Search results for: density field visualization
9638 Modeling and Simulations of Surface Plasmon Waveguide Structures
Authors: Moussa Hamdan, Abdulati Abdullah
Abstract:
This paper presents an investigation of the fabrication of the optical devices in terms of their characteristics based on the use of the electromagnetic waves. Planar waveguides are used to examine the field modes (bound modes) and the parameters required for this structure. The modifications are conducted on surface plasmons based waveguides. Simple symmetric dielectric slab structure is used and analyzed in terms of transverse electric mode (TE-Mode) and transverse magnetic mode (TM-Mode. The paper presents mathematical and numerical solutions for solving simple symmetric plasmons and provides simulations of surface plasmons for field confinement. Asymmetric TM-mode calculations for dielectric surface plasmons are also provided.Keywords: surface plasmons, optical waveguides, semiconductor lasers, refractive index, slab dialectical
Procedia PDF Downloads 3059637 An Approach to Capture, Evaluate and Handle Complexity of Engineering Change Occurrences in New Product Development
Authors: Mohammad Rostami Mehr, Seyed Arya Mir Rashed, Arndt Lueder, Magdalena Missler-Behr
Abstract:
This paper represents the conception that complex problems do not necessarily need a similar complex solution in order to cope with the complexity. Furthermore, a simple solution based on established methods can provide a sufficient way to deal with the complexity. To verify this conception, the presented paper focuses on the field of change management as a part of the new product development process in the automotive sector. In this field, dealing with increasing complexity is essential, while only non-flexible rigid processes that are not designed to handle complexity are available. The basic methodology of this paper can be divided into four main sections: 1) analyzing the complexity of the change management, 2) literature review in order to identify potential solutions and methods, 3) capturing and implementing expertise of experts from the change management field of an automobile manufacturing company and 4) systematical comparison of the identified methods from literature and connecting these with defined requirements of the complexity of the change management in order to develop a solution. As a practical outcome, this paper provides a method to capture the complexity of engineering changes (EC) and includes it within the EC evaluation process, following case-related process guidance to cope with the complexity. Furthermore, this approach supports the conception that dealing with complexity is possible while utilizing rather simple and established methods by combining them into a powerful tool.Keywords: complexity management, new product development, engineering change management, flexibility
Procedia PDF Downloads 1979636 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach
Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola
Abstract:
Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy
Procedia PDF Downloads 1189635 The Accuracy of an 8-Minute Running Field Test to Estimate Lactate Threshold
Authors: Timothy Quinn, Ronald Croce, Aliaksandr Leuchanka, Justin Walker
Abstract:
Many endurance athletes train at or just below an intensity associated with their lactate threshold (LT) and often the heart rate (HR) that these athletes use for their LT are above their true LT-HR measured in a laboratory. Training above their true LT-HR may lead to overtraining and injury. Few athletes have the capability of measuring their LT in a laboratory and rely on perception to guide them, as accurate field tests to determine LT are limited. Therefore, the purpose of this study was to determine if an 8-minute field test could accurately define the HR associated with LT as measured in the laboratory. On Day 1, fifteen male runners (mean±SD; age, 27.8±4.1 years; height, 177.9±7.1 cm; body mass, 72.3±6.2 kg; body fat, 8.3±3.1%) performed a discontinuous treadmill LT/maximal oxygen consumption (LT/VO2max) test using a portable metabolic gas analyzer (Cosmed K4b2) and a lactate analyzer (Analox GL5). The LT (and associated HR) was determined using the 1/+1 method, where blood lactate increased by 1 mMol•L-1 over baseline followed by an additional 1 mMol•L-1 increase. Days 2 and 3 were randomized, and the athletes performed either an 8-minute run on the treadmill (TM) or on a 160-m indoor track (TR) in an effort to cover as much distance as possible while maintaining a high intensity throughout the entire 8 minutes. VO2, HR, ventilation (VE), and respiratory exchange ratio (RER) were measured using the Cosmed system, and rating of perceived exertion (RPE; 6-20 scale) was