: Bathmajaa Muralisankar

Abstract:

As much as railway station infrastructure designs and ticket-booking norms have been changed to facilitate use by differently abled persons, the railway train compartments themselves have not been made user-friendly for differently abled persons. Owing to safety concerns, dependency on others for their travel, and fear of isolation, differently abled people do not prefer travelling by train. Rather than including a dedicated compartment open only to the differently abled, including the latter with others in the normal compartment (with the proposed modifications discussed here) will make them feel secure and make for an enhanced travel experience for them. This approach also represents the most practical way to include a particular category of people in the mainstream society. Lowering the height of the compartment doors and providing a wider entrance with a ramp will provide easy entry for those using wheelchairs. As well, removing the first two alternate rows and the first two side seats will not only widen the passage and increase seating space but also improve wheelchair turning radius. This will help them travel without having to depend on others. Seating arrangements may be done to accommodate their family members near them instead of isolating the differently abled in a separate compartment. According to present ticket-booking regulations of the Indian Railways, three to four disabled persons may travel without their family or one to two along with their family, and the numbers may be added or reduced. To help visually challenged and hearing-impaired persons, in addition to the provision of special instruments, railings, and textured footpaths and flooring, the seat numbers above the seats may be set in metal or plastic as an outward projection so the visually impaired can touch and feel the numbers. Braille boards may be included at the entrance to the compartment along with seat numbers in the aforementioned projected manner. These seat numbers may be designed as buttons, which when pressed results in an announcement of the seat number in the applicable local language as well as English. Emergency buttons, rather than emergency chains, within the easy reach of disabled passengers will also help them.

Keywords: dependency, differently abled, inclusion, mainstream society

Procedia PDF Downloads 254
296 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane

Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua

Abstract:

Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.

Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability

Procedia PDF Downloads 323
295 Organic Rejection and Membrane Fouling with Inorganic Alumina Membrane for Industrial Wastewater Treatment

Authors: Rizwan Ahmad, Soomin Chang, Daeun Kwon, Jeonghwan Kim

Abstract:

Interests in an inorganic membrane are growing rapidly for industrial wastewater treatment due to its excellent chemical and thermal stability over polymeric membrane. Nevertheless, understanding of the membrane rejection and fouling rate caused by the deposit of contaminants on membrane surface and within membrane pores through inorganic porous membranes still requires much attention. Microfiltration alumina membranes were developed and applied for the industrial wastewater treatment to investigate rejection efficiency of organic contaminant and membrane fouling at various operational conditions. In this study, organic rejection and membrane fouling were investigated by using the alumina flat-tubular membrane developed for the treatment of industrial wastewaters. The flat-tubular alumina membranes were immersed in a fluidized membrane reactor added with granular activated carbon (GAC) particles. Fluidization was driven by recirculating a bulk industrial wastewater along membrane surface through the reactor. In the absence of GAC particles, for hazardous anionic dye contaminants, functional group characterized by the organic contaminant was found as one of the main factors affecting both membrane rejection and fouling rate. More fouling on the membrane surface led to the existence of dipolar characterizations and this was more pronounced at lower solution pH, thereby improving membrane rejection accordingly. Similar result was observed with a real metal-plating wastewater. Strong correlation was found that higher fouling rate resulted in higher organic rejection efficiency. Hydrophilicity exhibited by alumina membrane improved the organic rejection efficiency of the membrane due to the formation of hydrophilic fouling layer deposited on it. In addition, less surface roughness of alumina membrane resulted in less fouling rate. Regardless of the operational conditions applied in this study, fluidizing the GAC particles along the surface of alumina membrane was very effective to enhance organic removal efficiency higher than 95% and provide an excellent tool to reduce membrane fouling. Less than 0.1 bar as suction pressure was maintained with the alumina membrane at 25 L/m²hr of permeate set-point flux during the whole operational periods without performing any backwashing and chemical enhanced cleaning for the membrane.

