Search results for: problem-based learning approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19167

Search results for: problem-based learning approach

17067 The Reality of Teaching Arabic for Specific Purposes in Educational Institutions

Authors: Mohammad Anwarul Kabir, Fayezul Islam

Abstract:

Language invariably is learned / taught to be used primarily as means of communications. Teaching a language for its native audience differs from teaching it to non-native audience. Moreover, teaching a language for communication only is different from teaching it for specific purposes. Arabic language is primarily regarded as the language of the Quran and the Sunnah (Prophetic tradition). Arabic is, therefore, learnt and spread all over the globe. However, Arabic is also a cultural heritage shared by all Islamic nations which has used Arabic for a long period to record the contributions of Muslim thinkers made in the field of wide spectrum of knowledge and scholarship. That is why the phenomenon of teaching Arabic by different educational institutes became quite rife, and the idea of teaching Arabic for specific purposes is heavily discussed in the academic sphere. Although the number of learners of Arabic is increasing consistently, yet their purposes vary. These include religious purpose, international trade, diplomatic purpose, better livelihood in the Arab world extra. By virtue of this high demand for learning Arabic, numerous institutes have been established all over the world including Bangladesh. This paper aims at focusing on the current status of the language institutes which has been established for learning Arabic for specific purposes in Bangladesh including teaching methodology, curriculum, and teachers’ quality. Such curricula and using its materials resulted in a lot of problems. The least, it confused teachers and students as well. Islamic educationalists have been working hard to professionally meet the need. They are following a systematic approach of stating clear and achievable goals, building suitable content, and applying new technology to present these learning experiences and evaluate them. It also suggests a model for designing instructional systems that responds to the need of non-Arabic speaking Islamic communities and provide the knowledge needed in both linguistic and cultural aspects. It also puts forward a number of suggestions for the improvement of the teaching / learning Arabic for specific purposes in Bangladesh after a detailed investigation in the following areas: curriculum, teachers’ skills, method of teaching and assessment policy.

Keywords: communication, Quran, sunnah, educational institutes, specific purposes, curriculum, method of teaching

Procedia PDF Downloads 282
17066 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 118
17065 Multimodal Pedagogy for Students’ Creative Expressions in Visual Literacy Education

Authors: Yi Meng, Yun Gao

Abstract:

Having spent significant periods studying and working in North America and Europe, we, as two Chinese art educators, have been profoundly shaped by both Eastern and Western cultures. Consequently, our ambition is to enrich students' learning experiences by delving into and merging both cultural perspectives for innovative, creative expressions. This exposition draws on our action research study on students' visual literacy practices in a visual literacy course at a prominent Chinese university. The central premise was to explore innovative art forms by cross-utilizing various aspects of diverse cultures. By examining distinct cultural elements, we encouraged students to break away from familiar approaches and forge new paths in their creative endeavors. In implementing our curriculum, we utilized a multimodal pedagogy that deviated from the predominant print-based presentations typically employed in our classroom settings. This pedagogical approach effectively encouraged students to critically analyze the artifact, imbue it with their understanding and perspectives, and then produce an original piece. This approach also motivated students to leverage the semiotic potential of various communicative modes to address diverse cultural issues through their multimodal designs. To demonstrate the potential for cultural amalgamation, we utilized the artwork of Hong Kong-based artist Tik Ka. His works epitomize the fusion of Chinese traditions with Western pop culture, which served as a visual and conceptual reference point for students. Seeing how these distinct cultural elements could coexist and enrich each other in Tik Ka's work was inspiring and motivating for the students. Taken together, these pedagogical strategies helped create a dialogical space where students could actively experience, analyze, and negotiate complex modes of expression. This environment fostered active learning, encouraging students to apply their knowledge, question their assumptions, and reconsider their perspectives. Overall, such a unique approach to visual literacy education has the potential to reshape students' understanding of both cultures. By encouraging them to critically engage with their multimodal designs, we promoted an in-depth, nuanced appreciation of these diverse cultural heritages. The students no longer just interpreted and replicated images—they actively contributed to a dynamic and ongoing conversation between cultures.

Keywords: multimodal pedagogy, creative expressions, visual literacy education, multimodal designs

Procedia PDF Downloads 76
17064 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 84
17063 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast

Authors: David Ofosu-Hamilton, John K. E. Edumadze

Abstract:

Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.

