Search results for: LiDAR processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3780

Search results for: LiDAR processing

1650 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
1649 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 315
1648 Mind Care Assistant - Companion App

Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh

Abstract:

In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.

Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety

Procedia PDF Downloads 12
1647 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems

Authors: Wu You, Burra Venkata Durga Kumar

Abstract:

This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.

Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security

Procedia PDF Downloads 93
1646 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea

Authors: Pavel Shcherban, Vlad Golovanov

Abstract:

Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.

Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields

Procedia PDF Downloads 166
1645 A Comparative Evaluation of Cognitive Load Management: Case Study of Postgraduate Business Students

Authors: Kavita Goel, Donald Winchester

Abstract:

In a world of information overload and work complexities, academics often struggle to create an online instructional environment enabling efficient and effective student learning. Research has established that students’ learning styles are different, some learn faster when taught using audio and visual methods. Attributes like prior knowledge and mental effort affect their learning. ‘Cognitive load theory’, opines learners have limited processing capacity. Cognitive load depends on the learner’s prior knowledge, the complexity of content and tasks, and instructional environment. Hence, the proper allocation of cognitive resources is critical for students’ learning. Consequently, a lecturer needs to understand the limits and strengths of the human learning processes, various learning styles of students, and accommodate these requirements while designing online assessments. As acknowledged in the cognitive load theory literature, visual and auditory explanations of worked examples potentially lead to a reduction of cognitive load (effort) and increased facilitation of learning when compared to conventional sequential text problem solving. This will help learner to utilize both subcomponents of their working memory. Instructional design changes were introduced at the case site for the delivery of the postgraduate business subjects. To make effective use of auditory and visual modalities, video recorded lectures, and key concept webinars were delivered to students. Videos were prepared to free up student limited working memory from irrelevant mental effort as all elements in a visual screening can be viewed simultaneously, processed quickly, and facilitates greater psychological processing efficiency. Most case study students in the postgraduate programs are adults, working full-time at higher management levels, and studying part-time. Their learning style and needs are different from other tertiary students. The purpose of the audio and visual interventions was to lower the students cognitive load and provide an online environment supportive to their efficient learning. These changes were expected to impact the student’s learning experience, their academic performance and retention favourably. This paper posits that these changes to instruction design facilitates students to integrate new knowledge into their long-term memory. A mixed methods case study methodology was used in this investigation. Primary data were collected from interviews and survey(s) of students and academics. Secondary data were collected from the organisation’s databases and reports. Some evidence was found that the academic performance of students does improve when new instructional design changes are introduced although not statistically significant. However, the overall grade distribution of student’s academic performance has changed and skewed higher which shows deeper understanding of the content. It was identified from feedback received from students that recorded webinars served as better learning aids than material with text alone, especially with more complex content. The recorded webinars on the subject content and assessments provides flexibility to students to access this material any time from repositories, many times, and this enhances students learning style. Visual and audio information enters student’s working memory more effectively. Also as each assessment included the application of the concepts, conceptual knowledge interacted with the pre-existing schema in the long-term memory and lowered student’s cognitive load.

Keywords: cognitive load theory, learning style, instructional environment, working memory

Procedia PDF Downloads 145
1644 Human Computer Interaction Using Computer Vision and Speech Processing

Authors: Shreyansh Jain Jeetmal, Shobith P. Chadaga, Shreyas H. Srinivas

Abstract:

Internet of Things (IoT) is seen as the next major step in the ongoing revolution in the Information Age. It is predicted that in the near future billions of embedded devices will be communicating with each other to perform a plethora of tasks with or without human intervention. One of the major ongoing hotbed of research activity in IoT is Human Computer Interaction (HCI). HCI is used to facilitate communication between an intelligent system and a user. An intelligent system typically comprises of a system consisting of various sensors, actuators and embedded controllers which communicate with each other to monitor data collected from the environment. Communication by the user to the system is typically done using voice. One of the major ongoing applications of HCI is in home automation as a personal assistant. The prime objective of our project is to implement a use case of HCI for home automation. Our system is designed to detect and recognize the users and personalize the appliances in the house according to their individual preferences. Our HCI system is also capable of speaking with the user when certain commands are spoken such as searching on the web for information and controlling appliances. Our system can also monitor the environment in the house such as air quality and gas leakages for added safety.

Keywords: human computer interaction, internet of things, computer vision, sensor networks, speech to text, text to speech, android

Procedia PDF Downloads 362
1643 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems

Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin

Abstract:

Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.

Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability

Procedia PDF Downloads 448
1642 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: general data protection regulation, human resource management, educational system

Procedia PDF Downloads 100
1641 Automatic Tagging and Accuracy in Assamese Text Data

Authors: Chayanika Hazarika Bordoloi

Abstract:

This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.

Keywords: CRF, morphology, tagging, tagset

Procedia PDF Downloads 194
1640 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal

Authors: Jugal Bhandari, K. Hari Priya

Abstract:

The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.

Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language

Procedia PDF Downloads 367
1639 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language

Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot

Abstract:

The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.

Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields

Procedia PDF Downloads 103
1638 Effect of Citric Acid and Clove on Cured Smoked Meat: A Traditional Meat Product

Authors: Esther Eduzor, Charles A. Negbenebor, Helen O. Agu

Abstract:

Smoking of meat enhances the taste and look of meat, it also increases its longevity, and helps preserve the meat by slowing down the spoilage of fat and growth of bacteria. The Lean meat from the forequarter of beef carcass was obtained from the Maiduguri abattoir. The meat was cut into four portions with weight ranging from 525-545 g. The meat was cut into bits measuring about 8 cm in length, 3.5 cm in thickness and weighed 64.5 g. Meat samples were washed, cured with various concentration of sodium chloride, sodium nitrate, citric acid and clove for 30 min, drained and smoked in a smoking kiln at a temperature range of 55-600°C, for 8 hr a day for 3 days. The products were stored at ambient temperature and evaluated microbiologically and organoleptically. In terms of processing and storage there were increases in pH, free fatty acid content, a decrease in water holding capacity and microbial count of the cured smoked meat. The panelists rated control samples significantly (p < 0.05) higher in terms of colour, texture, taste and overall acceptability. The following organisms were isolated and identified during storage: Bacillus specie, Bacillus subtilis, streptococcus, Pseudomonas, Aspergillus niger, Candida and Penicillium specie. The study forms a basis for new product development for meat industry.

Keywords: citric acid, cloves, smoked meat, bioengineering

Procedia PDF Downloads 445
1637 Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation

Authors: Shinhao Yang, Hsiao-Chien Huang, Chin-Hsiang Luo

Abstract:

The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2).

Keywords: fluorochrome, deposition, shielding effects, digital image processing, leakage ratio, personal protective equipment

Procedia PDF Downloads 322
1636 Statistical Tools for SFRA Diagnosis in Power Transformers

Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava

Abstract:

For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.

Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)

Procedia PDF Downloads 697
1635 Damage Identification Using Experimental Modal Analysis

Authors: Niladri Sekhar Barma, Satish Dhandole

Abstract:

Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.

Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification

Procedia PDF Downloads 116
1634 Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval

Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje

Abstract:

Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.

Keywords: indexing, retrieval, multimedia, graph algorithm, graph code

Procedia PDF Downloads 161
1633 Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali

Authors: C. Benhamideche

Abstract:

Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission.

Keywords: fluoride glass, aluminium fluoride, thermal properties, density, proprieties elastic

Procedia PDF Downloads 241
1632 Aerodynamics of Spherical Combat Platform Levitation

Authors: Aelina Franz

Abstract:

In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems.

Keywords: spherical combat platforms, levitation technologies, aerodynamics, maneuverable platforms

Procedia PDF Downloads 57
1631 Identifying the Structural Components of Old Buildings from Floor Plans

Authors: Shi-Yu Xu

Abstract:

The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.

Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence

Procedia PDF Downloads 89
1630 A Review on Existing Challenges of Data Mining and Future Research Perspectives

Authors: Hema Bhardwaj, D. Srinivasa Rao

Abstract:

Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.

Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges

Procedia PDF Downloads 110
1629 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars

Procedia PDF Downloads 138
1628 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 32
1627 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search

Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek

Abstract:

Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.

Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling

Procedia PDF Downloads 362
1626 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia

Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare

Abstract:

The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.

Keywords: electrochemical, treatment, aluminum, tannery effluent

Procedia PDF Downloads 110
1625 Investigation of Glacier Activity Using Optical and Radar Data in Zardkooh

Authors: Mehrnoosh Ghadimi, Golnoush Ghadimi

Abstract:

Precise monitoring of glacier velocity is critical in determining glacier-related hazards. Zardkooh Mountain was studied in terms of glacial activity rate in Zagros Mountainous region in Iran. In this study, we assessed the ability of optical and radar imagery to derive glacier-surface velocities in mountainous terrain. We processed Landsat 8 for optical data and Sentinel-1a for radar data. We used methods that are commonly used to measure glacier surface movements, such as cross correlation of optical and radar satellite images, SAR tracking techniques, and multiple aperture InSAR (MAI). We also assessed time series glacier surface displacement using our modified method, Enhanced Small Baseline Subset (ESBAS). The ESBAS has been implemented in StaMPS software, with several aspects of the processing chain modified, including filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing atmospheric noise, and removing the ramp caused by ionosphere turbulence and/or orbit errors. Our findings indicate an average surface velocity rate of 32 mm/yr in the Zardkooh mountainous areas.

Keywords: active rock glaciers, landsat 8, sentinel-1a, zagros mountainous region

Procedia PDF Downloads 77
1624 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 89
1623 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR

Procedia PDF Downloads 140
1622 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
1621 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299