Search results for: savings algorithm
1909 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 1561908 Relevant LMA Features for Human Motion Recognition
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.Keywords: discriminative LMA features, features reduction, human motion recognition, random forest
Procedia PDF Downloads 1951907 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection
Authors: S. Delgado, C. Cerrada, R. S. Gómez
Abstract:
This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.Keywords: voxelization, GPU acceleration, computer graphics, compute shaders
Procedia PDF Downloads 721906 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars
Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic
Abstract:
Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.Keywords: circular economy, electric mobility, lithium ion batteries, remanufacturing
Procedia PDF Downloads 3581905 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: algorithm, determinant, computation, eigenvalue, time complexity
Procedia PDF Downloads 4151904 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 3091903 Arabic Handwriting Recognition Using Local Approach
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM
Procedia PDF Downloads 711902 Delivery of Patient-Directed Wound Care Via Mobile Application-Based Qualitative Analysis
Authors: Amulya Srivatsa, Gayatri Prakash, Deeksha Sarda, Varshni Nandakumar, Duncan Salmon
Abstract:
Delivery of Patient-Directed Wound Care Via Mobile Application-Based Qualitative Analysis Chronic wounds are difficult for patients to manage at-home due to their unpredictable healing process. These wounds are associated with increased morbidity and negatively affect physical and mental health. The solution is a mobile application that will have an algorithm-based checklist to determine the state of the wound based on different factors that vary from person to person. Once this information is gathered, the application will recommend a plan of care to the user and subsequent steps to be taken. The mobile application will allow users to perform a digital scan of the wound to extract quantitative information regarding wound width, length, and depth, which will then be uploaded to the EHR to notify the patient’s provider. This scan utilizes a photo taken by the user, who is prompted appropriately. Furthermore, users will enter demographic information and answer multiple choice and drop-down menus describing the wound state. The proposed solution can save patients from unnecessary trips to the hospital for chronic wound care. The next iteration of the application can incorporate AI to allow users to perform a digital scan of the wound to extract quantitative information regarding wound width, length, and depth, which can be shared with the patient’s provider to allow for more efficient treatment. Ultimately, this product can provide immediate and economical medical advice for patients that suffer from chronic wounds. Research Objectives: The application should be capable of qualitative analysis of a wound and recommend a plan of care to the user. Additionally, the results of the wound analysis should automatically upload to the patient’s EMR. Research Methodologies: The app has two components: the first is a checklist with tabs for varying factors that assists users in the assessment of their skin. Subsequently, the algorithm will create an at-home regimen for patients to follow to manage their wounds. Research Contributions: The app aims to return autonomy back to the patient and reduce the number of visits to a physician for chronic wound care. The app also serves to educate the patient on how best to care for their wounds.Keywords: wound, app, qualitative, analysis, home, chronic
Procedia PDF Downloads 671901 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder
Procedia PDF Downloads 2891900 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djemeleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force
Procedia PDF Downloads 4741899 Parallel Multisplitting Methods for DAE’s
Authors: Ahmed Machmoum, Malika El Kyal
Abstract:
We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: computer, multi-splitting methods, asynchronous mode, differential algebraic systems
Procedia PDF Downloads 5491898 Comparative Analysis of Feature Extraction and Classification Techniques
Authors: R. L. Ujjwal, Abhishek Jain
Abstract:
In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.Keywords: computer vision, age group, face detection
Procedia PDF Downloads 3681897 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid
Authors: A. Giniatoulline
Abstract:
A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid
Procedia PDF Downloads 3091896 SIPINA Induction Graph Method for Seismic Risk Prediction
Authors: B. Selma
Abstract:
The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.Keywords: SIPINA algorithm, seism, focal depth, peak ground acceleration, displacement
Procedia PDF Downloads 3131895 The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key
Authors: Fola John Adeyeye
Abstract:
In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group.Keywords: cryptosystem, private and public key, DPML, symmetric group Pn
Procedia PDF Downloads 2021894 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 1311893 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System
Authors: Mounir Bekaik, Messaoud Ramdani
Abstract:
We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer
Procedia PDF Downloads 3331892 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 1351891 Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS
Authors: Dawei Cai
Abstract:
In this paper, we present an autonomous guidance service by combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.Keywords: NFC, ubiquitous computing, guide sysem, MEMS
Procedia PDF Downloads 4091890 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window
Authors: Khaled Moh. Alhamad
Abstract:
This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.Keywords: heuristic, scheduling, tabu search, transportation
Procedia PDF Downloads 5061889 Issues in Travel Demand Forecasting
Authors: Huey-Kuo Chen
Abstract:
Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper.Keywords: travel choices, B algorithm, entropy maximization, dynamic traffic assignment
Procedia PDF Downloads 4581888 Grid Connected Photovoltaic Micro Inverter
Authors: S. J. Bindhu, Edwina G. Rodrigues, Jijo Balakrishnan
Abstract:
A grid-connected photovoltaic (PV) micro inverter with good performance properties is proposed in this paper. The proposed inverter with a quadrupler, having more efficiency and less voltage stress across the diodes. The stress that come across the diodes that use in the inverter section is considerably low in the proposed converter, also the protection scheme that we provided can eliminate the chances of the error due to fault. The proposed converter is implemented using perturb and observe algorithm so that the fluctuation in the voltage can be reduce and can attain maximum power point. Finally, some simulation and experimental results are also presented to demonstrate the effectiveness of the proposed converter.Keywords: DC-DC converter, MPPT, quadrupler, PV panel
Procedia PDF Downloads 8421887 Application of Analytical Method for Placement of DG Unit for Loss Reduction in Distribution Systems
Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao
Abstract:
The main aim of the paper is to implement a technique using distributed generation in distribution systems to reduce the distribution system losses and to improve voltage profiles. The fuzzy logic technique is used to select the proper location of DG and an analytical method is proposed to calculate the size of DG unit at any power factor. The optimal sizes of DG units are compared with optimal sizes obtained using the genetic algorithm. The suggested method is programmed under Matlab software and is tested on IEEE 33 bus system and the results are presented.Keywords: DG Units, sizing of DG units, analytical methods, optimum size
Procedia PDF Downloads 4741886 Climate Changes Impact on Artificial Wetlands
Authors: Carla Idely Palencia-Aguilar
Abstract:
Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.Keywords: DEM, evapotranspiration, geostatistics, NDVI
Procedia PDF Downloads 1201885 Community Structure Detection in Networks Based on Bee Colony
Authors: Bilal Saoud
Abstract:
In this paper, we propose a new method to find the community structure in networks. Our method is based on bee colony and the maximization of modularity to find the community structure. We use a bee colony algorithm to find the first community structure that has a good value of modularity. To improve the community structure, that was found, we merge communities until we get a community structure that has a high value of modularity. We provide a general framework for implementing our approach. We tested our method on computer-generated and real-world networks with a comparison to very known community detection methods. The obtained results show the effectiveness of our proposition.Keywords: bee colony, networks, modularity, normalized mutual information
Procedia PDF Downloads 4061884 PSS and SVC Controller Design by BFA to Enhance the Power System Stability
Authors: Saeid Jalilzadeh
Abstract:
Designing of PSS and SVC controller based on Bacterial Foraging Algorithm (BFA) to improve the stability of power system is proposed in this paper. Same controllers for PSS and SVC has been considered and Single machine infinite bus (SMIB) system with SVC located at the terminal of generator is used to evaluate the proposed controllers. BFA is used to optimize the coefficients of the controllers. Finally simulation for a special disturbance as an input power of generator with the proposed controllers in order to investigate the dynamic behavior of generator is done. The simulation results demonstrate that the system composed with optimized controllers has an outstanding operation in fast damping of oscillations of power system.Keywords: PSS, SVC, SMIB, optimize controller
Procedia PDF Downloads 4571883 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration
Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed
Abstract:
The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle
Procedia PDF Downloads 3751882 Trajectory Tracking of Fixed-Wing Unmanned Aerial Vehicle Using Fuzzy-Based Sliding Mode Controller
Authors: Feleke Tsegaye
Abstract:
The work in this thesis mainly focuses on trajectory tracking of fixed wing unmanned aerial vehicle (FWUAV) by using fuzzy based sliding mode controller(FSMC) for surveillance applications. Unmanned Aerial Vehicles (UAVs) are general-purpose aircraft built to fly autonomously. This technology is applied in a variety of sectors, including the military, to improve defense, surveillance, and logistics. The model of FWUAV is complex due to its high non-linearity and coupling effect. In this thesis, input decoupling is done through extracting the dominant inputs during the design of the controller and considering the remaining inputs as uncertainty. The proper and steady flight maneuvering of UAVs under uncertain and unstable circumstances is the most critical problem for researchers studying UAVs. A FSMC technique was suggested to tackle the complexity of FWUAV systems. The trajectory tracking control algorithm primarily uses the sliding-mode (SM) variable structure control method to address the system’s control issue. In the SM control, a fuzzy logic control(FLC) algorithm is utilized in place of the discontinuous phase of the SM controller to reduce the chattering impact. In the reaching and sliding stages of SM control, Lyapunov theory is used to assure finite-time convergence. A comparison between the conventional SM controller and the suggested controller is done in relation to the chattering effect as well as tracking performance. It is evident that the chattering is effectively reduced, the suggested controller provides a quick response with a minimum steady-state error, and the controller is robust in the face of unknown disturbances. The designed control strategy is simulated with the nonlinear model of FWUAV using the MATLAB® / Simulink® environments. The simulation result shows the suggested controller operates effectively, maintains an aircraft’s stability, and will hold the aircraft’s targeted flight path despite the presence of uncertainty and disturbances.Keywords: fixed-wing UAVs, sliding mode controller, fuzzy logic controller, chattering, coupling effect, surveillance, finite-time convergence, Lyapunov theory, flight path
Procedia PDF Downloads 571881 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 1261880 Improving the Constructability of Highway Design Plans
Authors: R. Edward Minchin Jr.
Abstract:
The U.S. Federal Highway Administration (FHWA) Every Day Counts Program (EDC) has resulted in state DOTs putting evermore emphasis on speeding up the delivery of highway and bridge construction projects for use by the driving public. This has resulted in an increase in the use of alternative construction delivery systems such as design-build (D-B), construction manager at-risk (CMR) or construction manager/general contractor (CM/GC), and adding alternative technical concepts (ATCs) to traditional design-bid-build (DBB) contracts. ATCs have exhibited great potential for delivering substantial benefits like cost savings, increased constructability, and quicker project delivery. Previous research has found that knowledge of project constructability was lacking in state Department of Transportation (DOT) planning, programming, and environmental staffs. Many agencies have therefore relied on a set of ‘acceptable’ design solutions over the years of working with their local resource agencies. The result is that the permitting process for several government agencies has become increasingly restrictive with the result that the DOTs and their industry partners lose the ability to innovate after a permit is approved. The intent of this paper is to report on the research team’s progress in this ongoing effort furnish the United States government with a uniform set of guidelines for the application of constructability reviews during all phases of project development and delivery. The research uses surveys and interviews to determine which states have implemented formal programs to ensure that the constructor is furnished with a set of contract documents that affords said constructor with the best possible opportunity to successfully construct the project with the highest quality standards, within the contract duration and without exceeding the construction budget. Once these states are identified, workshops are held all over the nation, resulting in the team learning the best current practices and giving the team the ability to recommend new practices that will improve the process. The plan is for the FHWA to encourage or require state DOTs to use these practices on all federally funded highway and bridge construction projects. The project deliverable is a Guidebook for FHWA to use in disseminating the recommended practices to the states.Keywords: alternative construction delivery, alternative technical concepts, constructability, construction design plans
Procedia PDF Downloads 216