Keywords: alumina membrane, fluidized membrane reactor, industrial wastewater, membrane fouling, rejection

Procedia PDF Downloads 167
294 Ancient Egyptian Industry Technology of Canopic Jars, Analytical Study and Conservation Processes of Limestone Canopic Jar

Authors: Abd El Rahman Mohamed

Abstract:

Canopic jars made by the ancient Egyptians from different materials were used to preserve the viscera during the mummification process. The canopic jar studied here dates back to the Late Period (712-332 BC). It is found in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar was carved from limestone and covered with a monkey head lid with painted eyes and ears with red pigment and surrounded with black pigment. The jar contains bandages of textile containing mummy viscera with resin and black resin blocks. The canopic jars were made using the sculpting tools that were used by the ancient Egyptians, such as metal chisels (made of copper) and hammers and emptying the mass of the jar from the inside using a tool invented by the ancient Egyptians, which called the emptying drill. This study also aims to use analytical techniques to identify the components of the jar, its contents, pigments, and previous restoration materials and to understand its deterioration aspects. Visual assessment, isolation and identification of fungi, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used in our study. The jar showed different signs of deterioration, such as dust, dirt, stains, scratches, classifications, missing parts, and breaks; previous conservation materials include using iron wire, completion mortar and an adhesive for assembly. The results revealed that the jar was carved from Dolomite Limestone, red Hematite pigment, Mastic resin, and Linen textile bandages. The previous adhesive was Animal Glue and used Gypsum for the previous completion. The most dominant Microbial infection on the jar was found in the fungi of (Penicillium waksmanii), (Nigrospora sphaerica), (Actinomycetes sp) and (Spore-Forming Gram-Positive Bacilli). Conservation procedures have been applied with high accuracy to conserve the jar, including mechanical and chemical cleaning, re-assembling, completion and consolidation.

Keywords: Canopic jar, Consolidation, Mummification, Resin, Viscera.

Procedia PDF Downloads 72
293 Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation

Authors: Elmira Solati, Atousa Mehrani, Davoud Dorranian

Abstract:

Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further.

Keywords: Au nanoparticles, pulsed laser ablation, ZnO-Au nanocomposites, ZnO nanoparticles

Procedia PDF Downloads 344
292 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating

Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye

Abstract:

Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.

Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density

Procedia PDF Downloads 153
291 Quantitative on Fatty Acid Profiles, Lipid Contents and Fat-Soluble Vitamin A of Freshwater Fish Species in Tonle Sap Lake, Cambodia

Authors: Sengly Sroy, Elodie Arnaud, Adrien Servent, Sokneang In, Sylvie Avallone

Abstract:

In Cambodia, fish plays an important role for local community in term of food habits, preference and contribution to several nutritional intakes. Consumed on a daily basis, fishes and their derivatives products are good sources of proteins, essential fatty acids and fat-soluble vitamins. They mainly obtain from the Tonle Sap Lake but, during the last decade, the fish population decreased drastically due to climate change and human activities as well. Contamination by agricultural residues and heavy metals were identified. However, fishes are currently used in several nutrition programs for children and pregnant women to improve their nutritional status. The aim of our work was to characterize the nutritional profile and contamination of 10 fish species consumed near the Tonle Sap Lake with a special attention to fatty acid and fat-soluble vitamin profiles. Fish samples were analyzed for their nutritional profiles (AOAC methods for macronutrients and micronutrients), their lipid content (Folch modified method), their Fatty acid (FAME method), their vitamin A (HPLC) and their heavy metals (ICP-MS). The total lipid contents ranged from 1.43 to 10.00% according to fish species. Lipid profile was mainly dominated by saturated fat (from 47.95 to 57.32%) but some fish species were particularly rich in ω-3 and ω-6 especially eicosapentaenoic acid EPA (3.05%) and docosahexaenoic acid DHA (2.82%). The more the fishes were fats, the more they contained vitamin A, DHA and EPA. Vitamin A is particularly abundant in small fishes (250.10 μg RE/100 g) compare to big ones (13.77 μg RE/100 g) because they are consumed as a whole with their organs (liver) and head. However, the contents of heavy metal in some species are higher than the maximum permitted level (MPL) from codex alimentarius, especially Mn. The results obtained provided important information on the most interesting fish in term of human nutrition and the potential risk of contaminants. The fatty acids are important for child development and pregnant women. These data are useful for supply chain stakeholders and the people in charge of nutrition program.