recorded every minute. All variables were averaged over the 8 minutes. The total distance covered over the 8 minutes was measured in both conditions. At the completion of the 8-minute runs, blood lactate was measured. Paired sample t-tests and pairwise Pearson correlations were computed to determine the relationship between variables measured in the field tests versus those obtained in the laboratory at LT. An alpha level of <0.05 was required for statistical significance. The HR (mean +SD) during the TM (167+9 bpm) and TR (172+9 bpm) tests were strongly correlated to the HR measured during the laboratory LT (169+11 bpm) test (r=0.68; p<0.03 and r=0.88; p<0.001, respectively). Blood lactate values during the TM and TR tests were not different from each other but were strongly correlated with the laboratory LT (r=0.73; p<0.04 and r=0.66; p<0.05, respectively). VE (Lmin-1) was significantly greater during the TR (134.8+11.4 Lmin-1) as compared to the TM (123.3+16.2 Lmin-1) with moderately strong correlations to the laboratory threshold values (r=0.38; p=0.27 and r=0.58; p=0.06, respectively). VO2 was higher during TR (51.4 mlkg-1min-1) compared to TM (47.4 mlkg-1min-1) with correlations of 0.33 (p=0.35) and 0.48 (p=0.13), respectively to threshold values. Total distance run was significantly greater during the TR (2331.6+180.9 m) as compared to the TM (2177.0+232.6 m), but they were strongly correlated with each other (r=0.82; p<0.002). These results suggest that an 8-minute running field test can accurately predict the HR associated with the LT and may be a simple test that athletes and coaches could implement to aid in training techniques.Keywords: blood lactate, heart rate, running, training
Procedia PDF Downloads 2529634 An Overview of Nano-Particles Effect on Mechanical Properties of Composites
Authors: Ganiyu I. Lawal, Olatunde I. Sekunowo, Stephen I. Durowaye
Abstract:
Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.Keywords: advanced materials, composites, mechanical properties, nano-particles
Procedia PDF Downloads 2769633 The Potential Effect of Sexual Selection on the Distal Genitalia Variability of the Simultaneously Hermaphroditic Land Snail Helix aperta in Bejaia/Kabylia/Algeria
Authors: Benbellil-Tafoughalt Saida, Tababouchet Meriem
Abstract:
Sexual selection is the most supported explanation for genital extravagance occurring in animals. In promiscuous species, population density, as well as climate conditions, may act on the sperm competition intensity, one of the most important mechanism of post-copulatory sexual selection. The present study is empirical testing of sexual selection's potential role on genitalia variation in the simultanuously hermaphroditic land snail Helixaperta (Pulmonata, Stylommatophora). The purpose was to detect the patterns as well as the origin of the distal genitalia variability and especially to test the potential effect of sexual selection. The study was performed on four populations, H. aperta, different in habitat humidity regimes and presenting variable densities, which were mostly low. The organs of interest were those involved in spermatophore production, reception, and manipulation. We examined whether the evolution of those organs is connected to sperm competition intensity which is traduced by both population density and microclimate humidity. We also tested the hypothesis that those organs evolve in response to shell size. The results revealed remarkable differences in both snails’ size and organs lengths between populations. In most cases, the length of genitalia correlated positively to snails’ body size. Interestingly, snails from the more humid microclimate presented the highest mean weight and shell dimensions comparing to those from the less humid microclimate. However, we failed to establish any relation between snail densities and any of the measured genitalia traits.Keywords: fertilization pouch, helix aperta, land snails, reproduction, sperm storage, spermatheca
Procedia PDF Downloads 1899632 Molecular Genetic Purity Test Using SSR Markers in Pigeon Pea
Authors: Rakesh C. Mathad, G. Y. Lokesh, Basavegowda
Abstract:
In agriculture using quality seeds of improved varieties is very important to ensure higher productivity thereby food security and sustainability. To ensure good productivity, seeds should have characters as described by the breeder. To know whether the characters as described by the breeder are expressing in a variety such as genuineness or genetic purity, field grow out test (GOT) is done. In pigeon pea which is long durational crop, conducting a GOT may take very long time and expensive also. Since in pigeon pea flower character is a most distinguishing character from the contaminants, conducting a field grow out test require 120-130 days or till flower emergence, which may increase cost of storage and seed production. This will also delay the distribution of seed inventory to the pigeon pea growing areas. In this view during 2014-15 with financial support of Govt. of Karnataka, India, a project to develop a molecular genetic test for newly developed variety of pigeon pea cv.TS3R was commissioned at Seed Unit, UAS, Raichur. A molecular test was developed with the help SSR markers to identify pure variety from possible off types in newly released pigeon pea variety TS3R. In the investigation, 44 primer pairs were screened to identify the specific marker associated with this variety. Pigeon pea cv. TS3R could be clearly identified by using the primer CCM 293 based on the banding pattern resolved on gel electrophoresis and PCR reactions. However some of the markers like AHSSR 46, CCM 82 and CCM 57 can be used to test other popular varieties in the region like Asha, GRG-811 and Maruti respectively. Further to develop this in to a lab test, the seed sample size was standardized to 200 seeds and a grow out matrix was developed. This matrix was used to sample 12 days old leaves to extract DNA. The lab test results were validated with actual field GOT test results and found variations within the acceptable limit of 1%. This molecular method can now be employed to test the genetic purity in pigeon pea cv TS3R which reduces the time and can be a cheaper alternative method for field GOT.Keywords: genuineness, grow-out matrix, molecular genetic purity, SSR markers
Procedia PDF Downloads 2849631 Seeking Compatibility between Green Infrastructure and Recentralization: The Case of Greater Toronto Area
Authors: Sara Saboonian, Pierre Filion
Abstract:
There are two distinct planning approaches attempting to transform the North American suburb so as to reduce its adverse environmental impacts. The first one, the recentralization approach, proposes intensification, multi-functionality and more reliance on public transit and walking. It thus offers an alternative to the prevailing low-density, spatial specialization and automobile dependence of the North American suburb. The second approach concentrates instead on the provision of green infrastructure, which rely on natural systems rather than on highly engineered solutions to deal with the infrastructure needs of suburban areas. There are tensions between these two approaches as recentralization generally overlooks green infrastructure, which can be space consuming (as in the case of water retention systems), and thus conflicts with the intensification goals of recentralization. The research investigates three Canadian planned suburban centres in the Greater Toronto Area, where recentralization is the current planning practice, despite rising awareness of the benefits of green infrastructure. Methods include reviewing the literature on green infrastructure planning, a critical analysis of the Ontario provincial plans for recentralization, surveying residents’ preferences regarding alternative suburban development models, and interviewing officials who deal with the local planning of the three centres. The case studies expose the difficulties in creating planned suburban centres that accommodate green infrastructure while adhering to recentralization principles. Until now, planners have been mostly focussed on recentralization at the expense of green infrastructure. In this context, the frequent lack of compatibility between recentralization and the space requirements of green infrastructure explains the limited presence of such infrastructures in planned suburban centres. Finally, while much attention has been given in the planning discourse to the economic and lifestyle benefits of recentralization, much less has been made of the wide range of advantages of green infrastructure, which explains limited public mobilization over the development of green infrastructure networks. The paper will concentrate on ways of combining recentralization with green infrastructure strategies and identify the aspects of the two approaches that are most compatible with each other. The outcome of such blending will marry high density, public-transit oriented developments, which generate walkability and street-level animation, with the presence of green space, naturalized settings and reliance on renewable energy. The paper will advance a planning framework that will fuse green infrastructure with recentralization, thus ensuring the achievement of higher density and reduced reliance on the car along with the provision of critical ecosystem services throughout cities. This will support and enhance the objectives of both green infrastructure and recentralization.Keywords: environmental-based planning, green infrastructure, multi-functionality, recentralization
