Search results for: skinfold measurements
735 Modified Norhaya Upper Limp Elevation Sling-Quick Approach Ensuring Timely Limb Elevation
Authors: Prem, Norhaya, Vwrene C., Mohammad Harris A., Amarjit, Fazir M.
Abstract:
Upper limb surgery is a common orthopedic procedure. After surgery, it is necessary to raise the patient's arm to reduce limb swelling and promote recovery. After an injury or surgery, swelling (edema) in the limbs is common. This swelling can be painful, cause stiffness, and affect movement and ability to do daily activities. One of the easiest ways to manage swelling is to elevate the swollen limb. The goal is to elevate the swollen limb slightly above the level of the heart. This helps the extra fluid move back towards the heart for circulation to the rest of the body. Conventional arm sling or pillows are usually placed under the arm to raise it, but in this way the arm cannot be fixed well and easily slide down, without ideal raising effect. Conventional arm sling need experience to tie the sling and this delay in the application process. To reduce the waiting time and cost, modified Norhaya upper limb elevation sling was designed and made readily available. The sling is made from calico fabric, readily available in the ward. Measurements of patients’ arm lengths are obtained, and fabric sizes are cut into the average arm lengths, as well as 1 size above and below. The cut calico fabric is then sewn together with thick sewing threads. Its application is easy and junior most staff or doctor will be able to apply it on patient. The time taken to set up the sling is also reduced. Feedback gathered from ground staff regarding ease of setting up the sling was tremendous and patient also feel comfort in the modified Norhaya sling. The device can freely adjust the raising height of the affected limb and effectively fix the affected limb to reduce its swelling, thus promoting recovery. This device is worthy to be clinically popularized and applied. The Modified Norhaya upper limb elevation sling is the quickest to set up and the delay in elevating the patient’s hand is significantly reduced. Moreover, it is reproducible and there is also significant cost savings.Keywords: elevate, effective, sling, timely
Procedia PDF Downloads 206734 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster
Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon
Abstract:
Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil
Procedia PDF Downloads 293733 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery
Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox
Abstract:
Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification
Procedia PDF Downloads 134732 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria
Authors: Desmond Okorie, Emmanuel Prince
Abstract:
Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.Keywords: local area network, Ph measurement, wireless sensor network, zigbee
Procedia PDF Downloads 172731 Prevalence of Malnutrition and Associated Factors among Children Aged 6-59 Months at Hidabu Abote District, North Shewa, Oromia Regional State
Authors: Kebede Mengistu, Kassahun Alemu, Bikes Destaw
Abstract:
Introduction: Malnutrition continues to be a major public health problem in developing countries. It is the most important risk factor for the burden of diseases. It causes about 300, 000 deaths per year and responsible for more than half of all deaths in children. In Ethiopia, child malnutrition rate is one of the most serious public health problem and the highest in the world. High malnutrition rates in the country pose a significant obstacle to achieving better child health outcomes. Objective: To assess prevalence of malnutrition and associated factors among children aged 6-59 months at Hidabu Abote district, North shewa, Oromia. Methods: A community based cross sectional study was conducted on 820 children aged 6-59 months from September 8-23, 2012 at Hidabu Abote district. Multistage sampling method was used to select households. Children were selected from each kebeles by simple random sampling. Anthropometric measurements and structured questioners were used. Data was processed using EPi-info soft ware and exported to SPSS for analysis. Then after, sex, age, months, height, and weight transferred with HHs number to ENA for SMART 2007software to convert nutritional data into Z-scores of the indices; H/A, W/H and W/A. Bivariate and multivariate logistic regressions were used to identify associated factors of malnutrition. Results: The analysis this study revealed that, 47.6%, 30.9% and 16.7% of children were stunted, underweight and wasted, respectively. The main associated factors of stunting were found to be child age, family monthly income, children were received butter as pre-lacteal feeding and family planning. Underweight was associated with number of children HHs and children were received butter as per-lacteal feeding but un treatment of water in HHs only associated with wasting. Conclusion and recommendation: From the findings of this study, it is concluded that malnutrition is still an important problem among children aged 6-59 months. Therefore, especial attention should be given on intervention of malnutrition.Keywords: children, Hidabu Abote district, malnutrition, public health
