Search results for: Zamzam water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8701

Search results for: Zamzam water

6571 Ecotoxicity Evaluation Methodology for Metallurgical and Steel Wastes

Authors: G. Pelozo, N. Quaranta

Abstract:

The assessment of environmental hazard and ecotoxicological potential of industrial wastes has become an issue of concern in many countries. Therefore, the aim of this work is to develop a methodology, adapting an Argentinian standard, which allows analyze the ecotoxicological effect of various metallurgical and steel wastes. Foundry sand, white mud, red mud, electric arc furnace dust, converter slag, among others, are the studied wastes. The species used to analyze the ecotoxicological effects of wastes is rye grass (Lolium Perenne). The choice of this kind lies, among other things, in its easy and rapid germination making it possible to develop the test in a few days. Moreover, since the processes involved are general for most seeds, the obtained results with this kind are representative, in general, of the effects on seeds or seedlings. Since the studied residues are solids, prior to performing the assay, an eluate is obtained by stirring for 2 hours and subsequent filtration of a solution of waste in water in a relationship of 1:4. This represents 100% of eluate from which two dilutions in water (25% and 50%) are prepared. A sample with untreated solid waste and water is also performed. The test is performed by placing two filter papers in a Petri dish that are saturated with 3.5ml of the prepared dilutions. After that 20 rye grass seeds are placed, and the Petri dishes are covered and the seeds are incubated for 120 hours at 24 °C. Reference controls are carried out by distilled water. Three replicates are performed for each concentration. Once the exposure period is finished, inhibiting elongation of the root is measured (IR). The results of this test show that all the studied wastes produce an unfavorable effect on the development of the seedlings, being the electric arc furnace dust which more affects the germination.

Keywords: ecotoxicity, industrial wastes, environmental hazard, seeds

Procedia PDF Downloads 403
6570 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.

Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption

Procedia PDF Downloads 266
6569 Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques

Authors: Rowane May A. Fesalbon, Greyland C. Agno, Jodel L. Cuasay, Dindo A. Malonzo, Ma. Rosario Concepcion O. Ang

Abstract:

The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential.

Keywords: ArcSWAT, renewable energy, hydrologic model, hydropower, GIS

Procedia PDF Downloads 314
6568 Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria

Authors: Babatunde Adebo, Adedeji Adetoyinbo

Abstract:

Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated.

Keywords: saltwater intrusion, coastal aquifer, nodal salinity, chloride concentration

Procedia PDF Downloads 244
6567 The Environmental Effects of the Flood Disaster in Anambra State

Authors: U. V. Okpala

Abstract:

Flood is an overflow of water that submerges or ‘drowns’ land. In developing countries it occurs as a result of blocking of natural and man-made drainages and poor maintenance of water dams/reservoirs which seldom give way after persistent heavy down pours. In coastal lowlands and swamp lands, flooding is aided mainly by blocked channels and indiscriminate sand fling of coastal swamp areas and natural drainage channel for urban development/constructions. In this paper, the causes of flood and possible scientific, technological, political, economic and social impacts of flood disaster on the environment a case study of Anambra State have been studied. Often times flooding is caused by climate change, especially in the developed economy where scientific mitigating options are highly employed. Researchers have identified Green Houses Gases (GHG) as the cause of global climate change. The recent flood disaster in Anambra State which caused physical damage to structures, social dislocation, contamination of clean drinking water, spread of water-borne diseases, shortage of crops and food supplies, death of non-tolerant tree species, disruption in transportation system, serious economic loss and psychological trauma is a function of climate change. There is need to encourage generation of renewable energy sources, use of less carbon intensive fuels and other energy efficient sources. Carbon capture/sequestration, proper management of our drainage systems and good maintenance of our dams are good option towards saving the environment.

Keywords: flooding, climate change, carbon capture, energy systems

Procedia PDF Downloads 382
6566 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems

Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas

Abstract:

Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).

Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting

Procedia PDF Downloads 122
6565 Analysis of Possible Draught Size of Container Vessels on the Lower Danube

Authors: Todor Bačkalić, Marinko Maslarić, Milosav Georgijević, Sanja Bojić

Abstract:

Water transport could be the backbone of the future European combined transport system. The future transport policy in landlocked countries from the Danube Region has to be based on inland waterway transport (IWT). The development of the container transport on inland waterways depends directly on technical-exploitative characteristics of the network of inland waterways. Research of navigational abilities of inland waterways is the basic step in transport planning. The size of the vessel’s draught (T) is the limiting value in project tasks and it depends on the depth of the waterway. Navigation characteristics of rivers have to be determined as precise as possible, especially from the aspect of determination of the possible draught of vessels. This article outlines a rationale, why it is necessary to develop competence about infrastructure risk in water transport. Climate changes are evident and require special attention and global monitoring. Current risk assessment methods for Inland waterway transport just consider some dramatic events. We present a new method for the assessment of risk and vulnerability of inland waterway transport where river depth represents a crucial part. The analysis of water level changes in the lower Danube was done for two significant periods (1965-1979 and 1998-2012).

Keywords: container vessel, draught, probability, the Danube

Procedia PDF Downloads 461
6564 Performance Evaluation of Next Generation Shale Stabilizer

Authors: N. K. Thakur

Abstract:

A major proportion of the formations drilled for the production of hydrocarbons consists of clay containing shales. The petroleum industry has hugely investigated the role of clay minerals and their subsequent effect on wellbore stability during the drilling and production of hydrocarbons. It has been found that when the shale formation comes in contact with water-based drilling fluid, the interaction of clay minerals like montmorillonite with infiltrated water leads to hydration of the clay minerals, which causes shale swelling. When shale swelling proceeds further, it may lead to major drilling complications like caving, pipe sticking, which invariably influences wellbore stability, wellbore diameter, the mechanical strength of shale, stress distribution in the wellbore, etc. These problems ultimately lead to an increase in nonproductive time and additional costs during drilling. Several additives are used to prevent shale instability. Among the popular additives used for shale inhibition in drilling muds, ionic liquids and nanoparticles are emerging to be the best additives. The efficiency of the proposed additives will be studied and compared with conventional clay inhibitors like KCl. The main objective is to develop a highly efficient water-based mud for mitigating shale instability and reducing fluid loss which is environmentally friendly and does not alter the formation permeability. The use of nanoparticles has been exploited to enhance the rheological and fluid loss properties in water-based drilling fluid ionic liquid have attracted significant research interest due to its unique thermal stability. It is referred to as ‘green chemical’. The preliminary experimental studies performed are promising. The application of more effective mud additives is always desirable to make the drilling process techno-economically proficient.

Keywords: ionic liquid, shale inhibitor, wellbore stability, unconventional

Procedia PDF Downloads 201
6563 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M. Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: causticizing, lime, prediction, process

Procedia PDF Downloads 359
6562 The Synthesis and Characterization of Highly Water-Soluble Silane Coupling Agents for Increasing Silica Filler Content in Styrene-Butadiene Rubber

Authors: Jun Choi, Bo Ram Lee, Ji Hye Choi, Jung Soo Kim, No-Hyung Park, Dong Hyun Kim

Abstract:

The synthetic rubber compound, which is widely used as the core material for automobile tire industry, is manufactured by mixing styrene-butadiene rubber (SBR) and organic/inorganic fillers. It is known that the most important factor for the physical properties of rubber compound is the interaction between the filler and the rubber, which affects the rotational, braking and abrasion resistance. Silica filler has hydrophilic groups such as a silanol group on their surface which has a low affinity with hydrophobic rubbers. In order to solve this problem, researches on an efficient silane coupling agent (SCA) has been continuously carried out. In this study, highly water-soluble SCAs which are expected to show higher hydrolysis efficiency were synthesized. The hydrophobization process of the silica with the prepared SCAs was economical and environment-friendly. The SCAs structures were analysed by gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, their hydrolysis efficiency and condensation side reaction in SBR wet master batch were examined by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC), respectively.

Keywords: rubber, silane coupling agent, synthesis, water-soluble

Procedia PDF Downloads 300
6561 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals

Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova

Abstract:

Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.

Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk

Procedia PDF Downloads 243
6560 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water

Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing

Abstract:

As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.

Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium

Procedia PDF Downloads 455
6559 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: halloysite, palygorskite, photocatalysis, titanium dioxide

Procedia PDF Downloads 318
6558 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 84
6557 Effects of Drought Stress on Red Bean (Phaseolus vulgaris L.) Cultivars during Post-Flowering Growth Stage

Authors: Fariborz Shekari, Abdollah Javanmard, Amin Abbasi

Abstract:

A pot experiment conducted to evaluate the response of two red bean cultivars, Sayad and Derakhshan, to water deficit stress during post-flowering growth stage and recovery potential of plants after stress. Treatments were included regular irrigation or control, water deficit during flowering stage, water deficit during pod formation and water deficit during pod filling period. Results showed that plant height had positive effects on yield of cultivars so that, the tall cultivar, ‘Sayad’, had higher yields. Stress application during flowering stage showed the highest negative impact on plant height and subsequently yield. The longest and the higher number of pods as well as the greatest number of seeds in pods were recorded in control treatment in ‘Sayad’. Stress application during pod formation resulted in the minimum amount of all studied traits in both cultivars. Stress encountered during seed filling period had the least effect on number and length of pods and seed/pod. However, 100 seeds weight significantly decreased. The highest amount for 100 seeds weight was record in control plants in ‘Derakhshan’. Under all treatments, ‘Sayad’ had higher biologic and seed yield compared to ‘Derakhshan’. The least amount of yield was recorded during stress application in pod formation and flowering period for ‘Sayad’ and ‘Derakhshan’ respectively. Harvest index of ‘Sayad’ was more affect by stress application. Data related to photosynthetic rate showed that during stress application, ‘Derakhshan’ owned rapid decline in photosynthesis. Beyond stress alleviation and onset of irrigation, recovery potential of ‘Sayad’ was higher than ‘Derakhshan’ and this cultivar was able to rapidly restore the photosynthesis rate of stress faced plants near control ones. In total, stress had lower impacts on photosynthetic rate of ‘Sayad’ cultivar.

Keywords: common bean, water stress, yield, yield components, photosynthetic rate

Procedia PDF Downloads 305
6556 Numerical Analysis of Heat Transfer in Water Channels of the Opposed-Piston Diesel Engine

Authors: Michal Bialy, Marcin Szlachetka, Mateusz Paszko

Abstract:

This paper discusses the CFD results of heat transfer in water channels in the engine body. The research engine was a newly designed Diesel combustion engine. The engine has three cylinders with three pairs of opposed pistons inside. The engine will be able to generate 100 kW mechanical power at a crankshaft speed of 3,800-4,000 rpm. The water channels are in the engine body along the axis of the three cylinders. These channels are around the three combustion chambers. The water channels transfer combustion heat that occurs the cylinders to the external radiator. This CFD research was based on the ANSYS Fluent software and aimed to optimize the geometry of the water channels. These channels should have a maximum flow of heat from the combustion chamber or the external radiator. Based on the parallel simulation research, the boundary and initial conditions enabled us to specify average values of key parameters for our numerical analysis. Our simulation used the average momentum equations and turbulence model k-epsilon double equation. There was also used a real k-epsilon model with a function of a standard wall. The turbulence intensity factor was 10%. The working fluid mass flow rate was calculated for a single typical value, specified in line with the research into the flow rate of automotive engine cooling pumps used in engines of similar power. The research uses a series of geometric models which differ, for instance, in the shape of the cross-section of the channel along the axis of the cylinder. The results are presented as colourful distribution maps of temperature, speed fields and heat flow through the cylinder walls. Due to limitations of space, our paper presents the results on the most representative geometric model only. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: Ansys fluent, combustion engine, computational fluid dynamics CFD, cooling system

Procedia PDF Downloads 224
6555 Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers

Authors: Rei-Tang Tsai, Chih-Yang Wu, Chia-Yuan Chang, Ming-Ying Kuo

Abstract:

This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with serpentine channel of the same overall channel length. From the results, we can find the following trends. When fluid mixing is dominated by convection, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller center-line radius is better than that of a micromixer consisting of major-segment repeating units with a larger center-line radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.