Procedia PDF Downloads 1319630 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating
Authors: Ahmed Amrani, Oussama Allali, Amira Ben Hamida, Felix Defrance, Stephanie Morland, Eva Pineau, Thomas Lacroix
Abstract:
The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.Keywords: climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city
Procedia PDF Downloads 1719629 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.Keywords: hardness, powder metallurgy, spark plasma sintering, wear
Procedia PDF Downloads 2739628 Applications of Artificial Neural Networks in Civil Engineering
Authors: Naci Büyükkaracığan
Abstract:
Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics
Procedia PDF Downloads 4129627 The Backlift Technique among South African Cricket Players
Authors: Habib Noorbhai
Abstract:
This study primarily aimed to investigate the batting backlift technique (BBT) among semi-professional, professional and current international cricket players. A key question was to investigate if the lateral batting backlift technique (LBBT) is more common at the highest levels of the game. The participants in this study sample (n = 130) were South African semi-professional players (SP) (n = 69) and professional players (P) (n = 49) and South African international professional players (SAI) (n = 12). Biomechanical and video analysis were performed on all participant groups. Classifiers were utilised to identify the batting backlift technique type (BBTT) employed by all batsmen. All statistics and wagon wheels (scoring areas of the batsmen on a cricket field) were sourced online. This study found that a LBBT is more common at the highest levels of cricket batsmanship with batsmen at the various levels of cricket having percentages of the LBBT as follows: SP = 37.7%; P = 38.8%; SAI = 75%; p = 0.001. This study also found that SAI batsmen who used the LBBT were more proficient at scoring runs in various areas around the cricket field (according to the wagon wheel analysis). This study found that a LBBT is more common at the highest levels of cricket batsmanship. Cricket coaches should also pay attention to the direction of the backlift with players, especially when correlating the backlift to various scoring areas on the cricket field. Further in-depth research is required to fully investigate the change in batting backlift techniques among cricket players over a long-term period.Keywords: cricket batting, biomechanical analysis, backlift, performance
Procedia PDF Downloads 2609626 Art Beyond Borders: Virtual School Field Trips
Authors: Audrey Hudson
Abstract:
In 2020, educational field trips went virtual for all students. At the Art Gallery of Ontario (AGO) in Canada, our solution was to create a virtual school program that addressed three pillars of access—economic, geographic and cultural—with art at the center. Now, at the close of three years, we have reached 1.6 million students! Exponentially more than we have ever welcomed for onsite school visits. In 2022, we partnered with the Museum of Modern Art (MoMA), the Hong Kong University Museum and the National Gallery of Singapore, which has pushed the boundaries of art education into the expanse of the global community. Looking forward to our fourth year of the program, we are using the platform of technology to expand our program of art, access and learning to a global platform. In 2023/24, we intend to connect across more borders to expand the pedagogical benefits of art education for a global community. We invite you to listen to how you can join this journey.Keywords: technology, museums, art education, pedagogy
Procedia PDF Downloads 659625 The Yield of Neuroimaging in Patients Presenting to the Emergency Department with Isolated Neuro-Ophthalmological Conditions
Authors: Dalia El Hadi, Alaa Bou Ghannam, Hala Mostafa, Hana Mansour, Ibrahim Hashim, Soubhi Tahhan, Tharwat El Zahran
Abstract:
Introduction: Neuro-ophthalmological emergencies require prompt assessment and management to avoid vision or life-threatening sequelae. Some would require neuroimaging. Most commonly used are the CT and MRI of the Brain. They can be over-used when not indicated. Their yield remains dependent on multiple factors relating to the clinical scenario. Methods: A retrospective cross-sectional study was conducted by reviewing the electronic medical records of patients presenting to the Emergency Department (ED) with isolated neuro-ophthalmologic complaints. For each patient, data were collected on the clinical presentation, whether neuroimaging was performed (and which type), and the result of neuroimaging. Analysis of the performed neuroimaging was made, and its yield was determined. Results: A total