Search results for: reactive molecular dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5391

Search results for: reactive molecular dynamics

3321 Urban and Rural Population Pyramids in Georgia Since 1950’s

Authors: Shorena Tsiklauri, Avtandil Sulaberidze, Nino Gomelauri

Abstract:

In the years followed independence, an economic crisis and some conflicts led to the displacement of many people inside Georgia. The growing poverty, unemployment, low income and its unequal distribution limited access to basic social service have had a clear direct impact on Georgian population dynamics and its age-sex structure. Factors influencing the changing population age structure and urbanization include mortality, fertility, migration and expansion of urban. In this paper presents the main factors of changing the distribution by urban and rural areas. How different are the urban and rural age and sex structures? Does Georgia have the same age-sex structure among their urban and rural populations since 1950s?

Keywords: age and sex structure of population, georgia, migration, urban-rural population

Procedia PDF Downloads 397
3320 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers

Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner

Abstract:

In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.

Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test

Procedia PDF Downloads 113
3319 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 381
3318 A Descriptive Study of Turkish Straits System on Dynamics of Environmental Factors Causing Maritime Accidents

Authors: Gizem Kodak, Alper Unal, Birsen Koldemir, Tayfun Acarer

Abstract:

Turkish Straits System which consists of Istanbul Strait (Bosphorus), Canakkale Strait (Dardanelles) and the Marmara Sea has a strategical location on international maritime as it is a unique waterway between the Mediterranean Sea, Black Sea and the Aegean Sea. Thus, this area has great importance since it is the only waterway between Black Sea countries and the rest of the World. Turkish Straits System has dangerous environmental factors hosts more vessel every day through developing World trade and this situation results in expanding accident risks day by day. Today, a lot of precautions have been taken to ensure safe navigation and to prevent maritime accidents, and international standards are followed to avoid maritime accidents. Despite this, the environmental factors that affect this area, trigger the maritime accidents and threaten the vessels with new accidents risks in different months with different hazards. This descriptive study consists of temporal and spatial analyses of environmental factors causing maritime accidents. This study also aims at contributing to safety navigation including monthly and regionally characteristics of variables. In this context, two different data sets are created consisting of environmental factors and accidents. This descriptive study on the accidents between 2001 and 2017 the mentioned region also studies the months and places of the accidents with environmental factor variables. Environmental factor variables are categorized as dynamic and static factors. Dynamic factors are appointed as meteorological and oceanographical while static factors are appointed as geological factors that threaten safety navigation with geometrical restricts. The variables that form dynamic factors are approached meteorological as wind direction, wind speed, wave altitude and visibility. The circulations and properties of the water mass on the system are studied as oceanographical properties. At the end of the study, the efficient meteorological and oceanographical parameters on the region are presented monthly and regionally. By this way, we acquired the monthly, seasonal and regional distributions of the accidents. Upon the analyses that are done; The Turkish Straits System that connects the Black Sea countries with the other countries and which is one of the most important parts of the world trade; is analyzed on temporal and spatial dimensions on the reasons of the accidents and have been presented as environmental factor dynamics causing maritime accidents.

Keywords: descriptive study, environmental factors, maritime accidents, statistics

Procedia PDF Downloads 190
3317 Dynamics of Investor's Behaviour: An Analytical Survey Study in Indian Securities Market

Authors: Saurabh Agarwal

Abstract:

This paper attempts to formalise the effect of demographic variables like marital status, gender, occupation and age on the source of investment advice which, in turn, affect the herd behaviour of investors and probability of investment in near future. Further, postulations have been made for most preferred investment option and purpose of saving and source of investment. Impact of theoretical analysis on choice among investment alternatives has also been investigated. The analysis contributes to understanding the different investment choices made by households in India. The insights offered in the paper indirectly contribute in uncovering the various unexplained asset pricing puzzles.

Keywords: portfolio choice, investment decisions, investor’s behaviour, Indian securities market

Procedia PDF Downloads 358
3316 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery

Procedia PDF Downloads 359
3315 Interaction of Vegetable Fillers with Polyethylene Matrix in Biocomposites

Authors: P. V. Pantyukhov, T. V. Monakhova, A. A. Popov

Abstract:

The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites.