Keywords: curved channel, microfluidics, mixing, non-newtonian fluids, vortex

Procedia PDF Downloads 443
6554 Preparation and Characterization of PVA Pure and PVA/MMT Matrix: Effect of Thermal Treatment

Authors: Albana Hasimi, Edlira Tako, Elvin Çomo, Partizan Malkaj, Blerina Papajani, Ledjan Malaj, Mirela Ndrita

Abstract:

Many endeavors have been exerted during the last years for developing new artificial polymeric membranes which fulfill the demanded conditions for biomedical uses. One of the most tested polymers is Poly(vinyl alcohol) [PVA]. Ours groups, is based on the possibility of using PVA for personal protective equipment against covid. In them, we explore the possibility of modifying the properties of the polymer by adding Montmorillonite [MMT]. Heat-treatment above the glass transition temperature are used to improve mechanical properties mainly by increasing the crystallinity of the polymer, which acts as a physical network. Temperature-Modulated Differential Scanning Calorimetry (TMDSC) measurements indicated that the presence of 0.5% MMT in PVA causes a higher Tg value and shaped peak of crystallinity. Decomposition is observed at two of the melting points of the crystals during heating 25-240oC and overlap of the recrystallization ridges during cooling 240-25oC. This is indicative of the presence of two types (quality or structure ) of polymer crystals. On the other hand, some indication of improvement of the quality of the crystals by heat-treatment is given by the distinct non-reversing contribution to melting. Data on sorption and transport of water in polyvinyl alcohol films: PVA pure and PVA/MMT matrix, modified by thermal treatment, are presented. The thermal treatment has aftereffect the films become more rigid, and because of this, the water uptake is significantly lower in membranes. That is indicates by analysis of the resulting water uptake kinetics. The presence 0.5% w/w of MMT has no significant impact on the properties of PVA membranes. Water uptake kinetics deviates from Fick’s law due to slow relaxation of glassy polymer matrix for all membranes category.

Keywords: crystallinity, montmorillonite, nanocomposite, poly (vinyl alcohol)

Procedia PDF Downloads 131
6553 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction

Authors: Somia Bouzid, Messaoud Ramdani

Abstract:

The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.

Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network

Procedia PDF Downloads 394
6552 Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. alba

Authors: T. Punjansing, M. Nakkuntod, S. Homchan, P. Inthima, A. Kongbangkerd

Abstract:

The influence of organic supplements on growth and multiplication efficiency of Phaius tankervilleae var. alba seedlings was investigated. 12 week-old seedlings were cultured on half-strength semi-solid Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 8 g/L agar and various concentrations of coconut water (0, 50, 100, 150 and 200 mL/L) combined with potato extract (0, 25 and 50 g/L) and the pH was adjusted to 5.8 prior to autoclaving. The cultures were then kept under constant photoperiod (16 h light: 8 h dark) at 25 ± 2 °C for 12 weeks. The highest number of shoots (3.0 shoots/explant) was obtained when cultured on the medium added with 50 ml/L coconut water and 50 g/L potato extract whereas the highest number of leaves (5.9 leaves/explant) and roots (6.1 roots/explant) could receive on the medium supplemented with 150 ml/L coconut water and 50 g/L potato extract. with 150 ml/L coconut water and 50 g/L potato extract. Additionally, plantlets of P. tankervilleae var. alba were transferred to grow into seven different substrates i.e. soil, sand, coconut husk chip, soil-sand mix (1: 1), soil-coconut husk chip mix (1: 1), sand-coconut husk chip mix (1: 1) and soil-sand-coconut husk chip mix (1: 1: 1) for four weeks. The results found that acclimatized plants showed 100% of survivals when sand, coconut husk chip and sand-coconut husk chip mix are used as substrates. The number of leaves induced by sand-coconut husk chip mix was significantly higher than that planted in other substrates (P > 0.05). Meanwhile, no significant difference in new shoot formation among these substrates was observed (P < 0.05). This precursory developing protocol was likely to be applied for more large scale of plant production as well as conservation of germplasm of this orchid species.