of 211 patients were reviewed. The complaints or symptoms at presentation were: blurry vision, change in the visual field, transient vision loss, floaters, double vision, eye pain, eyelid droop, headache, dizziness and others such as nausea or vomiting. In the ED, a total of 126 neuroimaging procedures were performed. Ninety-four imagings (74.6%) were normal, while 32 (25.4%) had relevant abnormal findings. Only 2 symptoms were significant for abnormal imaging: blurry vision (p-value= 0.038) and visual field change (p-value= 0.014). While 4 physical exam findings had significant abnormal imaging: visual field defect (p-value= 0.016), abnormal pupil reactivity (p-value= 0.028), afferent pupillary defect (p-value= 0.018), and abnormal optic disc exam (p-value= 0.009). Conclusion: Risk indicators for abnormal neuroimaging in the setting of neuro-ophthalmological emergencies are blurred vision or changes in the visual field on history taking. While visual field irregularities, abnormal pupil reactivity with or without afferent pupillary defect, or abnormal optic discs, are risk factors related to physical testing. These findings, when present, should sway the ED physician towards neuroimaging but still individualizing each case is of utmost importance to prevent time-consuming, resource-draining, and sometimes unnecessary workup. In the end, it suggests a well-structured patient-centered algorithm to be followed by ED physicians.Keywords: emergency department, neuro-ophthalmology, neuroimaging, risk indicators
Procedia PDF Downloads 1799624 Design of Geochemical Maps of Industrial City Using Gradient Boosting and Geographic Information System
Authors: Ruslan Safarov, Zhanat Shomanova, Yuri Nossenko, Zhandos Mussayev, Ayana Baltabek
Abstract:
Geochemical maps of distribution of polluting elements V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb on the territory of the Pavlodar city (Kazakhstan), which is an industrial hub were designed. The samples of soil were taken from 100 locations. Elemental analysis has been performed using XRF. The obtained data was used for training of the computational model with gradient boosting algorithm. The optimal parameters of model as well as the loss function were selected. The computational model was used for prediction of polluting elements concentration for 1000 evenly distributed points. Based on predicted data geochemical maps were created. Additionally, the total pollution index Zc was calculated for every from 1000 point. The spatial distribution of the Zc index was visualized using GIS (QGIS). It was calculated that the maximum coverage area of the territory of the Pavlodar city belongs to the moderately hazardous category (89.7%). The visualization of the obtained data allowed us to conclude that the main source of contamination goes from the industrial zones where the strategic metallurgical and refining plants are placed.Keywords: Pavlodar, geochemical map, gradient boosting, CatBoost, QGIS, spatial distribution, heavy metals
Procedia PDF Downloads 829623 The Effect of Torsional Angle on Reversible Electron Transfer in Donor: Acceptor Frameworks Using Bis(Imino)Pyridines as Proxy
Authors: Ryan Brisbin, Hassan Harb, Justin Debow, Hrant Hratchian, Ryan Baxter
Abstract:
Donor-Acceptor (DA) frameworks are crucial parts of any technology requiring charge transport. This type of behavior is ubiquitous across technologies from semi conductors to solar panels. Currently, most DA systems involve metallic components, but progressive research is being pursued to design fully organic DA systems to be used as both organic semi-conductors and light emitting diodes. These systems are currently comprised of conductive polymers and salts. However, little is known about the effect of various physical aspects (size, torsional angle, electron density) have on the act of reversible charge transfer. Herein, the effect of torsional angle on reductive stability in bis(imino)pyridines is analyzed using a combination of single crystal analysis and electro-chemical peak current ratios from cyclic voltammetry. The computed free energies of reduction and electron attachment points were also investigated through density functional theory and natural ionization orbital theory to gain greater understanding of the global effect torsional angles have on electron transfer in bis(imino)pyridines. Findings indicated that torsional angles are a multi-variable parameter affected by both local steric constraints and resonant electronic contributions. Local steric impacted torsional angles demonstrated a negligible effect on electrochemical reversibility, while resonant affected torsional angles were observed to significantly alter the electrochemical reversibility.Keywords: cyclic voltammetry, bis(imino)pyridines, structure-activity relationship, torsional angles
