Search results for: in vitro assay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2275

Search results for: in vitro assay

175 Examination of Calpurnia Aurea Seed Extract Activity Against Hematotoxicity and Hepatotoxicity in HAART Drug Induced Albino Wistar Rat

Authors: Haile Nega Mulata, Seifu Daniel, Umeta Melaku, Wendwesson Ergete, Natesan Gnanasekaran

Abstract:

Background: In Ethiopia, medicinal plants have been used for various human and animal diseases. In this study, we have examined the potential effect of hydroethanolic extract of Calpurnia aurea seed against hepatotoxicity and haematotoxicity induced by Highly Active Antiretroviral Therapy (HAART) drugs in Albino Wistar rats. Methods: We collected Matured dried seeds of Calpurnia aurea from northern Ethiopia (south Tigray and south Gondar) in June 2013. The powder of the dried seed sample was macerated with 70% ethanol and dried using rotavapor. We have investigated the Preliminary phytochemical tests and in-vitro antioxidant properties. Then, we induced toxicity with HAART drugs and gave the experimental animals different doses of the crude extract orally for thirty-five days. On the 35th day, the animals were fasted overnight and sacrificed by cervical dislocation. We collected the blood samples by cardiac puncture. We excised the liver and brain tissues for further histopathological studies. Subsequently, we analysed serum levels of the liver enzymes- Alanine Aminotransferase, Aspartate Aminotransferase, Alkaline Phosphatase, Total Bilirubin, and Serum Albumin, using commercial kits in Cobas Integra 400 Plus Roche Analyzer Germany. We have also assessed the haematological profile using an automated haematology Analyser (Sysmex KX-2IN). Results: A significant (P<0.05) decrease in serum enzymes (ALT and AST) and total bilirubin were observed in groups that received the highest dose (300mg/kg) of the seed extract. And significant (P<0.05) elevation of total red blood cell count, haemoglobin, and hematocrit percentage was observed in the groups that received the seed extract compared to the HAART-treated groups. The WBC count mean values showed a statistically significant increase (p<0.05) in groups that received HAART and 200 and 300mg/kg extract, respectively. The histopathological observations also showed that the oral administration of varying doses of the crude extract of the seed reversed to a normal state. Conclusion: The hydroethanolic extract of the Calpurnia aurea seed lowered the hepatotoxicity and haematotoxicity in a dose-dependent manner. The antioxidant properties of the Calpurnia aurea seed extract may have possible protective effects against the drug's toxicity.

Keywords: calpurnia aurea, hepatotoxicity, haematotoxicity, antioxidant, histopathology, HAART

Procedia PDF Downloads 75
174 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro

Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich

Abstract:

Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.

Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve

Procedia PDF Downloads 128
173 A Preliminary in vitro Investigation of the Acetylcholinesterase and α-Amylase Inhibition Potential of Pomegranate Peel Extracts

Authors: Zoi Konsoula

Abstract:

The increasing prevalence of Alzheimer’s disease (AD) and diabetes mellitus (DM) constitutes them major global health problems. Recently, the inhibition of key enzyme activity is considered a potential treatment of both diseases. Specifically, inhibition of acetylcholinesterase (AChE), the key enzyme involved in the breakdown of the neurotransmitter acetylcholine, is a promising approach for the treatment of AD, while inhibition of α-amylase retards the hydrolysis of carbohydrates and, thus, reduces hyperglycemia. Unfortunately, commercially available AChE and α-amylase inhibitors are reported to possess side effects. Consequently, there is a need to develop safe and effective treatments for both diseases. In the present study, pomegranate peel (PP) was extracted using various solvents of increasing polarity, while two extraction methods were employed, the conventional maceration and the ultrasound assisted extraction (UAE). The concentration of bioactive phytoconstituents, such as total phenolics (TPC) and total flavonoids (TFC) in the prepared extracts was evaluated by the Folin-Ciocalteu and the aluminum-flavonoid complex method, respectively. Furthermore, the anti-neurodegenerative and anti-hyperglycemic activity of all extracts was determined using AChE and α-amylase inhibitory activity assays, respectively. The inhibitory activity of the extracts against AChE and α-amylase was characterized by estimating their IC₅₀ value using a dose-response curve, while galanthamine and acarbose were used as positive controls, respectively. Finally, the kinetics of AChE and α-amylase in the presence of the most inhibitory potent extracts was determined by the Lineweaver-Burk plot. The methanolic extract prepared using the UAE contained the highest amount of phytoconstituents, followed by the respective ethanolic extract. All extracts inhibited acetylcholinesterase in a dose-dependent manner, while the increased anticholinesterase activity of the methanolic (IC₅₀ = 32 μg/mL) and ethanolic (IC₅₀ = 42 μg/mL) extract was positively correlated with their TPC content. Furthermore, the activity of the aforementioned extracts was comparable to galanthamine. Similar results were obtained in the case of α-amylase, however, all extracts showed lower inhibitory effect on the carbohydrate hydrolyzing enzyme than on AChE, since the IC₅₀ value ranged from 84 to 100 μg/mL. Also, the α-amylase inhibitory effect of the extracts was lower than acarbose. Finally, the methanolic and ethanolic extracts prepared by UAE inhibited both enzymes in a mixed (competitive/noncompetitive) manner since the Kₘ value of both enzymes increased in the presence of extracts, while the Vmax value decreased. The results of the present study indicate that PP may be a useful source of active compounds for the management of AD and DM. Moreover, taking into consideration that PP is an agro-industrial waste product, its valorization could not only result in economic efficiency but also reduce the environmental pollution.

Keywords: acetylcholinesterase, Alzheimer’s disease, α-amylase, diabetes mellitus, pomegranate

Procedia PDF Downloads 104
172 Controlled Drug Delivery System for Delivery of Poor Water Soluble Drugs

Authors: Raj Kumar, Prem Felix Siril

Abstract:

The poor aqueous solubility of many pharmaceutical drugs and potential drug candidates is a big challenge in drug development. Nanoformulation of such candidates is one of the major solutions for the delivery of such drugs. We initially developed the evaporation assisted solvent-antisolvent interaction (EASAI) method. EASAI method is use full to prepared nanoparticles of poor water soluble drugs with spherical morphology and particles size below 100 nm. However, to further improve the effect formulation to reduce number of dose and side effect it is important to control the delivery of drugs. However, many drug delivery systems are available. Among the many nano-drug carrier systems, solid lipid nanoparticles (SLNs) have many advantages over the others such as high biocompatibility, stability, non-toxicity and ability to achieve controlled release of drugs and drug targeting. SLNs can be administered through all existing routes due to high biocompatibility of lipids. SLNs are usually composed of lipid, surfactant and drug were encapsulated in lipid matrix. A number of non-steroidal anti-inflammatory drugs (NSAIDs) have poor bioavailability resulting from their poor aqueous solubility. In the present work, SLNs loaded with NSAIDs such as Nabumetone (NBT), Ketoprofen (KP) and Ibuprofen (IBP) were successfully prepared using different lipids and surfactants. We studied and optimized experimental parameters using a number of lipids, surfactants and NSAIDs. The effect of different experimental parameters such as lipid to surfactant ratio, volume of water, temperature, drug concentration and sonication time on the particles size of SLNs during the preparation using hot-melt sonication was studied. It was found that particles size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. SLNs prepared at optimized condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). We successfully prepared the SLN of below 220 nm using different lipids and surfactants combination. The drugs KP, NBT and IBP showed 74%, 69% and 53% percentage of entrapment efficiency with drug loading of 2%, 7% and 6% respectively in SLNs of Campul GMS 50K and Gelucire 50/13. In-vitro drug release profile of drug loaded SLNs is shown that nearly 100% of drug was release in 6 h.