Keywords: organic supplements, acclimatization, Phaius tankervilleae var. alba, orchid

Procedia PDF Downloads 234
6551 Impact of Activated Sludge Bulking and Foaming on the Quality of Kuwait's Irrigation Water

Authors: Abdallah Abusam, Andrzej Mydlarczyk, Fadila Al-Salameen, Moh Elmuntasir Ahmed

Abstract:

Treated municipal wastewater produced in Kuwait is used mainly in agricultural and greenery landscape irrigations. However, there are strong doubts that severe sludge bulking and foaming problems, particularly during winter seasons, may render the treated wastewater to be unsuitable for irrigation purposes. To assess the impact of sludge bulking and foaming problems on the quality of treated effluents, samples were collected weekly for nine months (January to September 2014) from the secondary effluents, tertiary effluents and sludge-mixed liquor streams of the two plants that severely suffer from sludge bulking and foaming problems. Dominant filamentous bacteria were identified and quantified using a molecular method called VIT (Vermicon Identification Technology). Quality of the treated effluents was determined according to water and wastewater standard methods. Obtained results were then statistically analyzed and compared to irrigation water standards. Statistical results indicated that secondary effluents were greatly impacted by sludge bulking and foaming problems, while tertiary effluents were slightly affected. This finding highlights the importance of having tertiary treatment units in plants that encountering sludge bulking and foaming problems.

Keywords: agriculture, filamentous bacteria, reclamation, reuse, wastewater

Procedia PDF Downloads 275
6550 Biosorption of Methylene Blue and Acid Red-88 from Wastewater by Using Cypress Cones

Authors: Onur Yel

Abstract:

This study represents the removal of harmful dye substances from wastewaters by using waste and cheap adsorbents. Rapid population growth and industrialization occasion anthropogenic pollution which gives irreversible damage to the environment. One of the ways in which water pollution occurs is caused by the release of the dyestuffs in the textile industry. The release of dyestuffs to the environment directly damages the living creatures that have acquired water habitat. Especially, wastewater cannot be used for nutritional purposes. In addition, some adsorbents have mutagenic and/or carcinogenic effects. By blocking photosynthesis, it hinders the inhibition of photosynthetic bacteria in the water, which damages the ecological balance and also causes the formation of malodorous compounds. Moreover, the lack of oxygen can pose a serious danger to the lives of other living organisms that need oxygen. In recent years, some physical and chemical methods are preferred for the removal of dyestuffs. However, the utilization of these methods is expensive. For this reason, the availability of new and cheap adsorbents becomes the more significant issue. In this study, an investigation of various variables on the removal of Methylene Blue and Acid Red-88 dyestuffs from wastewaters by the usage of pulverized cypress cones has been carried out. Thus, various masses of absorbent (0.1-0.25-0.5-1-2-4-5 grams) are used in 50, 100, 150, 200, 300 ppm concentrations of Methylene Blue and Acid Red-88 dyestuffs’ solutions, and with a variety of the interaction time (0.25-0.5-1-2-4-5 hours). The mixtures were centrifuged and the absorbance of the filtrates was measured on a UV spectrophotometer to determine their remaining concentrations. In the study, the highest removal ratio of Acid Red-88 dyestuff was found to be 81% at 200 ppm of dyestuff with 2 grams of adsorbent at 300 minutes. For Methylene Blue experiments, the removal percentage was found as 98% where 2 grams of adsorbent is used in 200 ppm dyestuff solution at 120 minutes of interaction.

Keywords: acid red-88, biosorption, methylene blue, cypress cones, water pollution

Procedia PDF Downloads 149
6549 Moisture Resistant K-loaded ZIF-8 Catalyst for Glycerol Carbonate Production

Authors: Anshu Tyagi

Abstract:

Zeolitic imidazolate frameworks (ZIFs), a subclass of metal-organic frameworks (MOFs) with structures resembling aluminosilicate zeolites, are gaining significant attention due to their unique properties. ZIF-8, in particular, has shown high surface area and enhanced hydrophobicity, making it a promising candidate for catalytic applications. In this study, ZIF-8 was synthesized in an aqueous medium by mixing 2-methylimidazole (mIm) with zinc nitrate hexahydrate (Zn) in deionized water. To improve the basicity and catalytic performance of ZIF-8, a series of K-loaded ZIF-8 catalysts (K/ZIF-8) were prepared by varying the KOH content from 5 to 10 wt%. Characterization of the synthesized catalysts was conducted using powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and temperature-programmed desorption (TPD) techniques. The ZIF-8 and K/ZIF-8 catalysts were applied in the transesterification of glycerol (GL) and dimethyl carbonate (DMC) to form glycerol carbonate (GLC). Various reaction parameters, including DMC/GL molar ratio, KOH loading, catalyst amount, and reaction temperature, were systematically studied to optimize the GLC yield. Under optimized conditions, the 10 wt% KOH-loaded ZIF-8 catalyst (10-K/ZIF-8) demonstrated excellent catalytic activity, achieving up to 95% GLC yield at a DMC/GL molar ratio of 3:1 within 0.5 hours. Remarkably, despite the hygroscopic nature of potassium, the catalyst exhibited significant water resistance, maintaining performance with up to 5 wt% water in relation to GL. Furthermore, the catalyst retained its activity after three recycling cycles without any notable loss in catalytic efficiency. This study highlights the potential of K/ZIF-8 as an efficient, water-tolerant catalyst for the transesterification of GL with DMC, offering high GLC yields and recyclability.

Keywords: metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), transesterification, sustainable catalytic

Procedia PDF Downloads 20
6548 The Effect of Excess Sulphur on Najdi Sheep

Authors: Fatima Al-Humaid

Abstract:

This research work was done to investigate the cause of paralysis in Najdi lambs born in certain farms where the drinking water and diet contained high concentrations of sulphur. The drinking water in these farms was obtained from deep bore wells drilled in the farm. The lambs developed paralysis of the hind limbs at the age of 4-6 weeks and their condition deteriorated continuously until they finally died. The appetite and suckling ability remained good throughout the course of the disease but when the lambs were completely unable to move and reach for the udder, feed and water they died. Postmortem examination of the brain of paralyzed lambs showed that it was liquefied. When the brain was examined histologically, a liquefactive necrosis was seen in the form of cavities in the nervous tissue. Similar histologic picture was seen in the spinal cord of the affected lambs. Analysis for the mineral content of the fodder showed that the concentration of sulphur was 21.6 3.4 g/kg DM which is considered very high for the nutrition of sheep. Analysis for the concentration of copper and selenium in the feed showed that the concentrations of both were normal. This excluded diseases such as swayback which is caused by copper deficiency and white muscle disease, which caused by selenium deficiency. Both of these two last diseases are characterized by paralysis of lambs.

Keywords: brain histology, sulphur poisoning, Najdi sheep, veterinary medicine

Procedia PDF Downloads 610
6547 Adsorption of a Pharmaceutical Pollutant on Activated Carbon of Orange Peels

Authors: Faroudja Mohellebi, Fayrouz Khalida Kies, Moncef Rezzik El Marhoun, Feriel Yahiat

Abstract:

The purpose of this study is to valorize an agro-food waste (orange peels) by its use as an adsorbent in the treatment of water loaded with pharmaceutical micropollutant present in aquatic environments, oxytetracycline. The tests, carried out in batch mode, made it possible to study the influence on the sorptive capacity of calcined orange peels of several parameters: the contact time, the initial concentration of oxytetracycline, the adsorbent dose, and the initial pH of the solution. The pseudo-second-order model is best adapted to represent the adsorption kinetics. The Langmuir model describes the adsorption isotherm of oxytetracycline. The adsorption is favored in a basic environment.

Keywords: adsorption, emerging pollutants, oxytetracycline, water treatment

Procedia PDF Downloads 158
6546 Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model

Authors: Twin Aji Kusumagiani, Eleonora Agustine, Dini Fitriani

Abstract:

The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast.

Keywords: EC, electrical conductivity, VWC, volume water content, NPK fertilizer, salt, volcanic soil

Procedia PDF Downloads 316
6545 Variation in Adaptation Strategies of Commelina Communis L. Biotypes under Drought Stress Condition

Authors: Muhammad Haroon, LI Xiangju

Abstract:

C. communis L. is an important weed of many crop, but very little information about the adaptation strategies of C. communis L. biotypes under drought stress. We investigated five biotypes of C. communis L under drought stress to identify the adaptation mechanism. The expression of drought stress related genes (DRS1, EREB and HRB1) was up-regulated in biotypes, while in some biotypes their expression was down regulated. All five biotypes can thus regulate water balance to consume less water to maintain their status under drought stress condition. This result concluded that C. communis L. biotypes can survive longer under drought stress condition. Weed scientist should seek more effective management strategies to deal with C. communis L.