Keywords: assessment, blended, cloud, paperless

Procedia PDF Downloads 250
17062 The Cultural Adaptation of a Social and Emotional Learning Program for an Intervention in Saudi Arabia’s Preschools

Authors: Malak Alqaydhi

Abstract:

A problem in the Saudi Arabia education system is that there is a lack of curriculum- based Social, emotional learning (SEL) teaching practices with the pedagogical concept of SEL yet to be practiced in the Kingdom of Saudi Arabia (KSA). Furthermore, voices of teachers and parents have not been captured regarding the use of SEL, particularly in preschools. The importance of this research is to help determine, with the input of teachers and mothers of preschoolers, the efficacy of a culturally adapted SEL program. The purpose of this research is to determine the most appropriate SEL intervention method to appropriately apply in the cultural context of the Saudi preschool classroom setting. The study will use a mixed method exploratory sequential research design, applying qualitative and quantitative approaches including semi-structured interviews with teachers and parents of preschoolers and an experimental research approach. The research will proceed in four phases beginning with a series of interviews with Saudi preschool teachers and mothers, whose voices and perceptions will help guide the second phase of selection and adaptation of a suitable SEL preschool program. The third phase will be the implementation of the intervention by the researcher in the preschool classroom environment, which will be facilitated by the researcher’s cultural proficiency and practical experience in Saudi Arabia. The fourth and final phase will be an evaluation to assess the effectiveness of the trialled SEL among the preschool student participants. The significance of this research stems from its contribution to knowledge about SEL in culturally appropriate Saudi preschools and the opportunity to support initiatives for Saudi early childhood educators to consider implementing SEL programs. The findings from the study may be useful to inform the Saudi Ministry of Education and its curriculum designers about SEL programs, which could be beneficial to trial more widely in the Saudi preschool curriculum.

Keywords: social emotional learning, preschool children, saudi Arabia, child behavior

Procedia PDF Downloads 158
17061 Learning Management System Technologies for Teaching Computer Science at a Distance Education Institution

Authors: Leila Goosen, Dalize van Heerden

Abstract:

The performance outcomes of first year Computer Science and Information Technology students across the world are of great concern, whether they are being taught in a face-to-face environment or via distance education. In the face-to-face environment, it is, however, somewhat easier to teach and support students than it is in a distance education environment. The face-to-face academic can more easily gauge the level of understanding and participation of students and implement interventions to address issues, which may arise. With the inroads that Web 2.0 and Web 3.0 technologies are making, the world of online teaching and learning are rapidly expanding, bringing about technologies, which allows for similar interactions between online academics and their students as available to their face-to-face counter parts. At the University of South Africa (UNISA), the Learning Management System (LMS) is called myUNISA and it is deployed on a SAKAI platform. In this paper, we will take a look at some of the myUNISA technologies implemented in the teaching of a first year programming course, how they are implemented and, in some cases, we will indicate how this affects the performance outcomes of students.

Keywords: computer science, Distance Education Technologies, Learning Management System, face-to-face environment

Procedia PDF Downloads 497
17060 "Project" Approach in Urban: A Response to Uncertainty

Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad

Abstract:

In this paper, we will try to demonstrate the importance of the project approach in the urban to deal with uncertainty, the importance of the involvement of all stakeholders in the urban project process and that the absence of an actor can lead to project failure but also the importance of the urban project management. These points are handled through the following questions: Does the urban adhere to the theory of complexity? Does the project approach bring hope and solution to make urban planning "sustainable"? How converging visions of actors for the same project? Is the management of urban project the solution to support the urban project approach?

Keywords: strategic planning, project, urban project stakeholders, management

Procedia PDF Downloads 515
17059 Exploring Students’ Voices in Lecturers’ Teaching and Learning Developmental Trajectory

Authors: Khashane Stephen Malatji, Makwalete Johanna Malatji

Abstract:

Student evaluation of teaching (SET) is the common way of assessing teaching quality at universities and tracing the professional growth of lecturers. The aim of this study was to investigate the role played by student evaluation in the teaching and learning agenda at one South African University. The researchers used a qualitative approach and a case study research design. With regards to data collection, document analysis was used. Evaluation reports were reviewed to monitor the growth of lecturers who were evaluated during the academic years 2020 and 2021 in one faculty. The results of the study reveal that student evaluation remains the most relevant tool to inform the teaching agenda at a university. Lecturers who were evaluated were found to grow academically. All lecturers evaluated during 2020 have shown great improvement when evaluated repeatedly during 2021. Therefore, it can be concluded that student evaluation helps to improve the pedagogical and professional proficiency of lecturers. The study therefore, recommends that lecturers conduct an evaluation for each module they teach every semester or annually in case of year modules. The study also recommends that lecturers attend to all areas that draw negative comments from students in order to improve.