Procedia PDF Downloads 2379622 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane
Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu
Abstract:
A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced
Procedia PDF Downloads 2939621 Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants
Authors: A. Asselah, A. Khalfi, M. A.Toumi, A.Tazerouti
Abstract:
The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant.Keywords: carbon steel, oilfield, corrosion, anionic surfactants
Procedia PDF Downloads 959620 Quantitative Analysis of Presence, Consciousness, Subconsciousness, and Unconsciousness
Authors: Hooshmand Kalayeh
Abstract:
The human brain consists of reptilian, mammalian, and thinking brain. And mind consists of conscious, subconscious, and unconscious parallel neural-net programs. The primary objective of this paper is to propose a methodology for quantitative analysis of neural-nets associated with these mental activities in the neocortex. The secondary objective of this paper is to suggest a methodology for quantitative analysis of presence; the proposed methodologies can be used as a first-step to measure, monitor, and understand consciousness and presence. This methodology is based on Neural-Networks (NN), number of neuron in each NN associated with consciousness, subconsciouness, and unconsciousness, and number of neurons in neocortex. It is assumed that the number of neurons in each NN is correlated with the associated area and volume. Therefore, online and offline visualization techniques can be used to identify these neural-networks, and online and offline measurement methods can be used to measure areas and volumes associated with these NNs. So, instead of the number of neurons in each NN, the associated area or volume also can be used in the proposed methodology. This quantitative analysis and associated online and offline measurements and visualizations of different Neural-Networks enable us to rewire the connections in our brain for a more balanced living.Keywords: brain, mind, consciousness, presence, sub-consciousness, unconsciousness, skills, concentrations, attention
Procedia PDF Downloads 3149619 Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System
Authors: K. Raghuwaiya, S. Singh, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the Distance Optimization Technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.Keywords: artificial potential fields, 3-trailer systems, motion planning, posture, parking and collision, free trajectories
Procedia PDF Downloads 3759618 Ground Response Analysis at the Rukni Irrigation Project Site Located in Assam, India
Authors: Tauhidur Rahman, Kasturi Bhuyan
Abstract:
In the present paper, Ground Response Analysis at the Rukni irrigation project has been thoroughly investigated. Surface level seismic hazard is mainly used by the practical Engineers for designing the important structures. Surface level seismic hazard can be obtained accounting the soil factor. Structures on soft soil will show more ground shaking than the structure located on a hard soil. The Surface level ground motion depends on the type of soil. Density and shear wave velocity is different for different types of soil. The intensity of the soil amplification depends on the density and shear wave velocity of the soil. Rukni irrigation project is located in the North Eastern region of India, near the Dauki fault (550 Km length) which has already produced earthquakes of magnitude (Mw= 8.5) in the past. There is a probability of a similar type of earthquake occuring in the future. There are several faults also located around the project site. There are 765 recorded strong ground motion time histories available for the region. These data are used to determine the soil amplification factor by incorporation of the engineering properties of soil. With this in view, three of soil bore holes have been studied at the project site up to a depth of 30 m. It has been observed that in Soil bore hole 1, the shear wave velocity vary from 99.44 m/s to 239.28 m/s. For Soil Bore Hole No 2 and 3, shear wave velocity vary from 93.24 m/s to 241.39 m/s and 93.24m/s to 243.01 m/s. In the present work, surface level seismic hazard at the project site has been calculated based on the Probabilistic seismic hazard approach accounting the soil factor.Keywords: Ground Response Analysis, shear wave velocity, soil amplification, surface level seismic hazard
Procedia PDF Downloads 5499617 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India
Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah
Abstract:
Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method