Keywords: nanoparticles, delivery, solid lipid nanoparticles, hot-melt sonication, poor water soluble drugs, solubility, bioavailability

Procedia PDF Downloads 291
171 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 97
170 Pregnancy Rate and Outcomes after Uterine Fibroid Embolization Single Centre Experience in the Middle East from the United Arab Emirates at Alain Hospital

Authors: Jamal Alkoteesh, Mohammed Zeki, Mouza Alnaqbi

Abstract:

Objective: To evaluate pregnancy outcomes, complications and neonatal outcomes in women who had previously undergone uterine arterial embolization. Design: Retrospective study. In this study, most women opted for UFE as a fertility treatment after failure of myomectomy or in vitro fertilization, or because hysterectomy was the only suggested option. Background. Myomectomy is the standard approach in patients with fibroids desiring a future pregnancy. However, myomectomy may be difficult in cases of numerous interstitial and/or submucous fibroids.In these cases, UFE has the advantage of embolizing all fibroids in one procedure. This procedure is an accepted nonsurgical treatment for symptomatic uterine fibroids. Study Methods: A retrospective study of 210 patients treated with UFE for symptomatic uterine fibroids between 2011-2016 was performed. UFE was performed using ((PVA; Embozen, Beadblock) (500-900 µm in diameter). Pregnancies were identified using screening questionnaires and the study database. Of the 210 patients who received UFE treatment, 35 women younger than the age of 40 wanted to conceive and had been unable. All women in our study were advised to wait six months or more after UFE before attempting to become pregnant, of which the reported time range before attempting to conceive was seven to 33 months (average 20 months). RESULTS: In a retrospective chart review of patients younger than the age of 40 (35 patients,18 patients reported 23 pregnancies, of which five were miscarriages. Two more pregnancies were complicated by premature labor. Of the 23 pregnancies, 16 were normal full-term pregnancies, 15 women had conceived once, and four had become pregnant twice. The remaining patients did not conceive. In the study, there was no reported intrauterine growth retardation in the prenatal period, fetal distress during labor, or problems related to uterine integrity. Two patients reported minor problems during pregnancy that were borderline oligohydramnios and low-lying placenta. In the cohort of women who did conceive, overall, 16 out of 18 births proceeded normally without any complications (86%). Eight women delivered by cesarean section, and 10 women had normal vaginal delivery. In this study of 210 women, UFE had a fertility rate of 47%. Our group of 23 pregnancies was small, but did confirm successful pregnancy after UFE. The 45.7% pregnancy rate in women below the age of 40 years old who completed a term pregnancy compares favorably with women who underwent myomectomy via other method. Of the women in the cohort who did conceive, subsequent birth proceeded normally (86%). Conclusion: Pregnancy after UFE is well-documented. The risks of infertility following embolization, premature menopause, and hysterectomy are small, as is the radiation exposure during embolization. Fertility rates appear similar to patients undergoing myomectomy.UFE should not be contraindicated in patients who want to conceive and they should be able to choose between surgical options and UFE.

Keywords: fibroid, pregnancy, therapeutic embolization, uterine artery

Procedia PDF Downloads 214
169 Sceletium Tortuosum: A review on its Phytochemistry, Pharmacokinetics, Biological and Clinical Activities

Authors: Tomi Lois Olatunji, Frances Siebert, Ademola Emmanuel Adetunji, Brian Harvey, Johane Gericke, Josias Hamman, Frank Van Der Kooy

Abstract:

Ethnopharmacological relevance: Sceletium tortuosum (L.) N.E.Br, the most sought after and widely researched species in the genus Sceletium is a succulent forb endemic to South Africa. Traditionally, this medicinal plant is mainly masticated or smoked and used for the relief of toothache, abdominal pain, and as a mood-elevator, analgesic, hypnotic, anxiolytic, thirst and hunger suppressant, and for its intoxicating/euphoric effects. Sceletium tortuosum is currently of widespread scientific interest due to its clinical potential in treating anxiety and depression, relieving stress in healthy individuals, and enhancing cognitive functions. These pharmacological actions are attributed to its phytochemical constituents referred to as mesembrine-type alkaloids. Aim of the review: The aim of this review was to comprehensively summarize and critically evaluate recent research advances on the phytochemistry, pharmacokinetics, biological and clinical activities of the medicinal plant S. tortuosum. Additionally, current ongoing research and future perspectives are also discussed. Methods: All relevant scientific articles, books, MSc and Ph.D. dissertations on botany, behavioral pharmacology, traditional uses, and phytochemistry of S. tortuosum were retrieved from different databases (including Science Direct, PubMed, Google Scholar, Scopus and Web of Science). For pharmacokinetics and pharmacological effects of S. tortuosum, the focus fell on relevant publications published between 2009 and 2021. Results: Twenty-five alkaloids belonging to four structural classes viz: mesembrine, Sceletium A4, joubertiamine, and tortuosamine, have been identified from S. tortuosum, of which the mesembrine class is predominant. The crude extracts and commercially available standardized extracts of S. tortuosum have displayed a wide spectrum of biological activities (e.g. antimalarial, anti-oxidant, immunomodulatory, anti-HIV, neuroprotection, enhancement of cognitive function) in in vitro or in vivo studies. This plant has not yet been studied in a clinical population, but has potential for enhancing cognitive function, and managing anxiety and depression. Conclusion: As an important South African medicinal plant, S. tortuosum has garnered many research advances on its phytochemistry and biological activities over the last decade. These scientific studies have shown that S. tortuosum has various bioactivities. The findings have further established the link between the phytochemistry and pharmacological application, and support the traditional use of S. tortuosum in the indigenous medicine of South Africa.

Keywords: Aizoaceae, Mesembrine, Serotonin, Sceletium tortuosum, Zembrin®, psychoactive, antidepressant

Procedia PDF Downloads 191
168 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 181
167 The Molecular Mechanism of Vacuolar Function in Yeast Cell Homeostasis

Authors: Chang-Hui Shen, Paulina Konarzewska

Abstract:

Cell homeostasis is regulated by vacuolar activity and it has been shown that lipid composition of the vacuole plays an important role in vacuolar function. The major phosphoinositide species present in the vacuolar membrane include phosphatidylinositol 3,5-biphosphate (PI(3,5)P₂) which is generated from PI(3)P controlled by Fab1p. Deletion of FAB1 gene reduce the synthesis of PI(3,5)P₂ and thus result in enlarged or fragmented vacuoles, with neutral vacuolar pH due to reduced vacuolar H⁺-ATPase activity. These mutants also exhibited poor growth at high extracellular pH and in the presence of CaCl₂. Conversely, VPS34 regulates the synthesis of PI(3)P from phosphatidylinositol (PI), and the lack of Vps34p results in the reduction of vacuolar activity. Although the cellular observations are clear, it is still unknown about the molecular mechanism between the phospholipid biosynthesis pathway and vacuolar activity. Since both VPS34 and FAB1 are important in vacuolar activity, we hypothesize that the molecular mechanism of vacuolar function might be regulated by the transcriptional regulators of phospholipid biosynthesis. In this study, we study the role of the major phospholipid biosynthesis transcription factor, INO2, in the regulation of vacuolar activity. We first performed qRT-PCR to examine the effect of Ino2p on the expression of VPS34 and FAB1. Our results showed that VPS34 was upregulated in the presence of inositol for both WT and ino2Δ cells. However, FAB1 was only upregulated significantly in ino2Δ cells. This indicated that Ino2p might be the negative regulator for FAB1 expression. Next, growth sensitivity experiment showed that WT, vma3Δ, and ino2Δ grew well in growth medium buffered to pH 5.5 containing 10 mM CaCl₂. As cells were switched to growth medium buffered to pH 7 containing CaCl₂ WT, ino2Δ and opi1Δ showed growth reduction, whereas vma3Δ was completely nonviable. As the concentration of CaCl₂ was increased to 60 mM, ino2Δ cells showed moderate growth reduction compared to WT. This result suggests that ino2Δ cells have better vacuolar activity. Microscopic analysis and vacuolar acidification were employed to further elucidate the importance of INO2 in vacuolar homeostasis. Analysis of vacuolar morphology indicated that WT and vma3Δ cells displayed vacuoles that occupied a small area of the cell when grown in media buffered to pH 5.5. Whereas, ino2Δ displayed fragmented vacuoles. On the other hand, all strains grown in media buffered to pH 7, exhibited enlarged vacuoles that occupied most of the cell’s surface. This indicated that the presence of INO2 may play negative effect in vacuolar morphology when cells are grown in media buffered to pH 5.5. Furthermore, vacuolar acidification assay showed that only vma3Δ cells displayed notably less acidic vacuoles as cells were grown in media buffered to pH 5.5 and pH 7. Whereas, ino2Δ cells displayed more acidic pH compared to WT at pH7. Taken together, our results demonstrated the molecular mechanism of the vacuolar activity regulated by the phospholipid biosynthesis transcription factors Ino2p. Ino2p negatively regulates vacuolar activity through the expression of FAB1.