Keywords: students’ voices, teaching agenda, evaluation, feedback, responses

Procedia PDF Downloads 91
17058 Analysing a Practical Teamwork Assessment for Distance Education Students at an Australian University

Authors: Celeste Lawson

Abstract:

Learning to embrace and value teamwork assessment at a university level is critical for students, as graduates enter a real-world working environment where teamwork is likely to occur virtually. Student disdain for teamwork exercises is an area often overlooked or disregarded by academics. This research explored the implementation of an online teamwork assessment approach at a regional Australian university with a significant cohort of Distance Education students. Students had disliked teamwork for three reasons: it was not relevant to their study, the grading was unfair amongst team members, and managing the task was challenging in a virtual environment. Teamwork assessment was modified so that the task was an authentic task that could occur in real-world practice; team selection was based on the task topic rather than randomly; grading was based on the individual’s contribution to the task, and students were provided virtual team management skills as part of a the assessment. In this way, management of the team became an output of the task itself. Data was gathered over three years from student satisfaction surveys, failure rates, attrition figures, and unsolicited student comments. In one unit where this approach was adopted (Advanced Public Relations), student satisfaction increased from 3.6 (out of 5) in 2012 to 4.6 in 2016, with positive comments made about the teamwork approach. The attrition rate for another unit (Public Relations and the Media) reduced from 20.7% in 2012 to 2.2% in 2015. In 2012, criticism of teamwork assessment made up 50% of negative student feedback in Public Relations and the Media. By 2015, following the successful implementation of the teamwork assessment approach, only 12.5% of negative comments on the student satisfaction survey were critical of teamwork, while 33% of positive comments related to a positive teamwork experience. In 2016, students explicitly nominated teamwork as the best part of this unit. The approach is transferable to other disciplines and was adopted by other academics within the institution with similar results.

Keywords: assessment, distance education, teamwork, virtual

Procedia PDF Downloads 141
17057 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 219
17056 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 131
17055 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 308
17054 Developing Problem Solving Skills through a Project-Based Course as Part of a Lifelong Learning for Engineering Students

Authors: Robin Lok Wang Ma

Abstract:

The purpose of this paper is to investigate how engineering students’ motivation and interests are maintained in their journeys. In recent years, different pedagogies of teaching, including entrepreneurship, experiential and lifelong learning, as well as dream builder, etc., have been widely used for education purposes. University advocates hands-on practice, learning by experiencing and experimenting throughout different courses. Students are not limited to gaining knowledge via traditional lectures, laboratory demonstrations, tutorials, and so on. The capability to identify both complex problems and their corresponding solutions in daily life are one of the criteria/skill sets required for graduates to obtain their careers at professional organizations and companies. A project-based course, namely Mechatronic Design and Prototyping, was developed for students to design and build a physical prototype for solving existing problems in their daily lives, thereby encouraging them as an entrepreneur to explore further possibilities to commercialize their designed prototypes and launch them to the market. Feedbacks from students show that they are keen to propose their own ideas freely with guidance from the instructor instead of using either suggested or assigned topics. Proposed ideas of the prototypes reflect that if students’ interests are maintained, they acquire the knowledge and skills they need, including essential communication, logical thinking, and, more importantly, problem solving for their lifelong learning journey.

Keywords: problem solving, lifelong learning, entrepreneurship, engineering

Procedia PDF Downloads 93
17053 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners

Authors: Leila Najeh Bel'Kiry

Abstract:

Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.

Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners

Procedia PDF Downloads 65
17052 Remedying Students' Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)

Authors: Ihuarulam A. Ikenna

Abstract:

In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and do not agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.

Keywords: remedying, students’ misconceptions, learning, intervention discussion, learning model

Procedia PDF Downloads 420
17051 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English

Authors: Adnan Z. Mkhelif

Abstract:

Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.

Keywords: corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency

Procedia PDF Downloads 253
17050 An Improved Approach Based on MAS Architecture and Heuristic Algorithm for Systematic Maintenance

Authors: Abdelhadi Adel, Kadri Ouahab

Abstract:

This paper proposes an improved approach based on MAS Architecture and Heuristic Algorithm for systematic maintenance to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.

Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling

Procedia PDF Downloads 302
17049 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 183
17048 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 90
17047 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.

Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques

Procedia PDF Downloads 76
17046 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
17045 Research on the Impact of Spatial Layout Design on College Students’ Learning and Mental Health: Analysis Based on a Smart Classroom Renovation Project in Shanghai, China

Authors: Zhang Dongqing

Abstract:

Concern for students' mental health and the application of intelligent advanced technologies are driving changes in teaching models. The traditional teacher-centered classroom is beginning to transform into a student-centered smart interactive learning environment. Nowadays, smart classrooms are compatible with constructivist learning. This theory emphasizes the role of teachers in the teaching process as helpers and facilitators of knowledge construction, and students learn by interacting with them. The spatial design of classrooms is closely related to the teaching model and should also be developed in the direction of smart classroom design. The goal is to explore the impact of smart classroom layout on student-centered teaching environment and teacher-student interaction under the guidance of constructivist learning theory, by combining the design process and feedback analysis of the smart transformation project on the campus of Tongji University in Shanghai. During the research process, the theoretical basis of constructivist learning was consolidated through literature research and case analysis. The integration and visual field analysis of the traditional and transformed indoor floor plans were conducted using space syntax tools. Finally, questionnaire surveys and interviews were used to collect data. The main conclusions are as followed: flexible spatial layouts can promote students' learning effects and mental health; the interactivity of smart classroom layouts is different and needs to be combined with different teaching models; the public areas of teaching buildings can also improve the interactive learning atmosphere by adding discussion space. This article provides a data-based research basis for improving students' learning effects and mental health, and provides a reference for future smart classroom design.

Keywords: spatial layout, smart classroom, space syntax, renovation, educational environment

Procedia PDF Downloads 75
17044 A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time.

Keywords: artificial neural network, diarization, speaker indexing, speaker segmentation

Procedia PDF Downloads 505
17043 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 328
17042 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 306
17041 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 82
17040 Research Related to the Academic Learning Stress, Reflected into PubMed Website Publications

Authors: Ramona-Niculina Jurcau, Ioana-Marieta Jurcau, Dong Hun Kwak, Nicolae-Alexandru Colceriu

Abstract:

Background: Academic environment led, in time, to the birth of some research subjects concluded with many publications. One of these issues is related to the learning stress. Thus far, the PubMed website displays an impressive number of papers related to the academic stress. Aims: Through this study, we aimed to evaluate the research concerning academic learning stress (ALS), by a retrospective analysis of PubMed publications. Methods: We evaluated the ALS, considering: a) different keywords as - ‘academic stress’ (AS), ‘academic stressors’ (ASs), ‘academic learning stress’ (ALS), ‘academic student stress’ (ASS), ‘academic stress college’ (ASC), ‘medical academic stress’ (MAS), ‘non-medical academic stress’ (NMAS), ‘student stress’ (SS), ‘nursing student stress’ (NS), ‘college student stress’ (CSS), ‘university student stress’ (USS), ‘medical student stress’ (MSS), ‘dental student stress’ (DSS), ‘non-medical student stress’ (NMSS), ‘learning students stress’ (LSS), ‘medical learning student stress’ (MLSS), ‘non-medical learning student stress’ (NMLSS); b) the year average for decades; c) some selection filters provided by PubMed website: Article types - Journal Article (JA), Clinical Trial (CT), Review (R); Species - Humans (H); Sex - Male (M) and Female (F); Ages - 13-18, 19-24, 19-44. Statistical evaluation was made on the basis of the Student test. Results: There were differences between keywords, referring to all filters. Nevertheless, for all keywords were noted the following: the majority of studies have indicated that subjects were humans; there were no important differences between the number of subjects M and F; the age of participants was mentioned only in some studies, predominating those with teenagers and subjects between 19-24 years. Conclusions: 1) PubMed publications document that concern for the research field of academic stress, lasts for 56 years and was materialized in more than 5.010 papers. 2) Number of publications in the field of academic stress varies depending on the selected keywords: those with a general framing (AS, ASs, ALS, ASS, SS, USS, LSS) are more numerous than those with a specific framing (ASC, MAS, NMAS, NS, CSS, MSS, DSS, NMSS, MLSS, NMLSS); those concerning the academic medical environment (MAS, NS, MSS, DSS, MLSS) prevailed compared to the non-medical environment (NMAS, NMSS, NMLSS). 3) Most of the publications are included at JA, of which a small percentage are CT and R. 4) Most of the academic stress studies were conducted with subjects both M and F, most aged under 19 years and between 19-24 years.

Keywords: academic stress, student stress, academic learning stress, medical student stress

Procedia PDF Downloads 566
17039 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit

Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari

Abstract:

Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.

Keywords: framework, mobile technology, augmented reality, pre-literacy skills

Procedia PDF Downloads 598
17038 Neuronal Mechanisms of Observational Motor Learning in Mice

Authors: Yi Li, Yinan Zheng, Ya Ke, Yungwing Ho

Abstract:

Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas.

Keywords: observation, motor learning, string-pulling behavior, prefrontal cortex, motor cortex, cognitive

Procedia PDF Downloads 88