Keywords: biocomposite, composite, diffusion, polyethylene, vegetable filler

Procedia PDF Downloads 440
3314 Characterisation of Meteorological Drought at Sub-Catchment Scale in Afghanistan Using Time-Series Climate Data

Authors: Yun Chen, David Penton, Fazlul Karim, Santosh Aryal, Shahriar Wahid, Peter Taylor, Susan M. Cuddy

Abstract:

Droughts have severely affected Afghanistan over the last four decades, leading to critical food shortages where two-thirds of the country’s population are in a food crisis. Long years of conflict have lowered the country’s ability to deal with hazards such as drought, which can rapidly escalate into disasters. Understanding the spatial and temporal distribution of droughts is needed to be able to respond effectively to disasters and plan for future occurrences. This study used Standardized Precipitation Evapotranspiration Index (SPEI) at monthly, seasonal, and annual temporal scales to map the spatiotemporal change dynamics of drought characteristics (distribution, frequency, duration, and severity) in Afghanistan. SPEI indices were mapped for river basins, disaggregated into 189 sub-catchments, using monthly precipitation and potential evapotranspiration derived from temperature station observations from 1980 to 2017. The results show these multi-dimensional drought characteristics vary along different years, change among sub-catchments, and differ across temporal scales. During the 38 years, the driest decade and period are the 2000s and 1999–2022, respectively. The 2000–01 water year is the driest, with the whole country experiencing ‘severe’ to ‘extreme’ drought, more than 53% (87 sub-catchments) suffering the worst drought in history, and about 58% (94 sub-catchments) having ‘very frequent’ drought (7 to 8 months) or ‘extremely frequent’ drought (9 to 10 months). The estimated seasonal duration and severity present significant variations across the study area and throughout the study period. The nation also suffered from recurring droughts with varying length and intensity in 2004, 2006, 2008, and, most recently, 2011. There is a trend towards increasing drought with longer duration and higher severity extending all over sub-catchments from southeast to north and central regions. These datasets and maps help to fill the knowledge gap on detailed sub-catchment scale meteorological drought characteristics in Afghanistan. The study findings improve our understanding of the influences of climate change on drought dynamics and can guide catchment planning for reliable adaptation to and mitigation against future droughts.

Keywords: SPEI, precipitation, evapotranspiration, climate extremes

Procedia PDF Downloads 82
3313 Wheat Production and Market in Afghanistan

Authors: Fayiz Saifurahman, Noori Fida Mohammad

Abstract:

Afghanistan produces the highest rate of wheat, it is the first source of food, and food security in Afghanistan is dependent on the availability of wheat. Although Afghanistan is the main producer of wheat, on the other hand, Afghanistan is the largest importers of flour. The objective of this study is to assess the structure and dynamics of the wheat market in Afghanistan, can compute with foreign markets, and increase the level of production. To complete this, a broad series of secondary data was complied with, group discussions and interviews with farmers, agricultural and market experts. The research findings propose that; the government should adopt different policies to support the local market. The government should distribute the seed, support financially and technically to increase wheat production.

Keywords: Afghanistan, wheat, production , import

Procedia PDF Downloads 152
3312 Application of Acid Base Accounting to Predict Post-Mining Drainage Quality in Coalfields of the Main Karoo Basin and Selected Sub-Basins, South Africa

Authors: Lindani Ncube, Baojin Zhao, Ken Liu, Helen Johanna Van Niekerk

Abstract:

Acid Base Accounting (ABA) is a tool used to assess the total amount of acidity or alkalinity contained in a specific rock sample, and is based on the total S concentration and the carbonate content of a sample. A preliminary ABA test was conducted on 14 sandstone and 5 coal samples taken from coalfields representing the Main Karoo Basin (Highveld, Vryheid and Molteno/Indwe Coalfields) and the Sub-basins (Witbank and Waterberg Coalfields). The results indicate that sandstone and coal from the Main Karoo Basin have the potential of generating Acid Mine Drainage (AMD) as they contain sufficient pyrite to generate acid, with the final pH of samples relatively low upon complete oxidation of pyrite. Sandstone from collieries representing the Main Karoo Basin are characterised by elevated contents of reactive S%. All the studied samples were characterised by an Acid Potential (AP) that is less than the Neutralizing Potential (NP) except for two samples. The results further indicate that the sandstone from the Main Karoo Basin is prone to acid generation as compared to the sandstone from the Sub-basins. However, the coal has a relatively low potential of generating any acid. The application of ABA in this study contributes to an understanding of the complexities governing water-rock interactions. In general, the coalfields from the Main Karoo Basin have much higher potential to produce AMD during mining processes than the coalfields in the Sub-basins.