Keywords: vacuole, phospholipid, homeostasis, Ino2p, FAB1

Procedia PDF Downloads 110
166 Evidence for Replication of an Unusual G8P[14] Human Rotavirus Strain in the Feces of an Alpine Goat: Zoonotic Transmission from Caprine Species

Authors: Amine Alaoui Sanae, Tagjdid Reda, Loutfi Chafiqa, Melloul Merouane, Laloui Aziz, Touil Nadia, El Fahim, E. Mostafa

Abstract:

Background: Rotavirus group A (RVA) strains with G8P[14] specificities are usually detected in calves and goats. However, these strains have been reported globally in humans and have often been characterized as originating from zoonotic transmissions, particularly in area where ruminants and humans live side-by-side. Whether human P[14] genotypes are two-way and can be transmitted to animal species remains to be established. Here we describe VP4 deduced amino-acid relationships of three Moroccan P[14] genotypes originating from different species and the receptiveness of an alpine goat to a human G8P[14] through an experimental infection. Material/methods: the human MA31 RVA strain was originally identified in a four years old girl presenting an acute gastroenteritis hospitalized at the pediatric care unit in Rabat Hospital in 2011. The virus was isolated and propagated in MA104 cells in the presence of trypsin. Ch_10S and 8045_S animal RVA strains were identified in fecal samples of a 2-week-old native goat and 3-week-old calf with diarrhea in 2011 in Bouaarfa and My Bousselham respectively. Genomic RNAs of all strains were subjected to a two-step RT-PCR and sequenced using the consensus primers VP4. The phylogenetic tree for MA31, Ch_10S and 8045_S VP4 and a set of published P[14] genotypes was constructed using MEGA6 software. The receptivity of MA31 strain by an eight month-old alpine goat was assayed. The animal was orally and intraperitonally inoculated with a dose of 8.5 TCID50 of virus stock at passage level 3. The shedding of the virus was tested by a real time RT-PCR assay. Results: The phylogenetic tree showed that the three Moroccan strains MA31, Ch_10S and 8045_S VP4 were highly related to each other (100% similar at the nucleotide level). They were clustered together with the B10925, Sp813, PA77 and P169 strains isolated in Belgium, Spain and Italy respectively. The Belgian strain B10925 was the most closely related to the Moroccan strains. In contrast, the 8045_S and Ch_10S strains were clustered distantly from the Tunisian calf strain B137 and the goat strain cap455 isolated in South Africa respectively. The human MA31 RVA strain was able to induce bloody diarrhea at 2 days post infection (dpi) in the alpine goat kid. RVA virus shedding started by 2 dpi (Ct value of 28) and continued until 5 dpi (Ct value of 25) with a concomitant elevation in the body temperature. Conclusions: Our study while limited to one animal, is the first study proving experimentally that a human P[14] genotype causes diarrhea and virus shedding in the goat. This result reinforce the potential role of inter- species transmission in generating novel and rare rotavirus strains such G8P[14] which infect humans.

Keywords: interspecies transmission, rotavirus, goat, human

Procedia PDF Downloads 262
165 Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research

Authors: Paula I. Buonfiglio, Carlos David Bruque, Lucia Salatino, Vanesa Lotersztein, Sebastián Menazzi, Paola Plazas, Ana Belén Elgoyhen, Viviana Dalamón

Abstract:

Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment.

Keywords: diagnosis, genetics, hearing loss, in silico analysis, in vivo analysis, WES, zebrafish

Procedia PDF Downloads 69
164 Bacteriophage Is a Novel Solution of Therapy Against S. aureus Having Multiple Drug Resistance

Authors: Sanjay Shukla, A. Nayak, R. K. Sharma, A. P. Singh, S. P. Tiwari

Abstract:

Excessive use of antibiotics is a major problem in the treatment of wounds and other chronic infections, and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most promising approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of the present study was to evaluate the efficacy of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by the double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in the double agar overlay method out of 150 sewage samples. In TEM, recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9, and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate were very safe, did not show any appearance of abscess formation, which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureuswhich indicates that they are good prophylactic agent. The S. aureusinoculated mice were completely recovered by bacteriophage administration with 100% recovery, which was very good as compere to conventional therapy. In the present study, ten chronic cases of the wound were treated with phage lysate, and follow up of these cases was done regularly up to ten days (at 0, 5, and 10 d). The result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for the treatment of septic chronic wounds.

Keywords: phage therapy, S aureus, antimicrobial resistance, lytic phage, and bacteriophage

Procedia PDF Downloads 98
163 Pediatric Drug Resistance Tuberculosis Pattern, Side Effect Profile and Treatment Outcome: North India Experience

Authors: Sarika Gupta, Harshika Khanna, Ajay K Verma, Surya Kant

Abstract:

Background: Drug-resistant tuberculosis (DR-TB) is a growing health challenge to global TB control efforts. Pediatric DR-TB is one of the neglected infectious diseases. In our previously published report, we have notified an increased prevalence of DR-TB in the pediatric population at a tertiary health care centre in North India which was estimated as 17.4%, 15.1%, 18.4%, and 20.3% in (%) in the year 2018, 2019, 2020, and 2021. Limited evidence exists about a pattern of drug resistance, side effect profile and programmatic outcomes of Paediatric DR-TB treatment. Therefore, this study was done to find out the pattern of resistance, side effect profile and treatment outcome. Methodology: This was a prospective cohort study conducted at the nodal drug-resistant tuberculosis centre of a tertiary care hospital in North India from January 2021 to December 2022. Subjects included children aged between 0-18 years of age with a diagnosis of DR-TB, on the basis of GeneXpert (rifampicin [RIF] resistance detected), line probe assay and drug sensitivity testing (DST) of M. tuberculosis (MTB) grown on a culture of body fluids. Children were classified as monoresistant TB, polyresistant TB (resistance to more than 1 first-line anti-TB drug, other than both INH and RIF), MDR-TB, pre-XDR-TB and XDR-TB, as per the WHO classification. All the patients were prescribed DR TB treatment as per the standard guidelines, either shorter oral DR-TB regimen or a longer all-oral MDR/XDR-TB regimen (age below five years needed modification). All the patients were followed up for side effects of treatment once per month. The patient outcomes were categorized as good outcomes if they had completed treatment and cured or were improving during the course of treatment, while bad outcomes included death or not improving during the course of treatment. Results: Of the 50 pediatric patients included in the study, 34 were females (66.7%) and 16 were male (31.4%). Around 33 patients (64.7%) were suffering from pulmonary TB, while 17 (33.3%) were suffering from extrapulmonary TB. The proportions of monoresistant TB, polyresistant TB, MDR-TB, pre-XDR-TB and XDR-TB were 2.0%, 0%, 50.0%, 30.0% and 18.0%, respectively. Good outcome was reported in 40 patients (80.0%). The 10 bad outcomes were 7 deaths (14%) and 3 (6.0%) children who were not improving. Adverse events (single or multiple) were reported in all the patients, most of which were mild in nature. The most common adverse events were metallic taste 16(31.4%), rash and allergic reaction 15(29.4%), nausea and vomiting 13(26.0%), arthralgia 11 (21.6%) and alopecia 11 (21.6%). Serious adverse event of QTc prolongation was reported in 4 cases (7.8%), but neither arrhythmias nor symptomatic cardiac side effects occurred. Vestibular toxicity was reported in 2(3.9%), and psychotic symptoms in 4(7.8%). Hepatotoxicity, hypothyroidism, peripheral neuropathy, gynaecomastia, and amenorrhea were reported in 2 (4.0%), 4 (7.8%), 2 (3.9%), 1(2.0%), and 2 (3.9%) respectively. None of the drugs needed to be withdrawn due to uncontrolled adverse events. Conclusion: Paediatric DR TB treatment achieved favorable outcomes in a large proportion of children. DR TB treatment regimen drugs were overall well tolerated in this cohort.

