Search results for: receiver operating characteristic (ROC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3821

Search results for: receiver operating characteristic (ROC)

1751 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 106
1750 Surface Quality Improvement of Abrasive Waterjet Cutting for Spacecraft Structure

Authors: Tarek M. Ahmed, Ahmed S. El Mesalamy, Amro M. Youssef, Tawfik T. El Midany

Abstract:

Abrasive waterjet (AWJ) machining is considered as one of the most powerful cutting processes. It can be used for cutting heat sensitive, hard and reflective materials. Aluminum 2024 is a high-strength alloy which is widely used in aerospace and aviation industries. This paper aims to improve aluminum alloy and to investigate the effect of AWJ control parameters on surface geometry quality. Design of experiments (DoE) is used for establishing an experimental matrix. Statistical modeling is used to present a relation between the cutting parameters (pressure, speed, and distance between the nozzle and cut surface) and responses (taper angle and surface roughness). The results revealed a tangible improvement in productivity by using AWJ processing. The taper kerf angle can be improved by decreasing standoff distance and speed and increasing water pressure. While decreasing (cutting speed, pressure and distance between the nozzle and cut surface) improve the surface roughness in the operating window of cutting parameters.

Keywords: abrasive waterjet machining, machining of aluminum alloy, non-traditional cutting, statistical modeling

Procedia PDF Downloads 246
1749 Numerical Simulation of Solar Reactor for Water Disinfection

Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik

Abstract:

Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.

Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent

Procedia PDF Downloads 348
1748 High Frequency Memristor-Based BFSK and 8QAM Demodulators

Authors: Nahla Elazab, Mohamed Aboudina, Ghada Ibrahim, Hossam Fahmy, Ahmed Khalil

Abstract:

This paper presents the developed memristor based demodulators for eight circular Quadrature Amplitude Modulation (QAM) and Binary Frequency Shift Keying (BFSK) operating at relatively high frequency. In our implementations, the experimental-based ‘nonlinear’ dopant drift model is adopted along with the proposed circuits providing incorporation of all known non-idealities of practically realized memristor and gaining high operation frequency. The suggested designs leverage the distinctive characteristics of the memristor device, definitely, its changeable average memristance versus the frequency, phase and amplitude of the periodic excitation input. The proposed demodulators feature small integration area, low power consumption, and easy implementation. Moreover, the proposed QAM demodulator precludes the requirement for the carrier recovery circuits. In doing so, the designs were validated by transient simulations using the nonlinear dopant drift memristor model. The simulations results show high agreement with the theory presented.

Keywords: BFSK, demodulator, high frequency memristor applications, memristor based analog circuits, nonlinear dopant drift model, QAM

Procedia PDF Downloads 165
1747 Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound

Authors: Xiuguo Zhao, He Li, Alireza Yazdani, Xiaoning Zheng, Xinxi Xu

Abstract:

Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections.

Keywords: BCPs deposition, computational fluid dynamics, force-coupling method (FCM), numerical simulation, open surgical wound model

Procedia PDF Downloads 284
1746 Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database

Authors: Ahmed Ait Hou

Abstract:

The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center.

Keywords: thermochchemicals calculations, HSC software, oxidation and chloridation, wings in space

Procedia PDF Downloads 119
1745 A Fast Calculation Approach for Position Identification in a Distance Space

Authors: Dawei Cai, Yuya Tokuda

Abstract:

The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.

Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device

Procedia PDF Downloads 171
1744 Modeling and Behavior of Structural Walls

Authors: Salima Djehaichia, Rachid Lassoued

Abstract:

Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.

Keywords: modeling, old building, pushover analysis, structural walls

Procedia PDF Downloads 244
1743 Vibration Control of a Tracked Vehicle Driver Seat via Magnetorheological Damper

Authors: Wael Ata

Abstract:

Tracked vehicles are exposed to severe operating conditions during their battlefield. The suspension system of such vehicles plays a crucial role in the mitigation of vibration transmitted from unevenness to vehicle hull and consequently to the crew. When the vehicles are crossing the road with high speeds, the driver is subjected to a high magnitude of vibration dose. This is because of the passive suspension system of the tracked vehicle lack the effectiveness to withstand induced vibration from irregular terrains. This paper presents vibration control of a semi-active seat suspension incorporating Magnetorheological (MR) damper fitted to a driver seat of an amphibious tracked vehicle (BMP-1). A half vehicle model featuring the proposed semi-active seat suspension is developed and its governing equations are derived. Two controllers namely; skyhook and fuzzy logic skyhook based to suppress the vibration dose at driver’s seat are formulated. The results show that the controlled MR suspension seat along with the vehicle model has substantially suppressed vibration levels at the driver’s seat under bump and sinusoidal excitations

Keywords: Tracked Vehicles, MR dampers, Skyhook controller, fuzzy logic controller

Procedia PDF Downloads 118
1742 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formula

Keywords: Semi-Lagrangian method, iteration free method, nonlinear advection-diffusion equation, second-order backward difference formula

Procedia PDF Downloads 318
1741 Comparative Analysis of Characterologic Features of Cadets with High Psychomotor Skills Who Study in Polish Air Force Academy

Authors: Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński

Abstract:

The assessment of characterologic type is an essential element which decides about the proper task performance in the Air Forces. The aim of the research was to specify the percentage distribution of characterologic features by cadets studying particular courses in Polish Air Force Academy with the use of questionnaire. 34 first-year cadets chosen by lot and disunited into aircrafts pilots (N-10), helicopter pilots (N-13) and navigators(N-11) participated in the research. All of the questioned have had their psychomotor education examined in Military Aviation Medicine Institute in Warsaw, Poland. Moreover all of them are characterised by very good fitness. In the research, an anonymous poll(based on Myers-Briggs Type Indicator) appraising cadets’ characterologic type has been used. Cadets were provided with the same accommodation and nutrition. The findings have shown that percentage distribution was diversified, however it could be distinctly observed that most of future helicopter pilots (69%) are introverts whereas the majority of aircrafts pilots (70%) and navigators (100%) are extraverts. Moreover, it was also observed that 70% of cadets studying aircrafts pilotage run regular lifestyle and have judging skill according to Myers-Briggs Type Indicator. In future navigators group, 73% of students do not have this characteristic. The research has shown that cadets studying pilotage are more likely to demonstrate the characteristics which are essential for a performance of the important tasks in pilots environment than the cadets studying navigation.

Keywords: pilot, Myers-Briggs Type indicator, questionnaire research, cadets, psychomotor education

Procedia PDF Downloads 480
1740 Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials

Authors: Fortaki Tarek, S. Bedra

Abstract:

In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found.

Keywords: high Tc superconducting microstrip patch, electric-magnetic anisotropic substrate, Galerkin method, surface complex impedance with boundary conditions, radiation patterns

Procedia PDF Downloads 443
1739 Non-Coplanar Nuclei in Heavy-Ion Reactions

Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta

Abstract:

In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.

Keywords: dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity

Procedia PDF Downloads 301
1738 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning

Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi

Abstract:

In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.

Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh

Procedia PDF Downloads 141
1737 Curating Pluralistic Futures: Leveling up for Whole-Systems Change

Authors: Daniel Schimmelpfennig

Abstract:

This paper attempts to delineate the idea to curate the leveling up for whole-systems change. Curation is the act fo select, organize, look after, or present information from a professional point of view through expert knowledge. The trans-paradigmatic, trans-contextual, trans-disciplinary, trans-perspective of trans-media futures studies hopes to enable a move from a monochrome intellectual pursuit towards breathing a higher dimensionality. Progressing to the next level to equip actors for whole-systems change is in consideration of the commonly known symptoms of our time as well as in anticipation of future challenges, both a necessity and desirability. Systems of collective intelligence could potentially scale regenerative, adaptive, and anticipatory capacities. How could such a curation then be enacted and implemented, to initiate the process of leveling-up? The suggestion here is to focus on the metasystem transition, the bio-digital fusion, namely, by merging neurosciences, the ontological design of money as our operating system, and our understanding of the billions of years of time-proven permutations in nature, biomimicry, and biological metaphors like symbiogenesis. Evolutionary cybernetics accompanies the process of whole-systems change.

Keywords: bio-digital fusion, evolutionary cybernetics, metasystem transition, symbiogenesis, transmedia futures studies

Procedia PDF Downloads 148
1736 Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions

Authors: Junaid Bin Aamir, Ma Fanhua

Abstract:

Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy.