Keywords: Main Karoo Basin, sub-basin, coal, sandstone, acid base accounting (ABA)

Procedia PDF Downloads 424
3311 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film

Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa

Abstract:

This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.

Keywords: polyethylene, films, unformulated, FTIR, ageing

Procedia PDF Downloads 355
3310 On the Optimality Assessment of Nano-Particle Size Spectrometry and Its Association to the Entropy Concept

Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani

Abstract:

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nano-particles under the influence of electric field in electrical mobility spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined field-diffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multi-channel EMS. The result, a cloud of particles with non-uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using computational fluid dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Keywords: aerosol nano-particle, CFD, electrical mobility spectrometer, von neumann entropy

Procedia PDF Downloads 331
3309 Evaluation of Antioxidant and Anticancer Activity of Tinospora cordifolia against Ehrlich Ascites Carcinoma: In Vitro, in vivo and in silico Approach

Authors: Anik Barua, Rabiul Hossain, Labonno Barua, Rashadul Hossain, Nurul Absar

Abstract:

Background: Globally, the burden of cancer is increasing consistently. Modern cancer therapies include lots of toxicity in the non-targeted organs reducing the life expectancy of the patients. Hence, scientists are trying to seek noble compounds from natural sources to treat cancer. Objectives: The objectives of the present study are to evaluate the phytochemicals, in vitro antioxidants, and in vivo and in silico anticancer study of various solvent fractions of Tinospora cordifolia (Willd.). Methodology: In this experiment, standard quantitative and qualitative assay methods were used to analyze the phytochemicals. The antioxidant activity was measured using the DPPH and ABTS scavenging methods. The in vivo antitumor activity is evaluated against Ehrlich ascites carcinoma (EAC) cell bearing in Swiss albino mice. In-silico ADME/T and molecular docking study were performed to assess the potential of stated phytochemicals against Transcription Factor STAT3b/DNA Complex of adenocarcinoma. Findings: Phytochemical screening confirmed the presence of flavonoids, alkaloids, glycosides, tannins, and carbohydrates. A significant amount of phenolic (20.19±0.3 mg/g GAE) and flavonoids (9.46±0.18 mg/g GAE) were found in methanolic extract in quantitative screening. Tinospora cordifolia methanolic extract showed promising DPPH and ABTS scavenging activity with the IC50 value of 1222.99 µg/mL and 1534.34 µg/mL, respectively, which was concentration dependent. In vivo anticancer activity in EAC cell-bearing mice showed significant (P < 0.05) percent inhibition of cell growth (60.12±1.22) was found at the highest dose compared with standard drug 5-Fluorouracil (81.18±1.28). Forty-two phytochemicals exhibit notable pharmacokinetics properties and passed drug-likeness screening tests in silico. In molecular docking study, (25S)-3Beta-acetoxy-5-alpha-22-beta-spirost-9(11)-en-12-beta-ol showed docking score (-8.5 kJ/mol) with significant non-bonding interactions with target enzyme. Conclusions: The results were found to be significant and confirmed that the methanolic extract of Tinospora cordifolia has remarkable antitumor activity with antioxidant potential. The Tinospora cordifolia methanolic extract may be considered a potent anticancer agent for advanced research.

Keywords: anticancer, antioxidant, Tinospora cordifolia, EAC cell

Procedia PDF Downloads 104
3308 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations

Authors: K. P. Mredula, D. C. Vakaskar

Abstract:

The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.

Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods

Procedia PDF Downloads 291
3307 Kids and COVID-19: They are Winning with Their Immunity

Authors: Husham Bayazed, Fatimah Yousif

Abstract:

Purpose of Presentation: The infant immune system has a reputation for being weak and underdeveloped when compared to the adult immune system, but the comparison isn’t quite fair. At the start, as the COVID-19 pandemic drags on and evolves, many Pediatricians and kids' parents have been left with renewed questions about the consequences and sequel of infection on children and the steps to be taken if their child has the symptoms of COVID-19 or tests positive. Recent Findings Literature reviews and recent studies revealed that children are better than adults at controlling SARS-CoV-2. There was conflicting evidence on age-related differences in ACE2 expression in the nose and lungs. But scientists who measured the ‘viral load’ in children's upper airways have seen no clear difference between children and adults. Moreover, the hypothesis is that kids might be more exposed to other coronaviruses common cold, with a production of ready protective antibodies to lock on to the pandemic coronavirus. But the evidence suggests that adults also have this immunity too. Strikingly, these ‘cross-reactive’ antibodies don’t offer any special protection. Summary One of the few silver linings of the Covid-19 pandemic is that children are relatively spared. The kid's Innate Immunity is hardly the whole story, the innate immune response against SARS-CoV-2 infection is early initiative calm with low immunological tone to prevent an overactive immunity and with rapidly repair damage to the lungs in contrast to stormy waves in adults. Therefore, Kids are at much lower risk of Covid-19 infection, and they are still winning the battle against Covid-19 with their innate immunity.

Keywords: Covid-19, kids, ACE2 receptors, immunity

Procedia PDF Downloads 82
3306 The Relation Between Oxidative Stress, Inflammation, and Neopterin in the Paraquat-Induced Lung Toxicity

Authors: M. Toygar, I. Aydin, M. Agilli, F. N. Aydin, M. Oztosun, H. Gul, E. Macit, Y. Karslioglu, T. Topal, B. Uysal, M. Honca

Abstract:

Paraquat (PQ) is a well-known quaternary nitrogen herbicide. The major target organ in PQ poisoning is the lung. Reactive oxygen species (ROS) and inflammation play a crucial role in the development of PQ-induced pulmonary injury. Neopterin is synthesized in macrophage by interferon g and other cytokines. We aimed to evaluate the utility of neopterin as a diagnostic marker in PQ-induced lung toxicity. Sprague Dawley rats were randomly divided into two groups (sham and PQ), administered intraperitoneally 1 mL saline and PQ (15 mg/kg/mL) respectively. Blood samples and lungs were collected for analyses. Lung injury and fibrosis were seen in the PQ group. Serum total antioxidant capacity, lactate dehydrogenase (LDH), and lung transforming growth factor-1 (TGF-1) levels were significantly higher than the sham group (in all, p< 0.001). In addition, in the PQ group, serum neopterin and lung malondialdehyde (MDA) levels were also significantly higher than the sham group (in all, p 1/4 0.001). Serum neopterin levels were correlated with LDH activities, lung MDA, lung TGF-1 levels, and the degree of lung injury. These findings demonstrated that oxidative stress, reduction of antioxidant capacity, and inflammation play a crucial role in the PQ-induced lung injury. Elevated serum neopterin levels may be a prognostic parameter to determine extends of PQ-induced lung toxicity. Further studies may be performed to clarify the role of neopterin by different doses of PQ.

Keywords: paraquat, inflammation, oxidative stress, neopterin, lung toxicity

Procedia PDF Downloads 370
3305 Computational Fluid Dynamics Analysis of Sit-Ski Aerodynamics in Crosswind Conditions

Authors: Lev Chernyshev, Ekaterina Lieshout, Natalia Kabaliuk

Abstract:

Sit-skis enable individuals with limited lower limb or core movement to ski unassisted confidently. The rise in popularity of the Winter Paralympics has seen an influx of engineering innovation, especially for the Downhill and Super-Giant Slalom events, where the athletes achieve speeds as high as 160km/h. The growth in the sport has inspired recent research into sit-ski aerodynamics. Crosswinds are expected in mountain climates and, therefore, can greatly impact a skier's maneuverability and aerodynamics. This research investigates the impact of crosswinds on the drag force of a Paralympic sit-ski using Computational Fluid Dynamics (CFD). A Paralympic sit-ski with a model of a skier, a leg cover, a bucket seat, and a simplified suspension system was used for CFD analysis in ANSYS Fluent. The hybrid initialisation tool and the SST k–ω turbulence model were used with two tetrahedral mesh bodies of influence. The crosswinds (10, 30, and 50 km/h) acting perpendicular to the sit-ski's direction of travel were simulated, corresponding to the straight-line skiing speeds of 60, 80, and 100km/h. Following the initialisation, 150 iterations for both first and second order steady-state solvers were used, before switching to a transient solver with a computational time of 1.5s and a time step of 0.02s, to allow the solution to converge. CFD results were validated against wind tunnel data. The results suggested that for all crosswind and sit-ski speeds, on average, 64% of the total drag on the ski was due to the athlete's torso. The suspension was associated with the second largest overall sit-ski drag force contribution, averaging at 27%, followed by the leg cover at 10%. While the seat contributed a negligible 0.5% of the total drag force, averaging at 1.2N across the conditions studied. The effect of the crosswind increased the total drag force across all skiing speed studies, with the drag on the athlete's torso and suspension being the most sensitive to the changes in the crosswind magnitude. The effect of the crosswind on the ski drag reduced as the simulated skiing speed increased: for skiing at 60km/h, the drag force on the torso increased by 154% with the increase of the crosswind from 10km/h to 50km/h; whereas, at 100km/h the corresponding drag force increase was halved (75%). The analysis of the flow and pressure field characteristics for a sit-ski in crosswind conditions indicated the flow separation localisation and wake size correlated with the magnitude and directionality of the crosswind relative to straight-line skiing. The findings can inform aerodynamic improvements in sit-ski design and increase skiers' medalling chances.