Keywords: pediatric, drug-resistant, tuberculosis, adverse events, treatment

Procedia PDF Downloads 43
162 Relationship between Iron-Related Parameters and Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Iron is physiologically essential. However, it also participates in the catalysis of free radical formation reactions. Its deficiency is associated with amplified health risks. This trace element establishes some links with another physiological process related to cell death, apoptosis. Both iron deficiency and iron overload are closely associated with apoptosis. Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) has the ability to trigger apoptosis and plays a dual role in the physiological versus pathological inflammatory responses of tissues. The aim of this study was to investigate the status of these parameters as well as the associations among them in children with obesity, a low-grade inflammatory state. The study was performed on groups of children with normal body mass index (N-BMI) and obesity. Forty-three children were included in each group. Based upon age- and sex-adjusted BMI percentile tables prepared by World Health Organization, children whose values varied between 85 and 15 were included in N-BMI group. Children whose BMI percentile values were between 99 and 95 comprised obese (OB) group. Institutional ethical committee approval and informed consent forms were taken prior to the study. Anthropometric measurements (weight, height, waist circumference, hip circumference, head circumference, neck circumference) and blood pressure values (systolic blood pressure and diastolic blood pressure) were recorded. Routine biochemical analysis including serum iron, total iron binding capacity (TIBC), transferrin saturation percent (Tf Sat %), and ferritin were performed. Soluble tumor necrosis factor-like weak inducer of apoptosis levels were determined by enzyme-linked immunosorbent assay. Study data was evaluated using appropriate statistical tests performed by the statistical program SPSS. Serum iron levels were 91±34 mcrg/dl and 75±31 mcrg/dl in N-BMI and OB children, respectively. The corresponding values for TIBC, Tf Sat %, ferritin were 265 mcrg/dl vs 299 mcrg/dl, 37.2±19.1 % vs 26.7±14.6 %, and 41±25 ng/ml vs 44±26 ng/ml. in N-BMI and OB groups, sTWEAK concentrations were measured as 351 ng/L and 325 ng/L, respectively (p>0.05). Correlation analysis revealed significant associations between sTWEAK levels and iron related parameters (p<0.05) except ferritin. In conclusion, iron contributes to apoptosis. Children with iron deficiency have decreased apoptosis rate in comparison with that of healthy children. sTWEAK is inducer of apoptosis. Obese children had lower levels of both iron and sTWEAK. Low levels of sTWEAK are associated with several types of cancers and poor survival. Although iron deficiency state was not observed in this study, the correlations detected between decreased sTWEAK and decreased iron as well as Tf Sat % values were valuable findings, which point out decreased apoptosis. This may induce a proinflammatory state, potentially leading to malignancies in the future lives of obese children.

Keywords: apoptosis, children, iron-related parameters, obesity, soluble tumor necrosis factor-like weak inducer of apoptosis

Procedia PDF Downloads 112
161 High Throughput Virtual Screening against ns3 Helicase of Japanese Encephalitis Virus (JEV)

Authors: Soma Banerjee, Aamen Talukdar, Argha Mandal, Dipankar Chaudhuri

Abstract:

Japanese Encephalitis is a major infectious disease with nearly half the world’s population living in areas where it is prevalent. Currently, treatment for it involves only supportive care and symptom management through vaccination. Due to the lack of antiviral drugs against Japanese Encephalitis Virus (JEV), the quest for such agents remains a priority. For these reasons, simulation studies of drug targets against JEV are important. Towards this purpose, docking experiments of the kinase inhibitors were done against the chosen target NS3 helicase as it is a nucleoside binding protein. Previous efforts regarding computational drug design against JEV revealed some lead molecules by virtual screening using public domain software. To be more specific and accurate regarding finding leads, in this study a proprietary software Schrödinger-GLIDE has been used. Druggability of the pockets in the NS3 helicase crystal structure was first calculated by SITEMAP. Then the sites were screened according to compatibility with ATP. The site which is most compatible with ATP was selected as target. Virtual screening was performed by acquiring ligands from databases: KinaseSARfari, KinaseKnowledgebase and Published inhibitor Set using GLIDE. The 25 ligands with best docking scores from each database were re-docked in XP mode. Protein structure alignment of NS3 was performed using VAST against MMDB, and similar human proteins were docked to all the best scoring ligands. The low scoring ligands were chosen for further studies and the high scoring ligands were screened. Seventy-three ligands were listed as the best scoring ones after performing HTVS. Protein structure alignment of NS3 revealed 3 human proteins with RMSD values lesser than 2Å. Docking results with these three proteins revealed the inhibitors that can interfere and inhibit human proteins. Those inhibitors were screened. Among the ones left, those with docking scores worse than a threshold value were also removed to get the final hits. Analysis of the docked complexes through 2D interaction diagrams revealed the amino acid residues that are essential for ligand binding within the active site. Interaction analysis will help to find a strongly interacting scaffold among the hits. This experiment yielded 21 hits with the best docking scores which could be investigated further for their drug like properties. Aside from getting suitable leads, specific NS3 helicase-inhibitor interactions were identified. Selection of Target modification strategies complementing docking methodologies which can result in choosing better lead compounds are in progress. Those enhanced leads can lead to better in vitro testing.

Keywords: antivirals, docking, glide, high-throughput virtual screening, Japanese encephalitis, ns3 helicase

Procedia PDF Downloads 208
160 Association of Zinc with New Generation Cardiovascular Risk Markers in Childhood Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Zinc is a vital element required for growth and development. This fact makes zinc important, particularly for children. It maintains normal cellular structure and functions. This essential element appears to have protective effects against coronary artery disease and cardiomyopathy. Higher serum zinc levels are associated with lower risk of cardiovascular diseases (CVDs). There is a significant association between low serum zinc levels and heart failure. Zinc may be a potential biomarker of cardiovascular health. High sensitive cardiac troponin T (hs-cTnT) and cardiac myosin binding protein C (cMyBP-C) are new generation markers used for prediagnosis, diagnosis, and prognosis of CVDs. The aim of this study is to determine zinc as well as new generation cardiac markers profiles in children with normal body mass index (N-BMI), obese (OB), morbid obese (MO) children, and children with metabolic syndrome (MetS) findings. The association among them will also be investigated. Four study groups were constituted. The study protocol was approved by the institutional Ethics Committee of Tekirdag Namik Kemal University. Parents of the participants filled informed consent forms to participate in the study. Group 1 is composed of 44 children with N-BMI. Group 2 and Group 3 comprised 43 OB and 45 MO children, respectively. Forty-five MO children with MetS findings were included in Group 4. World Health Organization age- and sex-adjusted BMI percentile tables were used to constitute groups. These values were 15-85, 95-99, and above 99 for N-BMI, OB, and MO, respectively. Criteria for MetS findings were determined. Routine biochemical analyses, including zinc, were performed. High sensitive-cTnT and cMyBP-C concentrations were measured by kits based on enzyme-linked immunosorbent assay principle. Appropriate statistical tests within the scope of SPSS were used for the evaluation of the study data. p<0.05 was accepted as statistically significant. Four groups were matched for age and gender. Decreased zinc concentrations were measured in Groups 2, 3, and 4 compared to Group 1. Groups did not differ from one another in terms of hs-cTnT. There were statistically significant differences between cMyBP-C levels of MetS group and N-BMI as well as OB groups. There was an increasing trend going from N-BMI group to MetS group. There were statistically significant negative correlations between zinc and hs-cTnT as well as cMyBP-C concentrations in MetS group. In conclusion, inverse correlations detected between zinc and new generation cardiac markers (hs-TnT and cMyBP-C) have pointed out that decreased levels of this physiologically essential trace element accompany increased levels of hs-cTnT as well as cMyBP-C in children with MetS. This finding emphasizes that both zinc and these new generation cardiac markers may be evaluated as biomarkers of cardiovascular health during severe childhood obesity precipitated with MetS findings and also suggested as the messengers of the future risk in the adulthood periods of children with MetS.