Procedia PDF Downloads 427730 To Evaluate the Function of Cardiac Viability After Administration of I131
Authors: Baburao Ganpat Apte, Gajodhar
Abstract:
Introduction: diopathic Parkinson’s disease (PD) is the most common neurodegenerative disorder. Early PD may present a diagnostic challenge with broad differential diagnoses that are not associated with striatal dopamine deficiency. This test was performed by using special type of radioactive precursor which was made available through our logistics. 131I-TOPA L-6-[131I] Iodo-3,4-Trihydroxyphenylalnine (131I -TOPA) is a positron emission tomography (PET) agent that measures the uptake of dopamine precursors for assessment of presynaptic dopaminergic integrity and has been shown to accurately reflect the sign of nervous mind going in patients suffers from monoaminergic disturbances in PD. Both qualitative and quantitative analyses of the scans were performed. Therefore, the early clinical diagnosis alone may be accurate and this reinforces the importance of functional imaging targeting the patholigically of the disease process. The patient’s medical records were then assessed for length of follow-up, response to levotopa, clinical course of sickness, and usually though of symptoms at time of 131I -TOPA PET. A respective analysis was carried out for all patients that gone through 131I -TOPA PET brain scan for motor symptoms suspicious for PD between 2000 - 2006. The eventual diagnosis by the referring neurologist, movement therapist, physiotherapist, was used as the accurate measurements in standard for further analysis. In this study, our goal to illustrate our local experience to determine the accuracy of 131I -TOPA PET for diagnosis of PD. We studied a total of 48 patients. Of the 25 scans, it found that one was a false negative, 40 were true positives, and 7 were true negatives. The resultant values are Sensitivity 90.4% (95% CI: 100%-71.3%), Specificity 100% (92% CI: 100%-58.0%), PPV 100% (91% CI 100%-75.7%), and NPV 80.5% (95% CI: 92.5%-48.5%). Result: Twenty-three patients were found in the initial query, and 1 were excluded (2 uncertain diagnosis, 2 inadequate follow-up). Twenty-eight patients (28 scans) remained with 15 males (62%) and 8 females (30%). All the patients had a clinical follow-up of at least 3 years, however the median length of follow-up was 5.5 years (range: 2-8 years). The median age at scan time was 51.2 years (range: 35-75)Keywords: 18F-TOPA, petct, parkinson’s disease, cardiac
Procedia PDF Downloads 27729 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner
Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally
Abstract:
International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion
Procedia PDF Downloads 223728 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries
Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand
Abstract:
Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.
Procedia PDF Downloads 75727 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment
Authors: Guarry Montrose, Ted Soubdhan
Abstract:
In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.Keywords: plant fibers, tropical climates, sustainable development, waste reduction
Procedia PDF Downloads 182726 Designing Nickel Coated Activated Carbon (Ni/AC) Based Electrode Material for Supercapacitor Applications
Authors: Zahid Ali Ghazi
Abstract:
Supercapacitors (SCs) have emerged as auspicious energy storage devices because of their fast charge-discharge characteristics and high power densities. In the current study, a simple approach is used to coat activated carbon (AC) with a thin layer of nickel (Ni) by an electroless deposition process to enhance the electrochemical performance of the SC. The synergistic combination of large surface area and high electrical conductivity of the AC, as well as the pseudocapacitive behavior of the metallic Ni, has shown great potential to overcome the limitations of traditional SC materials. First, the materials were characterized using X-ray diffraction (XRD) for crystallography, scanning electron microscopy (SEM) for surface morphology and energy dispersion X-ray (EDX) for elemental analysis. The electrochemical