Keywords: alternative fuels, hydrogen, methanol, performance, spark ignition engines

Procedia PDF Downloads 303
1735 Colour Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Fermentation is well known as an essential process in cocoa beans. Besides to develop the precursor of cocoa flavour, it also induce the colour changes in the beans.The fermentation process is reported to be influenced by duration of pod storage and fermentation. Therefore, this study was conducted to evaluate colour of Malaysian cocoa beans and how the pods storage and fermentation duration using shallow box technique will effect on it characteristics. There are two factors being studied ie duration of cocoa pod storage (0, 2, 4, and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial design with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans is inspected for colour changes under artificial light during cut test and divided into four groups of colour namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batch have percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the colour characteristic of the Malaysian dried beans compared to fermentation duration.

Keywords: cocoa beans, colour, fermentation, shallow box

Procedia PDF Downloads 486
1734 Public Interest Law for Gender Equality: An Exploratory Study of the 'Single Woman Reproductive Rights' Movement in China

Authors: Xiaofei Zhu

Abstract:

As a 'weapon of the weak', the Public Interest Law can provide a better perspective for the cause of gender justice. In recent years, the legal practice of single female reproductive rights in China has already possessed the elements of public interest law activities and the possibility of public interest law operation. Through the general operating procedures of public interest law practice, that is, from the choice of subject, the planning of the case, the operation of the strategy and the later development, the paper analyzes the gains and losses of the legal practice of single female reproductive rights in China, and puts forward some ideas on its possible operation path. On this basis, it is believed that the cause of women's rights should be carried out under the broad human rights perspective; it is necessary to realize the particularity of different types of women's rights protection practice; the practice of public interest law needs to accurately grasp the constituent elements of all aspects of the case, and strive to find the opportunities of institutional and social change; the practice of public welfare law of gender justice should be carried out from a long-term perspective.

Keywords: single women’s reproductive rights, public interest law, gender justice, legal strategies, legal change

Procedia PDF Downloads 136
1733 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis

Authors: Arpan Kumar Nayak, Debabrata Pradhan

Abstract:

A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.

Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone

Procedia PDF Downloads 239
1732 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 141
1731 Characteristic of Taro (Colocasia esculenta), Seaweed (Gracilaria Sp.), and Fishes Bone Collagens Flour Based Analog Rice

Authors: Y. S. Darmanto, P. H. Riyadi, S. Susanti

Abstract:

Recently, approximately 9.1 million people of 237.56 million of Indonesian population suffer diabetes. Such condition was caused by high rice consumption of most Indonesian people. It has been known that rice contains low amylose, high calorie, and possesses hyperglycemic properties. Through this study, we tried to solve that problem by creating a super food in order to provide an alternative healthy and balanced diet. We formulated Taro and Seaweed flour based analog rice that fortified by various fishes bone collagens. Corms of Taro contain easily digestible starch and seaweed is rich in fiber, vitamin, and mineral. That mixture was fortified with collagen-containing unique amino acids such as glysine, lysine, alanine, arginine, proline, and hydroxyprolin. Subsequently, super analog rice was characterized about its nutritional composition such are proximate analyses, water, dietary fiber and amylose content. Furthermore, its morphological structure was analyzed by using scanning electron microscopy while the level of consumer preferences was performed by hedonic test. Results demonstrated that fortification by using various fishes bone collagen into analog rice were significantly different in nutritional composition, morphological structure as well as its preferences. Thus, this study was expected as new avenue in functional food discovery especially in the treatment and prevention of diabetic diseases.