Keywords: sit-ski, aerodynamics, CFD, crosswind effects

Procedia PDF Downloads 61
3304 Interlinkages and Impacts of the Indian Ocean on the Nile River

Authors: Zeleke Ayalew Alemu

Abstract:

Indian Ocean and the Nile River play significant roles in shaping the hydrological and ecological systems of the regions they traverse. This study explores the interlinkages and impacts of the Indian Ocean on the Nile River, highlighting key factors such as water flow, nutrient distribution, climate patterns, and biodiversity. The Indian Ocean serves as a major source of moisture for the Nile River, contributing to its annual flood cycle and sustaining the river's ecosystem. The Indian Ocean's monsoon winds influence the amount of rainfall received in East Africa, which directly impacts the Nile's water levels. These monsoonal patterns create a vital connection between the Indian Ocean and the Nile, affecting agricultural productivity, freshwater availability, and overall river health. The Indian Ocean also influences the nutrient levels in the Nile River. Coastal upwelling driven by oceanic currents brings nutrient-rich waters from the depths of the ocean to the surface. These nutrients are transported by ocean currents towards the Red Sea and subsequently enter the Nile. This influx of nutrients supports the growth of plankton, which forms the basis of the river's food web and sustains various aquatic species. Additionally, the Indian Ocean's climate patterns, such as El Niño and Indian Ocean Dipole events, exert influence on the Nile River basin. El Niño, for example, can result in drought conditions, reduced precipitation, and altered river flows, impacting agricultural activities and water resource management along the Nile. The Indian Ocean Dipole events can influence the rainfall distribution in East Africa, further impacting the Nile's water levels and ecosystem dynamics. The Indian Ocean's biodiversity is interconnected with the Nile River's ecological system. Many species that inhabit the Indian Ocean, such as migratory birds and marine mammals, migrate along the Nile River basin, utilizing its resources for feeding and breeding purposes. The health of the Indian Ocean's ecosystem thus indirectly affects the biodiversity and ecological balance of the Nile River. Indian Ocean plays a crucial role in shaping the dynamics of the Nile River. Its influence on water flow, nutrient distribution, climate patterns, and biodiversity highlights the complex interdependencies between these two important water bodies. Understanding the interconnectedness and impacts of the Indian Ocean on the Nile is essential for effective water resource management and conservation efforts in the region.

Keywords: water, management, environment, planning

Procedia PDF Downloads 84
3303 Methyl Red Adsorption and Photodegradation on TiO₂ Modified Mesoporous Carbon Photocatalyst

Authors: Seyyed Ershad Moradi, Javad Khodaveisi, Atefeh Nasrollahpour

Abstract:

In this study, the highly ordered mesoporous carbon molecular sieve with high surface area and pore volume have been synthesized and modified by TiO₂ doping. The titanium oxide modified mesoporous carbon (Ti-OMC) was characterized by scanning electron microscope (SEM), BET surface area, DRS also XRD analysis (low and wide angle). Degradation experiments were conducted in batch mode with the variables such as amount of contact time, initial solution concentration, and solution pH. The optimal conditions for the degradation of methyl red (MR) were 100 mg/L dye concentration, pH of 7, and 0.12 mg/L of TiO₂ modified mesoporous carbon photocatalyst dosage.