performance of the nickel-coated activated carbon (Ni-AC) is systematically evaluated through various techniques, including galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The GCD results revealed that Ni/AC has a higher specific capacitance (1559 F/g) than bare AC (222 F/g) at 1 A/g current density in a 2 M KOH electrolyte. Even at a higher current density of 20 A/g, the Ni/AC showed a high capacitance of 944 F/g as compared to 77 F/g by AC. The specific capacitance (1318 F/g) calculated from CV measurements for Ni-AC at 10mV/sec was in close agreement with GCD data. Furthermore, the bare AC exhibited a low energy of 15 Wh/kg at a power density of 356 W/kg whereas, an energy density of 111 Wh/kg at a power density of 360 W/kg was achieved by Ni/AC-850 electrode and demonstrated a long life cycle with 94% capacitance retention over 50000 charge/discharge cycles at 10 A/g. In addition, the EIS study disclosed that the Rs and Rct values of Ni/AC electrodes were much lower than those of bare AC. The superior performance of Ni/AC is mainly attributed to the presence of excessive redox active sites, large electroactive surface area and corrosive resistance properties of Ni. We believe that this study will provide new insights into the controlled coating of ACs and other porous materials with metals for developing high-performance SCs and other energy storage devices.Keywords: supercapacitor, cyclic voltammetry, coating, energy density, activated carbon
Procedia PDF Downloads 63725 Effect of Electropolymerization Method in the Charge Transfer Properties and Photoactivity of Polyaniline Photoelectrodes
Authors: Alberto Enrique Molina Lozano, María Teresa Cortés Montañez
Abstract:
Polyaniline (PANI) photoelectrodes were electrochemically synthesized through electrodeposition employing three techniques: chronoamperometry (CA), cyclic voltammetry (CV), and potential pulse (PP) methods. The substrate used for electrodeposition was a fluorine-doped tin oxide (FTO) glass with dimensions of 2.5 cm x 1.3 cm. Subsequently, structural and optical characterization was conducted utilizing Fourier-transform infrared (FTIR) spectroscopy and UV-visible (UV-vis) spectroscopy, respectively. The FTIR analysis revealed variations in the molar ratio of benzenoid to quinonoid rings within the PANI polymer matrix, indicative of differing oxidation states arising from the distinct electropolymerization methodologies employed. In the optical characterization, differences in the energy band gap (Eg) values and positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were observed, attributable to variations in doping levels and structural irregularities introduced during the electropolymerization procedures. To assess the charge transfer properties of the PANI photoelectrodes, electrochemical impedance spectroscopy (EIS) experiments were carried out within a 0.1 M sodium sulfate (Na₂SO₄) electrolyte. The results displayed a substantial decrease in charge transfer resistance with the PANI coatings compared to uncoated substrates, with PANI obtained through cyclic voltammetry (CV) presenting the lowest charge transfer resistance, contrasting PANI obtained via chronoamperometry (CA) and potential pulses (PP). Subsequently, the photoactive response of the PANI photoelectrodes was measured through linear sweep voltammetry (LSV) and chronoamperometry. The photoelectrochemical measurements revealed a discernible photoactivity in all PANI-coated electrodes. However, PANI electropolymerized through CV displayed the highest photocurrent. Interestingly, PANI derived from chronoamperometry (CA) exhibited the highest degree of stable photocurrent over an extended temporal interval.Keywords: PANI, photocurrent, photoresponse, charge separation, recombination
Procedia PDF Downloads 65724 Effect of Oil Viscosity and Brine Salinity/Viscosity on Water/Oil Relative Permeability and Residual Saturations
Authors: Sami Aboujafar
Abstract:
Oil recovery in petroleum reservoirs is greatly affected by fluid-rock and fluid-fluid interactions. These interactions directly control rock wettability, capillary pressure and relative permeability curves. Laboratory core-floods and centrifuge experiments were conducted on sandstone and carbonate cores to study the effect of low and high brine salinity and viscosity and oil viscosity on residual saturations and relative permeability. Drainage and imbibition relative permeability in two phase system were measured, refined lab oils with different viscosities, heavy and light, and several brine salinities were used. Sensitivity analysis with different values for the salinity and viscosity of the fluids,, oil and water, were done to investigate the effect of these properties