Keywords: fat-soluble vitamin, fatty acid, freshwater fish, lipid content, Tonle Sap Lake

Procedia PDF Downloads 153
290 Groundwater Arsenic Contamination in Brahmaputra River Basin: A Water Quality Assessment in Jorhat (Assam), India

Authors: Kruti Jaruriya

Abstract:

Distribution of arsenic (As) and its compound and related toxicology are serious concerns. This is particularly so since millions worldwide are suffering from toxicity due to drinking of As-contaminated groundwater. The Bengal delta plain, formed by the Ganga– Padma–Meghna–Brahmaputra river basin, covering several districts of West Bengal, India and Bangladesh is considered as the worst As affected alluvial basin. However, some equally affected, if not more, areas are emerging in upper Brahmaputra plains. The present study was carried out to examine As contamination trends in the worst affected part of Assam, India. Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized. The groundwater is characterized by high dissolved Fe, Mn, and HCO-3 and low concentrations of NO-3 and SO2-4 indicating anoxic conditions prevailing in the groundwater. Fifty groundwater samples collected from shallow and deep tubewells of Titabor, Jorhat district (Assam) were examined. Along with total As, examination of concentration levels of other key parameters, viz., pH, EC, Fe, Mn , Mg2+, Ca2+, Na+, K+, PO43- , HCO-3 , NO3- ,Cl - and SO42- was also carried out. In respect to the permissible guideline of World Health Organization (WHO: As 0.01 ppm, Fe 1.0 ppm, and Mn 0.3 ppm for potable water), the range of As concentration in the groundwater varied from 0.014 to 0.604 mg/L with mean concentration 0.184 mg/L. The present study showed that out of the 50 groundwater samples,100%, 54%, and 42% were found contaminated with higher metal contents (for total As, Fe, and Mn, respectively). The results of hydrogeochemical study revealed that the reductive dissolution of MnOOH and FeOOH represents an important mechanism of arsenic release in the study area along with major cations playing an important role in leaching of As into the groundwater. Arsenic released by oxidation of pyrite, as water levels are drawn down and air enters the aquifer, contributes negligibly to the problem of As pollution. Identification of the mechanism of As release to groundwater helps to provide a framework to guide the placement of new water wells so that they will have acceptable concentrations of As.

Keywords: arsenic, assam, brahmaputra floodplain, groundwater, hydrogeochemistry

Procedia PDF Downloads 310
289 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 70
288 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.

Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content

Procedia PDF Downloads 389
287 Femoropatellar Groove: An Anatomical Study

Authors: Mamatha Hosapatna, Anne D. Souza, Vrinda Hari Ankolekar, Antony Sylvan D. Souza

Abstract:

Introduction: The lower extremity of the femur is characterized by an anterior groove in which patella is held during motion. This groove separates the two lips of the trochlea (medial and lateral), prolongation of the two condyles. In humans, the lateral trochlear lip is more developed than the medial one, creating an asymmetric groove that is also specific to the human body. Because of femoral obliquity, contraction of quadriceps leads to a lateral dislocation stress on the patella, and the more elevated lateral side of the patellar groove helps the patella stays in its correct place, acting as a wall against lateral dislocation. This specific shape fits an oblique femur. It is known that femoral obliquity is not genetically determined but comes with orthostatism and biped walking. Material and Methodology: To measure the various dimensions of the Femoropatellar groove (FPG) and femoral condyle using digital image analyser. 37 dried adult femora (22 right,15 left) were used for the study. End on images of the lower end of the femur was taken. Various dimensions of the Femoropatellar groove and FP angle were measured using image J software. Results were analyzed statistically. Results: Maximum of the altitude of medial condyle of the right femur is 4.98± 0.35 cm and of the left femur is 5.20±.16 cm. Maximum altitude of lateral condyle is 5.44±0.4 and 5.50±0.14 on the right and left side respectively. Medial length of the groove is 1.30±0.38 cm on the right side and on the left side is 1.88±0.16 cm. The lateral length of the groove on the right side is 1.900±.16 cm and left side is 1.88±0.16 cm. Femoropatellar angle is 136.38◦±2.59 on the right side and on the left side it is 142.38◦±7.0 Angle and dimensions of the femoropatellar groove on the medial and lateral sides were measured. Asymmetry in the patellar groove was observed. The lateral lip was found to be wider and bigger which correlated with the previous studies. An asymmetrical patellar groove with a protruding lateral side associated with an oblique femur is a specific mark of bipedal locomotion. Conclusion: Dimensions of FPG are important in maintaining the stability of patella and also in knee replacement surgeries. The implants used in to replace the patellofemoral compartment consist of a metal groove to fit on the femoral end and a plastic disc that attaches to the undersurface of the patella. The location and configuration of the patellofemoral groove of the distal femur are clinically significant in the mechanics and pathomechanics of the patellofemoral articulation.

Keywords: femoral patellar groove, femoro patellar angle, lateral condyle, medial condyle

Procedia PDF Downloads 402
286 Electrochemical and Microstructure Properties of Chromium-Graphene and SnZn-Graphene Oxide Composite Coatings

Authors: Rekha M. Y., Punith Kumar, Anshul Kamboj, Chandan Srivastava

Abstract:

Coatings plays an important role in providing protection for a substrate and in improving the surface quality. Graphene/graphene oxide (GO) using in coating systems provides an environmental friendly solution towards protection against corrosion. Issues such as, lack of scale, high cost, low quality limits the practical application of graphene/GO as corrosion resistant coating material. One other way to employ these materials for corrosion protection is to incorporate them into coatings that are conventionally used for corrosion protection. Due to the extraordinary properties of graphene/GO, it has been demonstrated that the coatings containing graphene/GO are more corrosion resistant than pure metal/alloy coatings. In the present work, Cr-graphene and SnZn-GO composite coatings were investigated in enhancing the corrosion resistant property when compared to pure Cr coating and pure SnZn coating respectively. All the coatings were electrodeposited over mild-steel substrate. Graphene and GO were synthesized by electrochemical exfoliation method and modified Hummers’ method respectively. In Cr coatings, the microstructural study revealed that the addition of formic acid in the coatings reduced the number of cracks in the coatings. Further addition of graphene in Cr coating enhanced the Cr coating’s morphology. Chemically synthesized ZnO nanoparticles were also embedded in the as-deposited Cr and Cr-graphene coatings to enhance the adhesion of the coating, to improve the surface finish and to increase the corrosion resistant property of the coatings. Diffraction analysis revealed that the addition of graphene also altered the texture of the Cr coatings. In SnZn alloy coatings, the morphological and topographical characterization revealed that the relative smoothness and compactness of the coatings increased with increase in the addition of GO in the coatings. The microstructural investigation revealed large-scale segregation of Zn-rich and Sn-rich phases in the pure SnZn coating. However, in SnZn-GO composite coating the uniform distribution of Zn phase in the Sn-rich matrix was observed. This distribution caused the early and uniform formation of ZnO, which is the corrosion product, yielding better corrosion resistance for the SnZn-GO composite coatings as compared to pure SnZn coating. A significant improvement in corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in the polarization resistance was observed in Cr coating containing graphene and in SnZn coatings containing GO.

Keywords: coatings, corrosion, electrodeposition, graphene, graphene-oxide

Procedia PDF Downloads 181
285 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling

Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li

Abstract:

Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.

Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR

Procedia PDF Downloads 218
284 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 130
283 Effect of Soil Resistivity on the Development of a Cathodic Protection System Using Zinc Anode

Authors: Chinedu F. Anochie

Abstract:

The deterioration of materials as a result of their interaction with the environment has been a huge challenge to engineering. Many steps have been taking to tackle corrosion and its effects on harmful effects on engineering materials and structures. Corrosion inhibition, coating, passivation, materials selection, and cathodic protection are some of the methods utilized to curtail the rate at which materials corrode. The use of sacrificial anodes (magnesium, aluminum, or zinc) to protect the metal of interest is a widespread technique used to prevent corrosion in underground structures, ship hauls, and other structures susceptible to corrosion attack. However, certain factors, like resistivity, affect the performance of sacrificial anodes. To establish the effect of soil resistivity on the effectiveness of a cathodic protection system, a mild steel specimen was cathodically protected around Workshop 2 area, Federal University of Technology, Owerri, Nigeria. Design calculations showed that one zinc anode was sufficient to protect the pipe. The specimen (mild steel pipe) was coated with white and black polykene tapes and was subsequently buried in a high resistivity soil. The pipe-to-soil potential measurements were obtained using a digital fluke multimeter. The protection potential obtained on installation was higher than the minimum protection criteria. However, the potential results obtained over a fourteen-day intervals continually decreased to a value significantly lower than the minimum protection criteria. This showed that the sacrificial anode (zinc) was rendered ineffective by the high resistivity of the area of installation. It has been shown that the resistivity of the soil has a marked effect on the feasibility of cathodic protection systems. This work justified that zinc anode cannot be used for cathodic protection around Workshop 2 area, Federal University of Technology, Owerri, Nigeria, because of the high resistivity of the area. An experimental data which explains the effectiveness of galvanic anode cathodic protection system on corrosion control of a small steel structure, exposed to a soil of high resistivity has been established.

Keywords: cathodic protection, corrosion, pipe, sacrificial anode

Procedia PDF Downloads 184
282 Atomic Scale Storage Mechanism Study of the Advanced Anode Materials for Lithium-Ion Batteries

Authors: Xi Wang, Yoshio Bando

Abstract:

Lithium-ion batteries (LIBs) can deliver high levels of energy storage density and offer long operating lifetimes, but their power density is too low for many important applications. Therefore, we developed some new strategies and fabricated novel electrodes for fast Li transport and its facile synthesis including N-doped graphene-SnO2 sandwich papers, bicontinuous nanoporous Cu/Li4Ti5O12 electrode, and binder-free N-doped graphene papers. In addition, by using advanced in-TEM, STEM techniques and the theoretical simulations, we systematically studied and understood their storage mechanisms at the atomic scale, which shed a new light on the reasons of the ultrafast lithium storage property and high capacity for these advanced anodes. For example, by using advanced in-situ TEM, we directly investigated these processes using an individual CuO nanowire anode and constructed a LIB prototype within a TEM. Being promising candidates for anodes in lithium-ion batteries (LIBs), transition metal oxide anodes utilizing the so-called conversion mechanism principle typically suffer from the severe capacity fading during the 1st cycle of lithiation–delithiation. Also we report on the atomistic insights of the GN energy storage as revealed by in situ TEM. The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface (SEI) configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ HRTEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0001} spacings and surface "hole" defects result in improved surface capacitive effects and thus high rate capability and the high capacity is owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.

Keywords: in-situ TEM, STEM, advanced anode, lithium-ion batteries, storage mechanism

Procedia PDF Downloads 352
281 Impact of Environmental Pollution on Oxidative Stress Indices in African Cat Fish (Clarias gariepinus) from Araromi River in Ondo State, Nigeria

Authors: Arojojoye Oluwatosin Adetola, Nwaechefu Olajumoke Olufunlayo, Ademola Adetokunbo Oyagbemi, Jeremiah Moyinoluwalogo Afolabi, Asaolu Racheal Oluwabukola

Abstract:

The effects of man’s activities on the environment include depletion of natural resources alongside pollution of water bodies. Petroleum exploration in the Niger Delta region of Nigeria has compromised the aquatic environment with grave consequences on the entire ecosystem. In this study, we assessed the environmental safety of Araromi River, located in an oil-producing area in Ondo State, in the Niger Delta region of Nigeria by determining the levels of heavy metals (copper, cadmium, chromium, nickel, lead) and some biomarkers of oxidative stress (malondialdehyde, glutathione-S-transferase, glutathione peroxidase, catalase, superoxide dismutase, myeloperoxidase and reduced glutathione) in Clarias gariepinus (350-400g) from the river using standard methods. Clarias gariepinus from a clean fish farm in the same geographical location as the reference site (Ilesannmi fishery) was used as a control. Water samples from both sites were also analysed for some physicochemical parameters, heavy metals, and bacterial contamination. Our findings show a significant increase in malondialdehyde level (index of lipid peroxidation) as well as alterations in antioxidant status in the organs of Clarias gariepinus from Araromi River compared with control. A significant increase in bacterial contaminants, heavy metal pollutants, and particulate matter deposits were also observed in the water sample from Araromi River compared with control. In conclusion, high levels of indicators of environmental pollution observed in the water sample from Araromi River coupled with induction of oxidative stress in Clarias gariepinus from the river show that Araromi River is polluted; therefore, consumption of fishes and other aquatic organisms from the river may be unsafe for the people in that community.

Keywords: Araromi River, Clarias gariepinus, environmental pollution, heavy metals, oxidative stress

Procedia PDF Downloads 162
280 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 299
279 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 139
278 Towards Sustainable Construction: An Exploratory Study of the Factors Affecting the Investment on Construction and Demolition Waste in Saudi Arabia (KSA)

Authors: Mohammed Alnuwairan, Mahmoud Abdelrahman

Abstract:

Based on the sustainability concept, this paper explores the current situation of construction and demolition waste (C&D) in the Kingdom of Saudi Arabia (KSA) from the source of production to final destinations. The issues that hindered the investment of recycling C&D in the context will be studied in order to identify the challenges and opportunities to improve this sector and put forward a strategic framework to reduce, reuse, recycle and minimize the disposal of this type of waste. The research, which is exploratory in nature, identified four types of organizations that were appropriate case studies. These organizations were drawn from the municipalities, city council, recyclers and manufacturers. Secondary data collection, direct observation, and elite interviewing methods were used in the case studies to facilitate comparisons with existing literature to explore opportunities to improve sustainability practices in the buildings sector. Implementation of C&D waste management and recycling in KSA is in the early stages. Resistance of virgin building material manufacturers, free usage of landfill, culture, surpluses of natural raw material, availability of land and the cost of recycling this material compared with virgin material hinders the adoption of recycled buildings martial. Although the metal material is collected and recycled but it has the lowest percentage of C&D waste in Saudi. The findings indicate that government and industry need to collaborate more closely in order to successfully implement best practices. Economic and environmental benefits can be achieved, particularly through improvements to infrastructure and legislation. Feasible solution framework and recommendations for managing C&D waste under current situation are provided. The findings can be used to extend this framework and to enable it to be applicable in other context with emerging economies similar to that found in KSA. No study of this type has been previously carried out in KSA. The findings should prove useful in creating a future research agenda for C&D waste in KSA and, possibly, other emerging countries within a similar context.

Keywords: construction and demolition waste, recycling, reuse, sustainability

Procedia PDF Downloads 349
277 Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State

Authors: F. Mohammadsadeghi

Abstract:

Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms.

Keywords: axial compressor, rotation stall, Surg, unstable operation of gas turbine engine

Procedia PDF Downloads 410
276 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 257
275 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions

Authors: Violina Angelova, Galina Pevicharova

Abstract:

A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).

Keywords: heavy metals, polluted soils, sweet potatoes, uptake

Procedia PDF Downloads 212
274 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 77
273 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health

Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang

Abstract:

The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.

Keywords: climate change, health impact, health adaptation, Erren River Basin

Procedia PDF Downloads 304
272 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 444