Keywords: cardiac myosin binding protein-C, cardiovascular diseases, children, high sensitive cardiac troponin T, obesity

Procedia PDF Downloads 94
159 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 133
158 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function

Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen

Abstract:

This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).

Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance

Procedia PDF Downloads 264
157 Design, Development and Testing of Polymer-Glass Microfluidic Chips for Electrophoretic Analysis of Biological Sample

Authors: Yana Posmitnaya, Galina Rudnitskaya, Tatyana Lukashenko, Anton Bukatin, Anatoly Evstrapov

Abstract:

An important area of biological and medical research is the study of genetic mutations and polymorphisms that can alter gene function and cause inherited diseases and other diseases. The following methods to analyse DNA fragments are used: capillary electrophoresis and electrophoresis on microfluidic chip (MFC), mass spectrometry with electrophoresis on MFC, hybridization assay on microarray. Electrophoresis on MFC allows to analyse small volumes of samples with high speed and throughput. A soft lithography in polydimethylsiloxane (PDMS) was chosen for operative fabrication of MFCs. A master-form from silicon and photoresist SU-8 2025 (MicroChem Corp.) was created for the formation of micro-sized structures in PDMS. A universal topology which combines T-injector and simple cross was selected for the electrophoretic separation of the sample. Glass K8 and PDMS Sylgard® 184 (Dow Corning Corp.) were used for fabrication of MFCs. Electroosmotic flow (EOF) plays an important role in the electrophoretic separation of the sample. Therefore, the estimate of the quantity of EOF and the ways of its regulation are of interest for the development of the new methods of the electrophoretic separation of biomolecules. The following methods of surface modification were chosen to change EOF: high-frequency (13.56 MHz) plasma treatment in oxygen and argon at low pressure (1 mbar); 1% aqueous solution of polyvinyl alcohol; 3% aqueous solution of Kolliphor® P 188 (Sigma-Aldrich Corp.). The electroosmotic mobility was evaluated by the method of Huang X. et al., wherein the borate buffer was used. The influence of physical and chemical methods of treatment on the wetting properties of the PDMS surface was controlled by the sessile drop method. The most effective way of surface modification of MFCs, from the standpoint of obtaining the smallest value of the contact angle and the smallest value of the EOF, was the processing with aqueous solution of Kolliphor® P 188. This method of modification has been selected for the treatment of channels of MFCs, which are used for the separation of mixture of oligonucleotides fluorescently labeled with the length of chain with 10, 20, 30, 40 and 50 nucleotides. Electrophoresis was performed on the device MFAS-01 (IAI RAS, Russia) at the separation voltage of 1500 V. 6% solution of polydimethylacrylamide with the addition of 7M carbamide was used as the separation medium. The separation time of components of the mixture was determined from electropherograms. The time for untreated MFC was ~275 s, and for the ones treated with solution of Kolliphor® P 188 – ~ 220 s. Research of physical-chemical methods of surface modification of MFCs allowed to choose the most effective way for reducing EOF – the modification with aqueous solution of Kolliphor® P 188. In this case, the separation time of the mixture of oligonucleotides decreased about 20%. The further optimization of method of modification of channels of MFCs will allow decreasing the separation time of sample and increasing the throughput of analysis.

Keywords: electrophoresis, microfluidic chip, modification, nucleic acid, polydimethylsiloxane, soft lithography

Procedia PDF Downloads 388
156 Magnetofluidics for Mass Transfer and Mixing Enhancement in a Micro Scale Device

Authors: Majid Hejazian, Nam-Trung Nguyen

Abstract:

Over the past few years, microfluidic devices have generated significant attention from industry and academia due to advantages such as small sample volume, low cost and high efficiency. Microfluidic devices have applications in chemical, biological and industry analysis and can facilitate assay of bio-materials and chemical reactions, separation, and sensing. Micromixers are one of the important microfluidic concepts. Micromixers can work as stand-alone devices or be integrated in a more complex microfluidic system such as a lab on a chip (LOC). Micromixers are categorized as passive and active types. Passive micromixers rely only on the arrangement of the phases to be mixed and contain no moving parts and require no energy. Active micromixers require external fields such as pressure, temperature, electric and acoustic fields. Rapid and efficient mixing is important for many applications such as biological, chemical and biochemical analysis. Achieving fast and homogenous mixing of multiple samples in the microfluidic devices has been studied and discussed in the literature recently. Improvement in mixing rely on effective mass transport in microscale, but are currently limited to molecular diffusion due to the predominant laminar flow in this size scale. Using magnetic field to elevate mass transport is an effective solution for mixing enhancement in microfluidics. The use of a non-uniform magnetic field to improve mass transfer performance in a microfluidic device is demonstrated in this work. The phenomenon of mixing ferrofluid and DI-water streams has been reported before, but mass transfer enhancement for other non-magnetic species through magnetic field have not been studied and evaluated extensively. In the present work, permanent magnets were used in a simple microfluidic device to create a non-uniform magnetic field. Two streams are introduced into the microchannel: one contains fluorescent dye mixed with diluted ferrofluid to induce enhanced mass transport of the dye, and the other one is a non-magnetic DI-water stream. Mass transport enhancement of fluorescent dye is evaluated using fluorescent measurement techniques. The concentration field is measured for different flow rates. Due to effect of magnetic field, a body force is exerted on the paramagnetic stream and expands the ferrofluid stream into non-magnetic DI-water flow. The experimental results demonstrate that without a magnetic field, both magnetic nanoparticles of the ferrofluid and the fluorescent dye solely rely on molecular diffusion to spread. The non-uniform magnetic field, created by the permanent magnets around the microchannel, and diluted ferrofluid can improve mass transport of non-magnetic solutes in a microfluidic device. The susceptibility mismatch between the fluids results in a magnetoconvective secondary flow towards the magnets and subsequently the mass transport of the non-magnetic fluorescent dye. A significant enhancement in mass transport of the fluorescent dye was observed. The platform presented here could be used as a microfluidics-based micromixer for chemical and biological applications.

Keywords: ferrofluid, mass transfer, micromixer, microfluidics, magnetic

Procedia PDF Downloads 203
155 In vitro Antioxidant, Anti-Diabetic and Nutritional Properties of Breynia retusa

Authors: Parimelazhagan Thangaraj

Abstract:

Natural products serves human kind as a source of all drugs and higher plants provide most of these therapeutic agents. These products are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities. Euphorbiaceae is one of the important families with significant pharmacological activities, of which many species has been used traditionally for the treatment of various ailments. Breynia retusa belongs to the family Euphorbiaceae is used to cure ailments like body pain, skin inflammation, hyperglycaemia, diarrhoea, dysentery and toothache. Flowers and young leaves of B. retusa are cooked and eaten, roots are used for meningitis. The juice of the stem is used in conjunctivtis and leaves as poultice to hasten suppuration. Based on the strong evidences of traditional uses of Breynia retusa, the present study was focused on neutraceuticals evaluation of the species with special reference to oxidative stress and diabetes. Both leaves and stem of B. retusa were extracted with different solvents and analyzed for radical scavenging ability wherein ABTS.+ (8396.95±1529.01 µM TEAC/g extract), phosphomolybdenum (17.34±0.08 g AAE/100 g extract) and FRAP (6075.66±414.28 µM Fe (II) E/mg extract) assays showed good radical scavenging activity in stem. Furthermore, leaf extracts showed good radical inhibition in DPPH (2.4 µg/mL), metal ion (27.44±0.09 mg EDTAE/g extract) scavenging methods. The α-amylase and α-glucosidase inhibitors are currently used for diabetic treatment as oral hypoglycemic agents. The inhibitory effects of the B. retusa leaf and stem ethyl acetate extracts showed good inhibition on α-amylase (96.25% and 95.69 respectively) and α-glucosidase (54.50% and 50.87% respectively) enzymes compared to standard acarbose. The proximate composition analysis of B. retusa leaves contains higher amount of total carbohydrates (14.08 g Glucose equivalents/100 g sample), ash (19.04 %) and crude fibre (0.52 %). The examination of mineral profile explored that the leaves was rich in calcium (1891 ppm), sulphur (1406 ppm), copper (2600 ppm) and magnesium (778 ppm). Leaves sample revealed very minimal amount of anti-nutrient contents like trypsin (14.08±0.03 TIU/mg protein) and tannin (0.011±0.001 mg TAE/g sample). The low anti nutritional factors may not pose any serious nutritional problems when these leaves are consumed. In conclusion, it is very clear that dietary compounds from B. retusa are suitable and promising for the development of safe food products and natural additives. Based on the studies, it may be concluded that nutritional composition, antioxidant and anti-diabetic activities this species can be used as future therapeutic medicine.