Procedia PDF Downloads 2399616 Extrudable Foamed Concrete: General Benefits in Prefabrication and Comparison in Terms of Fresh Properties and Compressive Strength with Classic Foamed Concrete
Authors: D. Falliano, G. Ricciardi, E. Gugliandolo
Abstract:
Foamed concrete belongs to the category of lightweight concrete. It is characterized by a density which is generally ranging from 200 to 2000 kg/m³ and typically comprises cement, water, preformed foam, fine sand and eventually fine particles such as fly ash or silica fume. The foam component mixed with the cement paste give rise to the development of a system of air-voids in the cementitious matrix. The peculiar characteristics of foamed concrete elements are summarized in the following aspects: 1) lightness which allows reducing the dimensions of the resisting frame structure and is advantageous in the scope of refurbishment or seismic retrofitting in seismically vulnerable areas; 2) thermal insulating properties, especially in the case of low densities; 3) the good resistance against fire as compared to ordinary concrete; 4) the improved workability; 5) cost-effectiveness due to the usage of rather simple constituting elements that are easily available locally. Classic foamed concrete cannot be extruded, as the dimensional stability is not permitted in the green state and this severely limits the possibility of industrializing them through a simple and cost-effective process, characterized by flexibility and high production capacity. In fact, viscosity enhancing agents (VEA) used to extrude traditional concrete, in the case of foamed concrete cause the collapsing of air bubbles, so that it is impossible to extrude a lightweight product. These requirements have suggested the study of a particular additive that modifies the rheology of foamed concrete fresh paste by increasing cohesion and viscosity and, at the same time, stabilizes the bubbles into the cementitious matrix, in order to allow the dimensional stability in the green state and, consequently, the extrusion of a lightweight product. There are plans to submit the additive’s formulation to patent. In addition to the general benefits of using the extrusion process, extrudable foamed concrete allow other limits to be exceeded: elimination of formworks, expanded application spectrum, due to the possibility of extrusion in a range varying between 200 and 2000 kg/m³, which allows the prefabrication of both structural and non-structural constructive elements. Besides, this contribution aims to present the significant differences regarding extrudable and classic foamed concrete fresh properties in terms of slump. Plastic air content, plastic density, hardened density and compressive strength have been also evaluated. The outcomes show that there are no substantial differences between extrudable and classic foamed concrete compression resistances.Keywords: compressive strength, extrusion, foamed concrete, fresh properties, plastic air content, slump.
Procedia PDF Downloads 1749615 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3629614 Therapeutic Application of Light and Electromagnetic Fields to Reduce Hyper-Inflammation Triggered by COVID-19
Authors: Blanche Aguida, Marootpong Pooam, Nathalie Jourdan, Margaret Ahmad
Abstract:
COVID-19-related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called ‘cytokine storms’ are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by reactive oxygen species (ROS). Both light (photobiomodulation) and magnetic fields (e.g., pulsed electromagnetic field) stimulation are non-invasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate-intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either pulsed electromagnetic fields (PEMF) or to low-level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID 19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID 19 patients both in the home and in the hospital.Keywords: COVID 19, electromagnetic fields therapy, inflammation, photobiomodulation therapy
Procedia PDF Downloads 1449613 Patent on Brian: Brain Waves Stimulation
Authors: Jalil Qoulizadeh, Hasan Sadeghi
Abstract:
Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs.Keywords: stimulation, brain, waves, betaOne
Procedia PDF Downloads 819612 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting
Authors: Juang R. Matangaran, Qi Adlan
Abstract:
Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting
Procedia PDF Downloads 4059611 Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.Keywords: casson nanofluid, boundary layer flow, internal heat generation/absorption, exponentially stretching cylinder, heat transfer, brownian motion, thermophoresis
Procedia PDF Downloads 3899610 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1619609 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 52