Keywords: C. communis, biotypes, drought stress, gene expression

Procedia PDF Downloads 160
6544 CFD Effect of the Tidal Grating in Opposite Directions

Authors: N. M. Thao, I. Dolguntseva, M. Leijon

Abstract:

Flow blockages referring to the increase in flow are considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. Computational Fluid Dynamic simulation studies the flow characteristics by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinct features of flow velocity between “convergent” and “divergent” grating placements are up to in confined conditions. Furthermore, the velocity in case of granting is higher than that of the divergent grating.

Keywords: marine current energy, converter, turbine granting, RANS simulation, water flow velocity

Procedia PDF Downloads 412
6543 Design and Construction of a Solar Mobile Anaerobic Digestor for Rural Communities

Authors: César M. Moreira, Marco A. Pazmiño-Hernández, Marco A. Pazmiño-Barreno, Kyle Griffin, Pratap Pullammanappallil

Abstract:

An anaerobic digestion system that was completely operated on solar power (both photovoltaic and solar thermal energy), and mounted on a trailer to make it mobile, was designed and constructed. A 55-gallon batch digester was placed within a chamber that was heated by hot water pumped through a radiator. Hot water was produced by a solar thermal collector and photovoltaic panels charged a battery which operated pumps for recirculating water. It was found that the temperature in the heating chamber was maintained above ambient temperature but it follows the same trend as ambient temperature. The temperature difference between the chamber and ambient values was not constant but varied with time of day. Advantageously, the temperature difference was highest during night and early morning and lowest near noon. In winter, when ambient temperature dipped to 2 °C during early morning hours, the chamber temperature did not drop below 10 °C. Model simulations showed that even if the digester is subjected to diurnal variations of temperature (as observed in winter of a subtropical region), about 63 % of the waste that would have been processed under constant digester temperature of 38 °C, can still be processed. The cost of the digester system without the trailer was $1,800.

Keywords: anaerobic digestion, solar-mobile, rural communities, solar, hybrid

Procedia PDF Downloads 285
6542 Biologiacal and Morphological Aspects of the Sweet Potato Bug, Physomerus grossipes F. (Heteroptera: Coreidae)

Authors: J. Name, S. Bumroongsook

Abstract:

The laboratory and field studies was conducted at King Monkut’s Institute of Technology Ladkrabang to determine biological and morphological aspects of a sweet potato bug ( Physomerus grossipes F.)(Heteroptera). It belongs to the family Coreidae. This insect lays eggs underside of leaves or on the stem of water convolvulus ( Ipomoea aquatic Forsk ) naturally grown in asiatic pennywort plantations. Male and female adults, aged 12-16 day, are known to have multiple mating. Its copulatory position was observed as end to end position which was lasted as long as for 9-60 hours. Groups of eggs were attached to parts of host plants. The egg normally hatches in 16.00-17.50 days(mean 16.63±0.53days). They have 5 nymphal stages and pass through 5 molts before reaching maturity as follows:the first instar 3.83-4.25 days(mean 4.09±0.13 days), the second instar 15.25-27.63 days(mean 20.86± 3.24 days), the third nymphs instar 15.25-27.63 days(mean 20.86±4.42 days), the fourth nymphs 7.29-14.25 days(mean 10.42±2.64 day) and the fifth nymphs 12.58-18.00 days(mean 14.88±1.53 days).These nymphs tend to stay together and suck plant sap from stolons and stems of water convolvulus. The fifth nymps are morphologically similar to adults and they have small wing pads. Adult bugs have full grown wings which cover the abdomen. Total developmental time from egg to adult takes about 104-123 days.

Keywords: morphological aspects, sweet potato bugs (Physomerus grossipes F.), water convolvulus

Procedia PDF Downloads 320