Keywords: Breynia retusa, nutraceuticals, antioxidant, anti diabetic

Procedia PDF Downloads 310
154 Gold Nano Particle as a Colorimetric Sensor of HbA0 Glycation Products

Authors: Ranjita Ghoshmoulick, Aswathi Madhavan, Subhavna Juneja, Prasenjit Sen, Jaydeep Bhattacharya

Abstract:

Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease where the blood sugar level goes up. One of the major consequence of this elevated blood sugar is the formation of AGE (Advance Glycation Endproducts), from a series of chemical or biochemical reactions. AGE are detrimental because it leads to severe pathogenic complications. They are a group of structurally diverse chemical compounds formed from nonenzymatic reactions between the free amino groups (-NH2) of proteins and carbonyl groups (>C=O) of reducing sugars. The reaction is known as Maillard Reaction. It starts with the formation of reversible schiff’s base linkage which after sometime rearranges itself to form Amadori Product along with dicarbonyl compounds. Amadori products are very unstable hence rearrangement goes on until stable products are formed. During the course of the reaction a lot of chemically unknown intermediates and reactive byproducts are formed that can be termed as Early Glycation Products. And when the reaction completes, structurally stable chemical compounds are formed which is termed as Advanced Glycation Endproducts. Though all glycation products have not been characterized well, some fluorescence compounds e.g pentosidine, Malondialdehyde (MDA) or carboxymethyllysine (CML) etc as AGE and α-dicarbonyls or oxoaldehydes such as 3-deoxyglucosone (3-DG) etc as the intermediates have been identified. In this work Gold NanoParticle (GNP) was used as an optical indicator of glycation products. To achieve faster glycation kinetics and high AGE accumulation, fructose was used instead of glucose. Hemoglobin A0 (HbA0) was fructosylated by in-vitro method. AGE formation was measured fluorimetrically by recording emission at 450nm upon excitation at 350nm. Thereafter this fructosylated HbA0 was fractionated by column chromatography. Fractionation separated the proteinaceous substance from the AGEs. Presence of protein part in the fractions was confirmed by measuring the intrinsic protein fluorescence and Bradford reaction. GNPs were synthesized using the templates of chromatographically separated fractions of fructosylated HbA0. Each fractions gave rise to GNPs of varying color, indicating the presence of distinct set of glycation products differing structurally and chemically. Clear solution appeared due to settling down of particles in some vials. The reactive groups of the intermediates kept the GNP formation mechanism on and did not lead to a stable particle formation till Day 10. Whereas SPR of GNP showed monotonous colour for the fractions collected in case of non fructosylated HbA0. Our findings accentuate the use of GNPs as a simple colorimetric sensing platform for the identification of intermediates of glycation reaction which could be implicated in the prognosis of the associated health risk due to T2DM and others.

Keywords: advance glycation endproducts, glycation, gold nano particle, sensor

Procedia PDF Downloads 287
153 Signal Transduction in a Myenteric Ganglion

Authors: I. M. Salama, R. N. Miftahof

Abstract:

A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.

Keywords: neuronal chain, signal transduction, plasticity, stability

Procedia PDF Downloads 372
152 The Toxic Effects of Kynurenine Metabolites on SH-SY5Y Neuroblastoma Cells

Authors: Susan Hall, Gary D. Grant, Catherine McDermott, Devinder Arora

Abstract:

Introduction /Aim: The kynurenine pathway is thought to play an important role in the pathophysiology of numerous neurodegenerative diseases including depression, Alzheimer’s disease, and Parkinson’s disease. Numerous neuroactive compounds, including the neurotoxic 3-hydroxyanthranilic acid, 3-hydroxykynurenine and quinolinic acid and the neuroprotective kynurenic acid and picolinic acid, are produced through the metabolism of kynurenine and are thought to be the causative agents responsible for neurodegeneration. The toxicity of 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid has been widely evaluated and demonstrated in primary cell cultures but to date only 3-hydroxykynurenine and 3-hydroxyanthranilic acid have been shown to cause toxicity in immortal tumour cells. The aim of this study was to evaluate the toxicity of kynurenine metabolites, both individually and in combination, on SH-SY5Y neuroblastoma cells after 24 and 72 h exposure in order to explore a cost-effective model to study their neurotoxic effects and potential protective agents. Methods: SH-SY5Y neuroblastoma cells were exposed to various concentrations of the neuroactive kynurenine metabolites, both individually and in combination, for 24 and 72 h, and viability was subsequently evaluated using the Resazurin (Alamar blue) proliferation assay. Furthermore, the effects of these compounds, alone and in combination, on specific death pathways including apoptosis, necrosis and free radical production was evaluated using various assays. Results: Consistent with literature, toxicity was shown with short-term 24-hour treatments at 1000 μM concentrations for both 3-hydroxykynurenine and 3-hydroxyanthranilic acid. Combinations of kynurenine metabolites showed modest toxicity towards SH-SY5Y neuroblastoma cells in a concentration-dependent manner. Specific cell death pathways, including apoptosis, necrosis and free radical production were shown to be increased after both 24 and 72 h exposure of SH-SY5Y neuroblastoma cells to 3-hydroxykynurenine and 3-hydroxyanthranilic acid and various combinations of neurotoxic kynurenine metabolites. Conclusion: It is well documented that neurotoxic kynurenine metabolites show toxicity towards primary human neurons in the nanomolar to low micromolar concentration range. Results show that the concentrations required to show significant cell death are in the range of 1000 µM for 3-hydroxykynurenine and 3-hydroxyanthranilic acid and toxicity of quinolinic acid towards SH-SY5Y was unable to be shown. This differs significantly from toxicities observed in primary human neurons. Combinations of the neurotoxic metabolites were shown to have modest toxicity towards these cells with increased toxicity and activation of cell death pathways observed after 72 h exposure. This study suggests that the 24 h model is unsuitable for use in neurotoxicity studies, however, the 72 h model better represents the observations of the studies using primary human neurons and may provide some benefit in providing a cost-effective model to assess possible protective agents against kynurenine metabolite toxicities.