Keywords: mesoporous carbon, photodegradation, surface modification, titanium oxide

Procedia PDF Downloads 184
3302 Molecular Detection of E. coli in Treated Wastewater and Well Water Samples Collected from Al Riyadh Governorate, Saudi Arabia

Authors: Hanouf A. S. Al Nuwaysir, Nadine Moubayed, Abir Ben Bacha, Islem Abid

Abstract:

Consumption of waste water continues to cause significant problems for human health in both developed and developing countries. Many regulations have been implied by different world authorities controlling water quality for the presence of coliforms used as standard indicators of water quality deterioration and historically leading health protection concept. In this study, the European directive for the detection of Escherichia coli, ISO 9308-1, was applied to examine and monitor coliforms in water samples collected from Wadi Hanifa and neighboring wells, Riyadh governorate, kingdom of Saudi Arabia, which is used for irrigation and industrial purposes. Samples were taken from different locations for 8 months consecutively, chlorine concentration ranging from 0.1- 0.4 mg/l, was determined using the DPD FREE CHLORINE HACH kit. Water samples were then analyzed following the ISO protocol which relies on the membrane filtration technique (0.45µm, pore size membrane filter) and a chromogenic medium TTC, a lactose based medium used for the detection and enumeration of total coliforms and E.coli. Data showed that the number of bacterial isolates ranged from 60 to 300 colonies/100ml for well and surface water samples respectively; where higher numbers were attributed to the surface samples. Organisms which apparently ferment lactose on TTC agar plates, appearing as orange colonies, were selected and additionally cultured on EMB and MacConkey agar for a further differentiation among E.coli and coliform bacteria. Two additional biochemical tests (Cytochrome oxidase and indole from tryptophan) were also investigated to detect and differentiate the presence of E.coli from other coliforms, E. coli was identified in an average of 5 to 7colonies among 25 selected colonies.On the other hand, a more rapid, specific and sensitive analytical molecular detection namely single colony PCR was also performed targeting hha gene to sensitively detect E.coli, giving more accurate and time consuming identification of colonies considered presumptively as E.coli. Comparative methodologies, such as ultrafiltration and direct DNA extraction from membrane filters (MoBio, Grermany) were also applied; however, results were not as accurate as the membrane filtration, making it a technique of choice for the detection and enumeration of water coliforms, followed by sufficiently specific enzymatic confirmatory stage.

Keywords: coliform, cytochrome oxidase, hha primer, membrane filtration, single colony PCR

Procedia PDF Downloads 310
3301 Extraction of Amorphous SiO₂ From Equisetnm Arvense Plant for Synthesis of SiO₂/Zeolitic Imidazolate Framework-8 Nanocomposite and Its Photocatalytic Activity

Authors: Babak Azari, Afshin Pourahmad, Babak Sadeghi, Masuod Mokhtari

Abstract:

In this work, Equisetnm arvense plant extract was used for preparing amorphous SiO₂. For preparing of SiO₂/zeolitic imidazolate framework-8 (ZIF-8) nanocomposite by solvothermal method, the synthesized SiO₂ was added to the synthesis mixture ZIF-8. The nanocomposite was characterized using a range of techniques. The photocatalytic activity of SiO₂/ZIF-8 was investigated systematically by degrading crystal violet as a cationic dye under Ultraviolet light irradiation. Among synthesized samples (SiO₂, ZIF-8 and SiO₂/ZIF-8), the SiO₂/ZIF-8 exhibited the highest photocatalytic activity and improved stability compared to pure SiO₂ and ZIF-8. As evidenced by Scanning Electron Microscopy and Transmission electron microscopy images, ZIF-8 particles without aggregation are located over SiO₂. The SiO₂ not only provides structured support for ZIF-8 but also prevents the aggregation of ZIF-8 Metal-organic framework in comparison to the isolated ZIF-8. The superior activity of this photocatalyst was attributed to the synergistic effects from SiO₂ owing to (I) an electron acceptor (from ZIF-8) and an electron donor (to O₂ molecules), (II) preventing recombination of electron-hole in ZIF-8, and (III) maximum interfacial contact ZIF-8 with the SiO₂ surface without aggregation or prevent the accumulation of ZIF-8. The results demonstrate that holes (h+) and •O₂- are primary reactive species involved in the photocatalytic oxidation process. Moreover, the SiO₂/ZIF-8 photocatalyst did not show any obvious loss of photocatalytic activity during five-cycle tests, which indicates that the heterostructured photocatalyst was highly stable and could be used repeatedly.