on water/oil relative permeability, residual oil saturation and oil recovery. Experiments were conducted on core material from viscous/heavy and light oil fields. History matching core flood simulator was used to study how the relative permeability curves and end point saturations were affected by different fluid properties using several correlations. Results were compared with field data and literature data. The results indicate that there is a correlation between the oil viscosity and/or brine salinity and residual oil saturation and water relative permeability end point. Increasing oil viscosity reduces the Krw@Sor and increases Sor. The remaining oil saturation from laboratory measurements might be too high due to experimental procedures, capillary end effect and early termination of the experiment, especially when using heavy/viscous oil. Similarly the Krw@Sor may be too low. The effect of wettability on the observed results is also discussed. A consistent relationship has been drawn between the fluid parameters, water/oil relative permeability and residual saturations, and a descriptor may be derived to define different flow behaviors. The results of this work will have application to producing fields and the methodologies developed could have wider application to sandstone and carbonate reservoirs worldwide.Keywords: history matching core flood simulator, oil recovery, relative permeability, residual saturations
Procedia PDF Downloads 337723 Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation
Authors: Pavel Borodkin, Nikolay Khrennikov, Azamat Gazetdinov
Abstract:
The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper.Keywords: equipment integrity, fluence, displacement per atom, nuclear power plant, neutron activation measurements, neutron transport calculations
Procedia PDF Downloads 157722 Increased Seedling Vigor Through Phytohomeopathy
Authors: Jasper Jose Zanco
Abstract:
Plants are affected by substances diluted below certain limits. In seeds subjected to ultra-high dilutions (UHD), according to phytohomeopathic methods, it is possible to reduce the concentrations to infinitesimal levels and the effects persist. This research aimed to test different potencies of UHD to modify the vigor of Eruca versicaria (L) Cav. seedlings. The research was carried out at the Plant Production Laboratory of UNISUL University in Santa Catarina, Brazil. Eight UHD treatments were tested, four drops for every 30 mL of distilled water: Control (70% alcohol - A70); Sulphur (S9), Acidum fluoridricum (A30), Calcarea carbonica (C200), Graphies naturalis (G200), Kali carbonicum (K100) Belladonna (B12), diluted and succussed in Hahnemannian centesimal standards. Succussion is a standard pharmaceutical method found in worldwide pharmaceuticals. The statistical design consisted of 50 seeds every 4 replicates per treatment, completely randomized, followed by ANOVA and Tukey's test. Succussion may integrate the high dilution of water treatments, even after successive dilutions, and the product of this process acts through physical-chemical and bioelectric stimuli, causing physiological responses at the cellular level, such as the activation of antioxidant systems, increased resistance to environmental stress or growth modulation. According to some researchers, these responses could be mediated by genetic expression changes or the plants' cellular signaling systems. The results showed significant differences between the control (A70) and the other treatments. Conductivity measurements were made in the seed germination water and impedance; the seedlings were measured for dry weight and total area. The highest conductivity occurred in the control treatment (27.8 μS/cm) and the lowest in K100 (21.3 μS/cm). After germination, on germitest paper, A70 was significantly different from G200 (<1%) and S9 (5%). Both homeopathies differed from the other treatments, with S9 obtaining the best germination (87.1%) and vigor index (IV=7.98) in relation to the other treatments. The control, A70, presented the lowest germination (63.9%) and vigor (IV=4.93).Keywords: ultra high dilution, impedance, condutivity, eruca versicaria
Procedia PDF Downloads 18721 Prevalence and Predictors of Metabolic Syndrome among Diabetic Clinic Attendees in Sokoto, Nigeria
Authors: Kehinde Joseph Awosan, Balarabe Adami Isah, Edzu Usman Yunusa, Sarafadeen Adeniyi Arisegi, Izuchukwu Obasi, Oluchi Solomon-Anucha
Abstract:
Background: Metabolic syndrome (MetS) is prevalent in patients with diabetes mellitus and a significant risk for major cardiovascular events. Identifying its burden and peculiarities is crucial to preventing complications among those at risk. Aim: This study was conducted to determine the prevalence and predictors of metabolic syndrome among diabetes clinic attendees in Sokoto, Nigeria. Materials and Methods: A cross-sectional study was conducted among 365 patients with type 2 diabetes attending the diabetes clinic of Specialist Hospital, Sokoto, Nigeria. A structured questionnaire was used to obtain data on the respondents’ socio-demographic variables, treatment history, and lifestyle. Blood pressure and anthropometric measurements (including weight, height, and waist circumference) were done for the patients. Likewise, biochemical assessment (including fasting plasma glucose, high-density lipoprotein cholesterol (HDL-c), and triglyceride (TG) was done. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III). Data were analyzed using the IBM Statistical Package for Social Sciences (SPSS) version 25. Results: The ages of the patients ranged from 30 to 78 (mean = 50.9 ±11.7) years. The overall prevalence of MetS was 57.3%, with a higher prevalence in females (68.1%) than males (43.0%). The most common components of MetS observed were hypertension (69.2%), and elevated fasting plasma glucose (65.7%); while the predictors of MetS were age > 50 years (OR 6.960, 95% CI: 3.836-12.628, p < 0.001), female sex (OR 2.300, 95% CI: 1.355-3.903, p = 0.002), physical activity (OR 0.214, 95% CI: 0.126-0.363, p < 0.001), and overweight/obesity (OR 3.356, 95% CI: 1.838-6.127, p < 0.001). Conclusion: Metabolic syndrome is prevalent among patients with type 2 diabetes in Sokoto, Nigeria, and the predictors were age > 50 years, female sex, physical activity, and overweight/obesity. Diabetes care providers should screen their patients for MetS to prevent adverse cardiovascular events.Keywords: prevalence, predictors, metabolic syndrome, diabetes
Procedia PDF Downloads 144720 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry
Authors: Qianhui Li, Christoph H. Bruecker
Abstract:
Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry
Procedia PDF Downloads 174719 Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering
Authors: Aleksandra BužArovska, Gordana Bogoeva Gaceva
Abstract:
Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation.Keywords: biodegradation, bone tissue engineering, mineralization, PLA scaffolds
Procedia PDF Downloads 269718 Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building
Authors: Iuri Salukvadze
Abstract:
Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation.Keywords: construction, seismic protection systems, soil, motor roads, concrete
Procedia PDF Downloads 244717 Thorium-Doped PbS Thin Films for Radiation Damage Studies
Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel
Abstract:
We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.Keywords: thin films, doping, radiation damage, chemical bath deposition
Procedia PDF Downloads 393716 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments
Authors: Rahul Paul, Peter Mctaggart, Luke Skinner
Abstract:
Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry
Procedia PDF Downloads 99715 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 155714 The Growth Reaction, Membrane Potential and Oxidative Stress of Maize Coleoptile Cells Incubated in the Presence of the Naphthoquinones
Authors: Malgorzata Rudnicka, Waldemar Karcz
Abstract:
Introduction: Naphthoquinones are widely occurring organic compounds produced by bacteria, fungi, and plants. They can act as the functional components of biochemical systems (plastoquinone) as well as biologically active substances, which have a negative impact on environmental processes. Naphthoquinones seem to act through two mechanisms: a covalent modification of biological molecules at their nucleophilic sites or by generation of reactive oxygen species (ROS) connected with redox cycling. Investigating the effect of naphthoquinones (1,4-naphthoquinone, lawsone and naphthazarin) on the elongation growth, membrane potential and the level of oxidative stress of maize cells seems to be important due to the possibility of using these substances as herbicides. Methods: All experiments were performed on etiolated maize coleoptile segments. Simultaneous measurements of elongation growth and pH of the incubation medium were carried out using an angular position transducer, allowing a precise record of the growth kinetics. To compare the oxidative stress level induced by all tested naphthoquinones, the changes in malondialdehyde content, as well as superoxide dismutase and catalase activities were measured. In order to measure the membrane potential of parenchymal cells the standard electrophysiology technique was used. Results: Naphthoquinones such as: 1,4-naphthoquinone, lawsone and naphthazarin were studied. It was found that all of the naphthoquinones