Keywords: kynurenine metabolites, neurotoxicity, quinolinic acid, SH-SY5Y neuroblastoma

Procedia PDF Downloads 399
151 Assessing the Efficiency of Pre-Hospital Scoring System with Conventional Coagulation Tests Based Definition of Acute Traumatic Coagulopathy

Authors: Venencia Albert, Arulselvi Subramanian, Hara Prasad Pati, Asok K. Mukhophadhyay

Abstract:

Acute traumatic coagulopathy in an endogenous dysregulation of the intrinsic coagulation system in response to the injury, associated with three-fold risk of poor outcome, and is more amenable to corrective interventions, subsequent to early identification and management. Multiple definitions for stratification of the patients' risk for early acute coagulopathy have been proposed, with considerable variations in the defining criteria, including several trauma-scoring systems based on prehospital data. We aimed to develop a clinically relevant definition for acute coagulopathy of trauma based on conventional coagulation assays and to assess its efficacy in comparison to recently established prehospital prediction models. Methodology: Retrospective data of all trauma patients (n = 490) presented to our level I trauma center, in 2014, was extracted. Receiver operating characteristic curve analysis was done to establish cut-offs for conventional coagulation assays for identification of patients with acute traumatic coagulopathy was done. Prospectively data of (n = 100) adult trauma patients was collected and cohort was stratified by the established definition and classified as "coagulopathic" or "non-coagulopathic" and correlated with the Prediction of acute coagulopathy of trauma score and Trauma-Induced Coagulopathy Clinical Score for identifying trauma coagulopathy and subsequent risk for mortality. Results: Data of 490 trauma patients (average age 31.85±9.04; 86.7% males) was extracted. 53.3% had head injury, 26.6% had fractures, 7.5% had chest and abdominal injury. Acute traumatic coagulopathy was defined as international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s. Of the 100 adult trauma patients (average age 36.5±14.2; 94% males), 63% had early coagulopathy based on our conventional coagulation assay definition. Overall prediction of acute coagulopathy of trauma score was 118.7±58.5 and trauma-induced coagulopathy clinical score was 3(0-8). Both the scores were higher in coagulopathic than non-coagulopathic patients (prediction of acute coagulopathy of trauma score 123.2±8.3 vs. 110.9±6.8, p-value = 0.31; trauma-induced coagulopathy clinical score 4(3-8) vs. 3(0-8), p-value = 0.89), but not statistically significant. Overall mortality was 41%. Mortality rate was significantly higher in coagulopathic than non-coagulopathic patients (75.5% vs. 54.2%, p-value = 0.04). High prediction of acute coagulopathy of trauma score also significantly associated with mortality (134.2±9.95 vs. 107.8±6.82, p-value = 0.02), whereas trauma-induced coagulopathy clinical score did not vary be survivors and non-survivors. Conclusion: Early coagulopathy was seen in 63% of trauma patients, which was significantly associated with mortality. Acute traumatic coagulopathy defined by conventional coagulation assays (international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s) demonstrated good ability to identify coagulopathy and subsequent mortality, in comparison to the prehospital parameter-based scoring systems. Prediction of acute coagulopathy of trauma score may be more suited for predicting mortality rather than early coagulopathy. In emergency trauma situations, where immediate corrective measures need to be taken, complex multivariable scoring algorithms may cause delay, whereas coagulation parameters and conventional coagulation tests will give highly specific results.

Keywords: trauma, coagulopathy, prediction, model

Procedia PDF Downloads 160
150 Evaluation of Anti-inflammatory Activities of Extracts Obtained from Capparis Erythrocarpos In-Vivo

Authors: Benedict Ofori, Kwabena Sarpong, Stephen Antwi

Abstract:

Background: Medicinal plants are utilized all around the world and are becoming increasingly important economically. The WHO notes that ‘inappropriate use of traditional medicines or practices can have negative or dangerous effects and that future research is needed to ascertain the efficacy and safety of such practices and medicinal plants used by traditional medicine systems. The poor around the world have limited access to palliative care or pain relief. Pharmacologists have been focused on developing safe and effective anti-inflammatory drugs. Most of the issues related to their use have been linked to the fact that numerous traditional and herbal treatments are classified in different nations as meals or dietary supplements. As a result, there is no need for evidence of the quality, efficacy, or safety of these herbal formulations before they are marketed. The fact that access to drugs meant for pain relief is limited in low-income countries means advanced studies should be done on home drugs meant for inflammation to close the gap. Methods: The ethanolic extracts of the plant were screened for the presence of 10 phytochemicals. The Pierce BCA Protein Assay Kit was used for the determination of the protein concentration of the egg white. The rats were randomly selected and put in 6 groups. The egg white was sub-plantar injected into the right-hand paws of the rats to induce inflammation. The animals were treated with the three plant extracts obtained from the root bark, stem, and leaves of the plant. The control groups were treated with normal saline, while the standard groups were treated with standard drugs indomethacin and celecoxib. Plethysmometer was used to measure the change in paw volume of the animals over the course of the experiment. Results: The results of the phytochemical screening revealed the presence of reducing sugars and saponins. Alkaloids were present in only R.L.S (1:1:1), and phytosterols were found in R.L(1:1) and R.L.S (1:1:1). The estimated protein concentration was found to be 103.75 mg/ml. The control group had an observable increase in paw volume, which indicated that inflammation was induced during the 5 hours. The increase in paw volume for the control group peaked at the 1st hour and decreased gradually throughout the experiment, with minimal changes in the paw volumes. The 2nd and 3rd groups were treated with 20 mg/kg of indomethacin and celecoxib. The anti-inflammatory activities of indomethacin and celecoxib were calculated to be 21.4% and 4.28%, respectively. The remaining 3 groups were treated with 2 dose levels of 200mg/kg plant extracts. R.L.S, R.L, and S.R.L had anti-inflammatory activities of 22.3%, 8.2%, and 12.07%, respectively. Conclusions: Egg albumin-induced paw model in rats can be used to evaluate the anti-inflammatory activity of herbs that might have potential anti-inflammatory activity. Herbal medications have potential anti-inflammatory activities and can be used to manage various inflammatory conditions if their efficacy and side effects are well studied. The three extracts all possessed anti-inflammatory activity, with R.L.S having the highest anti-inflammatory activity.

Keywords: inflammation, capparis erythrocarpos, anti-inflammatory activity, herbal medicine, paw volume, egg albumin

Procedia PDF Downloads 66
149 The Effects of Alpha-Lipoic Acid Supplementation on Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Authors: Hamid Abbasi, Neda Jourabchi, Ranasadat Abedi, Kiarash Tajernarenj, Mehdi Farhoudi, Sarvin Sanaie

Abstract:

Background: Alpha lipoic acid (ALA), fat- and water-soluble, coenzyme with sulfuret content, has received considerable attention for its potential therapeutic role in diabetes, cardiovascular diseases, cancers, and central nervous disease. This investigation aims to evaluate the probable protective effects of ALA in stroke patients. Methods: Based on Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, This meta-analysis was performed. The PICO criteria for this meta-analysis were as follows: Population/Patients (P: stroke patients); Intervention (I: ALA); Comparison (C: control); Outcome (O: blood glucose, lipid profile, oxidative stress, inflammatory factors).In addition, Studies that were excluded from the analysis consisted of in vitro, in vivo, and ex vivo studies, case reports, quasi-experimental studies. Scopus, PubMed, Web of Science, EMBASE databases were searched until August 2023. Results: Of 496 records that were screened in the title/abstract stage, 9 studies were included in this meta-analysis. The sample sizes in the included studies vary between 28 and 90. The result of risk of bias was performed via risk of bias (RoB) in randomized-controlled trials (RCTs) based on the second version of the Cochrane RoB assessment tool. 8 studies had a definitely high risk of bias. Discussion: To the best of our knowledge, The present meta-analysis is the first study addressing the effectiveness of ALA supplementation in enhancing post-stroke metabolic markers, including lipid profile, oxidative stress, and inflammatory indices. It is imperative to acknowledge certain potential limitations inherent in this study. First of all, type of treatment (oral or intravenous infusion) could alter the bioavailability of ALA. Our study had restricted evidence regarding the impact of ALA supplementation on included outcomes. Therefore, further research is warranted to develop into the effects of ALA specifically on inflammation and oxidative stress. Funding: The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 72825). Registration: This study was registered in the International prospective register of systematic reviews (PROSPERO ID: CR42023461612).