Keywords: nano, zeolit, potocatalist, nanocomposite

Procedia PDF Downloads 68
3300 Can We Meet the New Challenges of NonIsocyanates Polyurethanes (NIPU) towards NIPU Foams?

Authors: Adrien Cornille, Marine Blain, Bernard Boutevin, Sylvain Caillol

Abstract:

Generally, linear polyurethanes (PUs) are obtained by the reaction between an oligomeric diol, a short diol as chain extender and a diisocyanate. However the use of diisocyanate should be avoided since they are generally very harmful for human health. Therefore the synthesis of NIPUs (non isocyanate PUs) from step growth polymerization of dicyclocarbonates and diamines should be favoured. This method is particularly interesting since no hazardous isocyanates are used. Thus, this reaction, extensively studied by Endo et al. is currently gaining a lot of attention as a substitution route for the synthesis of NIPUs, both from industrial and academic community. However, the reactivity of reaction between amine and cyclic carbonate is a major scientific issue, since cyclic carbonates are poorly reactive. Thus, our team developed several synthetic ways for the synthesis of various di-cyclic carbonates based on C5-, C6- and dithio- cyclic carbonates, from different biobased raw materials (glycerin isosorbide, vegetable oils…). These monomers were used to synthesize NIPUs with various mechanical and thermal properties for various applications. We studied the reactivity of reaction with various catalysts and find optimized conditions for room temperature reaction. We also studied the radical copolymerization of cyclic carbonate monomers in styrene-acrylate copolymers for coating applications. We also succeeded in the elaboration of biobased NIPU flexible foams. To the best of our knowledge, there is no report in literature on the preparation of non-isocyanate polyurethane foams.

Keywords: foam, nonisocyanate polyurethane, cyclic carbonate, blowing agent, scanning electron microscopy

Procedia PDF Downloads 222
3299 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit

Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger

Abstract:

The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.

Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor

Procedia PDF Downloads 244
3298 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films

Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit

Abstract:

Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.

Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy

Procedia PDF Downloads 276
3297 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 200
3296 The Impact of Artificial Intelligence on Human Rights Development

Authors: Kerols Seif Said Botros

Abstract:

The relationship between development and human rights has been debated for a long time. Various principles, from the right to development to development-based human rights, are applied to understand the dynamics between these two concepts. Despite the measures calculated, the connection between enhancement and human rights remains vague. Despite, the connection between these two opinions and the need to strengthen human rights have increased in recent years. It will then be examined whether the right to sustainable development is acceptable or not. In various human rights instruments and this is a good vibe to the request cited above. The book then cites domestic and international human rights treaties, as well as jurisprudence and regulations defining human rights institutions, to support this view.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 40
3295 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells

Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves

Abstract:

Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.

Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations

Procedia PDF Downloads 47
3294 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model

Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge

Abstract:

Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.

Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model

Procedia PDF Downloads 120
3293 Particle Migration in Shear Thinning Viscoelastic Fluid

Authors: Shamik Hazra, Sushanta Mitra, Ashis Sen

Abstract:

Despite growing interest of microparticle manipulation in non-Newtonian fluids, combined effect of viscoelasticity and shear thinning on particle lateral position is not well understood. We performed experiments with rigid microparticles of 15 µm diamater in popular Shear thinning viscoelastic (STVE) liquid poyethylene oxide (PEO) of different molecular weights (MW) and concentrations (c), for Reynolds number (Re) < 1. Microparticles in an STVE liquid revealed four different migration regimes: original streamline (OS), bimodal (BM), centre migration (CM) and defocusing (DF), depending upon the Re and c and interplay of different forces is also elucidated. Our investigation will be helpful to select proper polymer concentration to achieve desired particle focusing inside microchannel.

Keywords: lateral migration, microparticle, polyethylene oxide, shear thinning, viscoelasticity

Procedia PDF Downloads 135
3292 A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle

Authors: Thien X. Dinh, Peter Witt

Abstract:

A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude.

Keywords: condensation, metallurgical flow, solidification, supersonic expansion

Procedia PDF Downloads 52