diminished the growth of the maize coleoptile cells depending on the type of naphthoquinones and their concentration. Interestingly, naphthazarin at the intermediate concentration was less toxic compared to the others. In addition, the effect of naphthoquinones on the oxidative stress was dependent on their concentration as well. Superoxide dismutase and catalase activities were changed in the presence of higher concentrations of naphthoquinones. Similar interrelations were observed for membrane potential changes. Conclusion: It can be concluded that naphthoquinones tested differ in their toxic effect on the growth of maize coleoptile cells. Furthermore, naphthoquinones can be distinguish considering the oxidative stress level and membrane potential changes. The results presented here give new insight into the possible opportunities of practical usage of naphthoquinones for herbicides improvement.Keywords: growth rate, membrane potential, naphthoquinones, oxidative stress
Procedia PDF Downloads 283713 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Authors: Maciej Jedrzejczyk, Karolina Marzantowicz
Abstract:
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids
Procedia PDF Downloads 300712 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements
Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles
Abstract:
During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium
Procedia PDF Downloads 308711 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action
Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere
Abstract:
Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results
Procedia PDF Downloads 133710 Pyridoxine Effectiveness and Safety for Postpartum Lactation Inhibition: A Systematic Review
Authors: Doua AlSaad, Ahmed Awaisu, Samah Elsalem, Palli Valapila Abdulrouf, Binny Thomas, Moza AlHail
Abstract:
Background: It has been suggested that pyridoxine has an anti-lactogenic effect. Studies of the efficacy of pyridoxine in suppressing lactation have reported conflicting results. The aim of this review is to evaluate the effectiveness and safety of high-dose pyridoxine in postpartum lactation inhibition. Methods: This systematic review included published trials that compared the efficacy and/or safety of pyridoxine to placebo or to other pharmacological agents for the inhibition of postpartum lactation. We searched PubMed, Embase, ScienceDirect, CINAHL, AMED, the Cochrane library, and the clinical trials registry to identify relevant literature. No limit was imposed on the year of publication of the studies, and the review included studies published until 15 January 2016. Two reviewers independently extracted data and assessed the risk of bias. Results: Seven studies were included, with a total of 1155 women, of which 471 women received pyridoxine. Three studies were randomized controlled trials, while the remaining four studies were non-randomized controlled trials. All of the included studies were relatively small (n = 18 – 482). The studies compared pyridoxine with placebo, bromocriptine, and/or stilboestrol. Pyridoxine was given orally, with a total daily dose of 450 – 600 mg for 5 to 7 days. Two trials (n = 349 participants) indicated that pyridoxine was effective in inhibiting lactation in approximately 95% of the enrolled patients. All other studies failed to demonstrate pyridoxine efficacy through either clinical assessment or prolactin level measurements. Pyridoxine safety was assessed by two trials in which no serious untoward side-effects were reported. Overall, the risk of bias for most of the studies was low to moderate. Conclusion: Current evidence supporting the effectiveness of high dose pyridoxine in the inhibition of postpartum lactation is inconsistent and insufficient. Larger randomized trials are needed to confirm the efficacy of pyridoxine in postpartum lactation inhibition. Acknowledgment: This review received a grant from the Medical Research Center of Hamad Medical Corporation in Qatar (grant number: 15100/15).Keywords: pyridoxine, safety, effectiveness, lactation inhibition
Procedia PDF Downloads 133709 A Geographical Study of Women Status in an Emerging Urban Industrial Economy: Experiences from the Asansol Sub-Division and Durgapur Sub-Division of West Bengal, India
Authors: Mohana Basu, Snehamanju Basu
Abstract:
Urbanization has an immense impact on the holistic development of a region. In that same context, the level of women empowerment plays a significant role in the development of any region, particularly a region belonging to a developing country. The present study investigates the status of women empowerment in the Asansol Durgapur Planning Area of the state of West Bengal, India by investigating the status of women and their access to various facilities and awareness about the various governmental and non-governmental schemes meant for their elevation. Through this study, an attempt has been to made to understand the perception of the respondents on the context of women's empowerment. The study integrates multiple sources of qualitative and quantitative data collected from various reports, field-based measurements, questionnaire survey and community based participatory appraisals. Results reveal that women of the rural parts of the region are relatively disempowered due to the various restrictions imposed on them and enjoy lower socioeconomic clout than their male counterparts in spite of the several remedial efforts taken by the government and NGOs to elevate their position in the society. A considerable gender gap still exists regarding access to education, employment and decision-making power in the family and significant differences in attitude towards women are observable in the rural and urban areas. Freedom of women primarily vary according to their age group, educational level, employment and income status and also on the degree of urbanization. Asansol Durgapur Planning Area is primarily an industrial region where huge employment generation scope exists. But these disparities are quite alarming and indicate that economic development does not always usher in socially justifiable rights and access to resources for both men and women alike in its awake. In this backdrop, this study will attempt to forward relevant suggestions which can be followed for betterment of the status of women.Keywords: development, disempowered, economic development, urbanization, women empowerment
Procedia PDF Downloads 145708 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux
Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour
Abstract:
Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity
Procedia PDF Downloads 84707 Executive Functions Directly Associated with Severity of Perceived Pain above and beyond Depression in the Context of Medical Rehabilitation
Authors: O. Elkana, O Heyman, S. Hamdan, M. Franko, J. Vatine
Abstract:
Objective: To investigate whether a direct link exists between perceived pain (PP) and executive functions (EF), above and beyond the influence of depression symptoms, in the context of medical rehabilitation. Design: Cross-sectional study. Setting: Rehabilitation Hospital. Participants: 125 medical records of hospitalized patients were screened for matching to our inclusion criteria. Only 60 patients were found fit and were asked to participate. 19 decline to participate on personal basis. The 41 neurologically intact patients (mean age 46, SD 14.96) that participated in this study were in their sub-acute stage of recovery, with fluent Hebrew, with intact upper limb (to neutralize influence on psychomotor performances) and without an organic brain damage. Main Outcome Measures: EF were assessed using the Wisconsin Card Sorting Test (WCST) and the Stop-Signal Test (SST). PP was measured using 3 well-known pain questionnaires: Pain Disability Index (PDI), The Short-Form McGill Questionnaire (SF-MPQ) and the Pain Catastrophizing Scale (PCS). Perceived pain index (PPI) was calculated by the mean score composite from the 3 pain questionnaires. Depression symptoms were assessed using the Patient Health Questionnaire (PHQ-9). Results: The results indicate that irrespective of the presence of depression symptoms, PP is directly correlated with response inhibition (SST partial correlation: r=0.5; p=0.001) and mental flexibility (WSCT partial correlation: r=-0.37; p=0.021), suggesting decreased performance in EF as PP severity increases. High correlations were found between the 3 pain measurements: SF-MPQ with PDI (r=0.62, p<0.001), SF-MPQ with PCS (r=0.58, p<0.001) and PDI with PCS (r=0.38, p=0.016) and each questionnaire alone was also significantly associated with EF; thus, no specific questionnaires ‘pulled’ the results obtained by the general index (PPI). Conclusion: Examining the direct association between PP and EF, beyond the contribution of depression symptoms, provides further clinical evidence suggesting that EF and PP share underlying mediating neuronal mechanisms. Clinically, the importance of assessing patients' EF abilities as well as PP severity during rehabilitation is underscored.Keywords: depression, executive functions, mental-flexibility, neuropsychology, pain perception, perceived pain, response inhibition
Procedia PDF Downloads 248706 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool
Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier
Abstract:
Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison
Procedia PDF Downloads 384