Keywords: analogue rice, taro, seaweed, collagen

Procedia PDF Downloads 263
1730 Wireless Capsule Endoscope - Antenna and Channel Characterization

Authors: Mona Elhelbawy, Mac Gray

Abstract:

Traditional wired endoscopy is an intrusive process that requires a long flexible tube to be inserted through the patient’s mouth while intravenously sedated. Only images of the upper 4 feet of stomach, colon, and rectum can be captured, leaving the remaining 20 feet of small intestines. Wireless capsule endoscopy offers a painless, non-intrusive, efficient and effective alternative to traditional endoscopy. In wireless capsule endoscopy (WCE), ingestible vitamin-pill-shaped capsules with imaging capabilities, sensors, batteries, and antennas are designed to send images of the gastrointestinal (GI) tract in real time. In this paper, we investigate the radiation performance and specific absorption rate (SAR) of a miniature conformal capsule antenna operating at the Medical Implant Communication Service (MICS) frequency band in the human body. We perform numerical simulations using the finite element method based commercial software, high-frequency structure simulator (HFSS) and the ANSYS human body model (HBM). We also investigate the in-body channel characteristics between the implantable capsule and an external antenna placed on the surface of the human body.

Keywords: IEEE 802.15.6, MICS, SAR, WCE

Procedia PDF Downloads 126
1729 External Noise Distillation in Quantum Holography with Undetected Light

Authors: Sebastian Töpfer, Jorge Fuenzalida, Marta Gilaberte Basset, Juan P. Torres, Markus Gräfe

Abstract:

This work presents an experimental and theoretical study about the noise resilience of quantum holography with undetected photons. Quantum imaging has become an important research topic in the recent years after its first publication in 2014. Following this research, advances towards different spectral ranges in detection and different optical geometries have been made. Especially an interest in the field of near infrared to mid infrared measurements has developed, because of the unique characteristic, that allows to sample a probe with photons in a different wavelength than the photons arriving at the detector. This promising effect can be used for medical applications, to measure in the so-called molecule fingerprint region, while using broadly available detectors for the visible spectral range. Further advance the development of quantum imaging methods have been made by new measurement and detection schemes. One of which is quantum holography with undetected light. It combines digital phase shifting holography with quantum imaging to extent the obtainable sample information, by measuring not only the object transmission, but also its influence on the phase shift experienced by the transmitted light. This work will present extended research for the quantum holography with undetected light scheme regarding the influence of external noise. It is shown experimentally and theoretically that the samples information can still be at noise levels of 250 times higher than the signal level, because of its information being transmitted by the interferometric pattern. A detailed theoretic explanation is also provided.

Keywords: distillation, quantum holography, quantum imaging, quantum metrology

Procedia PDF Downloads 69
1728 Exploration of Spatial Design Strategies on Conservation of Mobile Vending in Chinese Shantytowns Renovation Planning

Authors: Tianchen Dai

Abstract:

Shantytowns are special historical products in china, possessing strong particularity and typicality, the theoretical value and the practical significance of which are deemed to hold great importance in the modern development of residential areas in China. The renovation planning of shantytowns can be very challenging in terms of cultural inheritance. The traditional lifestyle, one of the key elements building up residents’ perception of affiliation, should be carried forward in the renovation planning of shantytowns. Mobile vending can be considered as a rare business model survived within modern commercial environment, thanks to the unique spatial characteristics of Chinese shantytowns. This article mainly investigates the unique phenomenon of mobile vending in shantytowns, discussing the operating mechanism and rationality behind this commercial phenomenon. For humanistic concern, the innovative conservation of mobile vending, as a means to preserve the vivacious traditional lifestyle of local residents, can be realized through substantial urban design strategies, including spatial design of public space, height control of the facades, and traffic management around and inside shantytowns.

Keywords: cultural inheritance, mobile vending, renovation planning, shantytowns

Procedia PDF Downloads 467
1727 Reversible Cerebral Vasoconstriction Syndrome at Emergency Department

Authors: Taerim Kim, Shin Ahn, Chang Hwan Sohn, Dong Woo Seo, Won Young Kim

Abstract:

Object: Reversible cerebral vasospasm syndrome (RCVS) remains an underrated cause of thunderclap headache which shares similar history of the ‘worst-ever’ headache with subarachnoid hemorrhage (SAH) to the emergency physicians. This study evaluated the clinical manifestations, radiological features, and outcomes of patients with RCVS so that the physicians could raise the high index of suspicion to detect RCVS in more patients with thunderclap headache before having life-threatening complications. Methods: The electric medical records of 18 patients with diagnostic criteria of RCVS at the emergency department (ED) between January 2013 and December 2014 were retrospective reviewed. Results: The mean age was 50.7 years, and 80% were women. Patients with RCVS visit an average of 4.7 physicians before receiving an accurate diagnosis and mean duration of symptom until diagnosis is 9.3 days. All patients except one experienced severe headache, from 8 to 10 pain intensity on a numerical rating scale (NRS). 44% of patients had nausea as an associated symptom, 66% of patients experienced worsening of headache while gagging, leaning forward, defecating, urinating or having sex. The most frequently affected vessels are middle cerebral arteries demonstrating the characteristic diffuse “string of beads” appearance. Four patients had SAH as a complication. Conclusion: Patients with RCVS have a unique set of clinical and imaging features. Emergency physicians should raise the high index of suspicion to detect RCVS in more patients with thunderclap headache before life-threatening complications.

Keywords: headache, thunderclap, subarachnoid haemorrhage, stroke

Procedia PDF Downloads 426
1726 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Authors: Robert Höttger, Lukas Krawczyk, Burkhard Igel

Abstract:

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Further- more, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords: partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis

Procedia PDF Downloads 617
1725 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 63
1724 Monte Carlo Simulation of X-Ray Spectra in Diagnostic Radiology and Mammography Using MCNP4C

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

The overall goal Monte Carlo N-atom radioactivity transference PC program (MCNP4C) was done for the regeneration of x-ray groups in diagnostic radiology and mammography. The electrons were transported till they slow down and stopover in the target. Both bremsstrahlung and characteristic x-ray creation were measured in this study. In this issue, the x-ray spectra forecast by several computational models recycled in the diagnostic radiology and mammography energy kind have been calculated by appraisal with dignified spectra and their outcome on the scheming of absorbed dose and effective dose (ED) told to the adult ORNL hermaphroditic phantom quantified. This comprises practical models (TASMIP and MASMIP), semi-practical models (X-rayb&m, X-raytbc, XCOMP, IPEM, Tucker et al., and Blough et al.), and Monte Carlo modeling (EGS4, ITS3.0, and MCNP4C). Images got consuming synchrotron radiation (SR) and both screen-film and the CR system were related with images of the similar trials attained with digital mammography equipment. In sight of the worthy feature of the effects gained, the CR system was used in two mammographic inspections with SR. For separately mammography unit, the capability acquiesced bilateral mediolateral oblique (MLO) and craniocaudal(CC) mammograms attained in a woman with fatty breasts and a woman with dense breasts. Referees planned the common groups and definite absences that managed to a choice to miscarry the part that formed the scientific imaginings.

Keywords: mammography, monte carlo, effective dose, radiology

Procedia PDF Downloads 124
1723 Unified Assessment of Power System Reserve-based Reliability Levels

Authors: B. M. Alshammari, M. A. El-Kady

Abstract:

This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.

Keywords: assessment, power system, reserve, reliability

Procedia PDF Downloads 613
1722 An In Situ Exploration of Practising Rugby Coaches’ Cognitions, Higher Psychological Functions and Actions Using Think Aloud Protocol

Authors: Simon Quick, John Lyle

Abstract:

Psychology-based research has been a characteristic of empirical enquiry in sport coaching for over fifty years and cognitive function is widely accepted as a fundamental component of sport coaching expertise. Within the academic literature, much empirical research on coaches’ cognitions has tended to adopt retrospective approaches, such as post-session interviews or stimulated recall, thus capturing coaches’ cognitions after the incident, training session or competition. Such methods are prone to a variety of issues, including memory decay and the reordering of accounts. The aim of this research was to overcome the limitations that exist with retrospective approaches and, rather, to capture coaching cognitions in situ using Think Aloud Protocol. Data that were captured was broken down into meaning units and analysed using a Thematic Analysis. Situated in the practice of 6 experienced rugby coaches, findings revealed that Think Aloud Protocol generated rich data, although problematic in a site of enquiry confounded by multiple social interactions and requiring coaches to provide frequent instruction and feedback. The resultant interaction between cognition and action is conceptualised by the tentative offering of a model that situates these elements in conjunction with cognitive triggers and thresholds. The implications of these findings can help academics and coaches to understand the dynamic relationship between types of coaching cognitions and the complexity of the coaching environment.

Keywords: sports coaching, Psychology, Pedagogy, cognition

Procedia PDF Downloads 65