Keywords: alpha-lipoic acid, lipid profile, blood glucose, inflammatory factors, oxidative stress, meta-analysis, post-stroke

Procedia PDF Downloads 39
148 Phenolic Composition of Wines from Cultivar Carménère during Aging with Inserts to Barrels

Authors: E. Obreque-Slier, P. Osorio-Umaña, G. Vidal-Acevedo, A. Peña-Neira, M. Medel-Marabolí

Abstract:

Sensory and nutraceutical characteristics of a wine are determined by different chemical compounds, such as organic acids, sugars, alcohols, polysaccharides, aromas, and polyphenols. The polyphenols correspond to secondary metabolites that are associated with the prevention of several pathologies, and those are responsible for color, aroma, bitterness, and astringency in wines. These compounds come from grapes and wood during aging in barrels, which correspond to the format of wood most widely used in wine production. However, the barrels is a high-cost input with a limited useful life (3-4 years). For this reason, some oenological products have been developed in order to renew the barrels and increase their useful life in some years. These formats are being used slowly because limited information exists about the effect on the wine chemical characteristics. The objective of the study was to evaluate the effect of different laubarrel renewal systems (staves and zigzag) on the polyphenolic characteristics of a Carménère wine (Vitis vinifera), an emblematic cultivar of Chile. For this, a completely randomized experimental design with 5 treatments and three replicates per treatment was used. The treatments were: new barrels (T0), used barrels during 4 years (T1), scraped used barrels (T2), used barrels with staves (T3) and used barrels with zigzag (T4). The study was performed for 12 months, and different spectrophotometric parameters (phenols, anthocyanins, and total tannins) and HPLC-DAD (low molecular weight phenols) were evaluated. The wood inputs were donated by Toneleria Nacional and corresponded to products from the same production batch. The total phenols content increased significantly after 40 days, while the total tannin concentration decreased gradually during the study. The anthocyanin concentration increased after 120 days of the assay in all treatments. Comparatively, it was observed that the wine of T2 presented the lowest values of these polyphenols, while the T0 and T4 presented the highest total phenol contents. Also, T1 presented the highest values of total tannins in relation to the rest of the treatments in some samples. The low molecular weight phenolic compounds identified by HPLC-DAD were 7 flavonoids (epigallocatechin, catechin, procyanidin gallate, epicatechin, quercetin, rutin and myricetin) and 14 non-flavonoids (gallic, protocatechuic, hydroxybenzoic, trans-cutaric, vanillinic, caffeic, syringic, p-coumaric and ellagic acids; tyrosol, vanillin, syringaldehyde, trans-resveratrol and cis-resveratrol). Tyrosol was the most abundant compound, whereas ellagic acid was the lowest in the samples. Comparatively, it was observed that the wines of T2 showed the lowest concentrations of flavonoid and non-flavonoid phenols during the study. In contrast, wines of T1, T3, and T4 presented the highest contents of non-flavonoid polyphenols. In summary, the use of barrel renovators (zig zag and staves) is an interesting alternative which would emulate the contribution of polyphenols from the barrels to the wine.

Keywords: barrels, oak wood aging, polyphenols, red wine

Procedia PDF Downloads 175
147 Antimicrobial and Anti-Biofilm Activity of Non-Thermal Plasma

Authors: Jan Masak, Eva Kvasnickova, Vladimir Scholtz, Olga Matatkova, Marketa Valkova, Alena Cejkova

Abstract:

Microbial colonization of medical instruments, catheters, implants, etc. is a serious problem in the spread of nosocomial infections. Biofilms exhibit enormous resistance to environment. The resistance of biofilm populations to antibiotic or biocides often increases by two to three orders of magnitude in comparison with suspension populations. Subjects of interests are substances or physical processes that primarily cause the destruction of biofilm, while the released cells can be killed by existing antibiotics. In addition, agents that do not have a strong lethal effect do not cause such a significant selection pressure to further enhance resistance. Non-thermal plasma (NTP) is defined as neutral, ionized gas composed of particles (photons, electrons, positive and negative ions, free radicals and excited or non-excited molecules) which are in permanent interaction. In this work, the effect of NTP generated by the cometary corona with a metallic grid on the formation and stability of biofilm and metabolic activity of cells in biofilm was studied. NTP was applied on biofilm populations of Staphylococcus epidermidis DBM 3179, Pseudomonas aeruginosa DBM 3081, DBM 3777, ATCC 15442 and ATCC 10145, Escherichia coli DBM 3125 and Candida albicans DBM 2164 grown on solid media on Petri dishes and on the titanium alloy (Ti6Al4V) surface used for the production joint replacements. Erythromycin (for S. epidermidis), polymyxin B (for E. coli and P. aeruginosa), amphotericin B (for C. albicans) and ceftazidime (for P. aeruginosa) were used to study the combined effect of NTP and antibiotics. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Fluorescence microscopy was applied to visualize the biofilm on the surface of the titanium alloy; SYTO 13 was used as a fluorescence probe to stain cells in the biofilm. It has been shown that biofilm populations of all studied microorganisms are very sensitive to the type of used NTP. The inhibition zone of biofilm recorded after 60 minutes exposure to NTP exceeded 20 cm², except P. aeruginosa DBM 3777 and ATCC 10145, where it was about 9 cm². Also metabolic activity of cells in biofilm differed for individual microbial strains. High sensitivity to NTP was observed in S. epidermidis, in which the metabolic activity of biofilm decreased after 30 minutes of NTP exposure to 15% and after 60 minutes to 1%. Conversely, the metabolic activity of cells of C. albicans decreased to 53% after 30 minutes of NTP exposure. Nevertheless, this result can be considered very good. Suitable combinations of exposure time of NTP and the concentration of antibiotic achieved in most cases a remarkable synergic effect on the reduction of the metabolic activity of the cells of the biofilm. For example, in the case of P. aeruginosa DBM 3777, a combination of 30 minutes of NTP with 1 mg/l of ceftazidime resulted in a decrease metabolic activity below 4%.

Keywords: anti-biofilm activity, antibiotic, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 165
146 Stability Study of Hydrogel Based on Sodium Alginate/Poly (Vinyl Alcohol) with Aloe Vera Extract for Wound Dressing Application

Authors: Klaudia Pluta, Katarzyna Bialik-Wąs, Dagmara Malina, Mateusz Barczewski

Abstract:

Hydrogel networks, due to their unique properties, are highly attractive materials for wound dressing. The three-dimensional structure of hydrogels provides tissues with optimal moisture, which supports the wound healing process. Moreover, a characteristic feature of hydrogels is their absorption properties which allow for the absorption of wound exudates. For the fabrication of biomedical hydrogels, a combination of natural polymers ensuring biocompatibility and synthetic ones that provide adequate mechanical strength are often used. Sodium alginate (SA) is one of the polymers widely used in wound dressing materials because it exhibits excellent biocompatibility and biodegradability. However, due to poor strength properties, often alginate-based hydrogel materials are enhanced by the addition of another polymer such as poly(vinyl alcohol) (PVA). This paper is concentrated on the preparation methods of sodium alginate/polyvinyl alcohol hydrogel system incorporating Aloe vera extract and glycerin for wound healing material with particular focus on the role of their composition on structure, thermal properties, and stability. Briefly, the hydrogel preparation is based on the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and ammonium persulfate as an initiator. In vitro degradation tests of SA/PVA/AV hydrogels were carried out in Phosphate-Buffered Saline (pH – 7.4) as well as in distilled water. Hydrogel samples were firstly cut into half-gram pieces (in triplicate) and immersed in immersion fluid. Then, all specimens were incubated at 37°C and then the pH and conductivity values were measurements at time intervals. The post-incubation fluids were analyzed using SEC/GPC to check the content of oligomers. The separation was carried out at 35°C on a poly(hydroxy methacrylate) column (dimensions 300 x 8 mm). 0.1M NaCl solution, whose flow rate was 0.65 ml/min, was used as the mobile phase. Three injections with a volume of 50 µl were made for each sample. The thermogravimetric data of the prepared hydrogels were collected using a Netzsch TG 209 F1 Libra apparatus. The samples with masses of about 10 mg were weighed separately in Al2O3 crucibles and then were heated from 30°C to 900°C with a scanning rate of 10 °C∙min−1 under a nitrogen atmosphere. Based on the conducted research, a fast and simple method was developed to produce potential wound dressing material containing sodium alginate, poly(vinyl alcohol) and Aloe vera extract. As a result, transparent and flexible SA/PVA/AV hydrogels were obtained. The degradation experiments indicated that most of the samples immersed in PBS as well as in distilled water were not degraded throughout the whole incubation time.

Keywords: hydrogels, wound dressings, sodium alginate, poly(vinyl alcohol)

Procedia PDF Downloads 147