Search results for: micro architecture
1553 A Low-Power, Low-Noise and High-Gain 58~66 GHz CMOS Receiver Front-End for Short-Range High-Speed Wireless Communications
Authors: Yo-Sheng Lin, Jen-How Lee, Chien-Chin Wang
Abstract:
A 60-GHz receiver front-end using standard 90-nm CMOS technology is reported. The receiver front-end comprises a wideband low-noise amplifier (LNA), and a double-balanced Gilbert cell mixer with a current-reused RF single-to-differential (STD) converter, an LO Marchand balun and a baseband amplifier. The receiver front-end consumes 34.4 mW and achieves LO-RF isolation of 60.7 dB, LO-IF isolation of 45.3 dB and RF-IF isolation of 41.9 dB at RF of 60 GHz and LO of 59.9 GHz. At IF of 0.1 GHz, the receiver front-end achieves maximum conversion gain (CG) of 26.1 dB at RF of 64 GHz and CG of 25.2 dB at RF of 60 GHz. The corresponding 3-dB bandwidth of RF is 7.3 GHz (58.4 GHz to 65.7 GHz). The measured minimum noise figure was 5.6 dB at 64 GHz, one of the best results ever reported for a 60 GHz CMOS receiver front-end. In addition, the measured input 1-dB compression point and input third-order inter-modulation point are -33.1 dBm and -23.3 dBm, respectively, at 60 GHz. These results demonstrate the proposed receiver front-end architecture is very promising for 60 GHz direct-conversion transceiver applications.Keywords: CMOS, 60 GHz, direct-conversion transceiver, LNA, down-conversion mixer, marchand balun, current-reused
Procedia PDF Downloads 4541552 Female Entrepreneurship and Cultural Influence in Emerging Economy: The Case of Bangladesh
Authors: Nawreen Sobhan, Abeer Hassan, Dina Nziku
Abstract:
There has been a dramatic rise in the percentage of female entrepreneurship in both developed and developing countries as it is now considering as an important source of economic growth. Therefore, there has been a growing research interest in female entrepreneurship as they represent an unrecognized engine for economic growth especially in transition economy. This study will determine the role of cultural influence on female entrepreneurship in the growth of economic development which will add new dimensions to the field of female entrepreneurial studies in informal sector of Bangladesh. A systematic literature review has been conducted on female entrepreneurship and cultural studies in both developed and developing country in this research study. There is lack of research on this field as most of the cultural studies on female entrepreneurship have been conducted globally and most of them are either comparative or based on single developed country. This study addresses this gap by using North’s institutional theory to investigate the influence of socio cultural factors on the development of businesses run by female entrepreneurs in Bangladesh. The study, therefore, has practical implications for policy makers and enhancing micro business performance by female entrepreneurs and contributes to the on-going theoretical understanding of cultural influence in female entrepreneurship in an Asian context.Keywords: culture, socio cultural factors, female entrepreneurship, informal sectors, formal and informal institution and sustainable economic development
Procedia PDF Downloads 2031551 Multiscale Model of Blast Explosion Human Injury Biomechanics
Authors: Raj K. Gupta, X. Gary Tan, Andrzej Przekwas
Abstract:
Bomb blasts from Improvised Explosive Devices (IEDs) account for vast majority of terrorist attacks worldwide. Injuries caused by IEDs result from a combination of the primary blast wave, penetrating fragments, and human body accelerations and impacts. This paper presents a multiscale computational model of coupled blast physics, whole human body biodynamics and injury biomechanics of sensitive organs. The disparity of the involved space- and time-scales is used to conduct sequential modeling of an IED explosion event, CFD simulation of blast loads on the human body and FEM modeling of body biodynamics and injury biomechanics. The paper presents simulation results for blast-induced brain injury coupling macro-scale brain biomechanics and micro-scale response of sensitive neuro-axonal structures. Validation results on animal models and physical surrogates are discussed. Results of our model can be used to 'replicate' filed blast loadings in laboratory controlled experiments using animal models and in vitro neuro-cultures.Keywords: blast waves, improvised explosive devices, injury biomechanics, mathematical models, traumatic brain injury
Procedia PDF Downloads 2501550 Collaborative Economy in Developing Countries: Perspectives from the Philippines
Authors: Ivy Jessen Galvan
Abstract:
Over the past decade, a phenomenon has emerged at the frontier of the digital economy: a wave of ‘disruptive’ technologies that offer digital solutions to variety of everyday problems, challenging the way traditional industries operate. Most of these disruptive technologies are applications ('apps') that rely on the Internet to connect people to people for sharing, selling, renting, or lending, creating a unique economic model wherein users provide for other users’ demand – called 'collaborative economy.' Although collaborative economy is spreading in every part of the world, there may be different ways in which this phenomenon is unfolding throughout the developing countries. In this study, the characteristics of collaborative economy in the Philippines are highlighted and compared from observations in the developed world. The paper looks at two leading collaborative economy ventures in the Philippines – Grab and Shopee – probing into how these smartphone-based platforms place technology into the 'micro-frictions' of the Philippine developing context. Using framing analysis on interviews conducted among Grab and Shopee users in Metro Manila, three frames have been identified: 1) metropolitan solution; 2) financial inclusion and; 3) formalization of labor. This research contextualizes the Fourth Industrial Revolution in ASEAN by analyzing the effect of a digital economy in everyday life.Keywords: ASEAN Unicorns, collaborative economy, developing countries, fourth industrial revolution
Procedia PDF Downloads 1231549 Automatic API Regression Analyzer and Executor
Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty
Abstract:
As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.Keywords: automation impact regression, java doc, executor, analyzer, layers
Procedia PDF Downloads 4901548 Foggy Image Restoration Using Neural Network
Authors: Khader S. Al-Aidmat, Venus W. Samawi
Abstract:
Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration
Procedia PDF Downloads 3861547 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach
Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha
Abstract:
Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy
Procedia PDF Downloads 1131546 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints
Authors: Gurmeet Singh Cheema, Gurjinder Singh, Amardeep Singh Kang
Abstract:
Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level.Keywords: aluminium alloy, friction stir welding, central composite design, mathematical relationship
Procedia PDF Downloads 5071545 A Study on How to Link BIM Services to Cloud Computing Architecture
Authors: Kim Young-Jin, Kim Byung-Kon
Abstract:
Although more efforts to expand the application of BIM (Building Information Modeling) technologies have be pursued in recent years than ever, it’s true that there have been various challenges in doing so, including a lack or absence of relevant institutions, lots of costs required to build BIM-related infrastructure, incompatible processes, etc. This, in turn, has led to a more prolonged delay in the expansion of their application than expected at an early stage. Especially, attempts to save costs for building BIM-related infrastructure and provide various BIM services compatible with domestic processes include studies to link between BIM and cloud computing technologies. Also in this study, the author attempted to develop a cloud BIM service operation model through analyzing the level of BIM applications for the construction sector and deriving relevant service areas, and find how to link BIM services to the cloud operation model, as through archiving BIM data and creating a revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources.Keywords: construction IT, BIM (building information modeling), cloud computing, BIM service based cloud computing
Procedia PDF Downloads 4911544 Fabrication of Powdery Composites Based Alumina and Its Consolidation by Hot Pressing Method in OXY-GON Furnace
Authors: T. Kuchukhidze, N. Jalagonia, T. Korkia, V. Gabunia, N. Jalabadze, R. Chedia
Abstract:
In this work, obtaining methods of ultrafine alumina powdery composites and high temperature pressing technology of matrix ceramic composites with different compositions have been discussed. Alumina was obtained by solution combustion synthesis and sol-gel methods. Metal carbides containing powdery composites were obtained by homogenization of finishing powders in nanomills, as well as by their single-step high temperature synthesis .Different types of matrix ceramics composites (α-Al2O3-ZrO2-Y2O3, α-Al2O3- Y2O3-MgO, α-Al2O3-SiC-Y2O3, α-Al2O3-WC-Co-Y2O3, α-Al2O3- B4C-Y2O3, α-Al2O3- B4C-TiB2 etc.) were obtained by using OXYGON furnace. Consolidation of powders were carried out at 1550- 1750°C (hold time - 1 h, pressure - 50 MPa). Corundum ceramics samples have been obtained and characterized by high hardness and fracture toughness, absence of open porosity, high corrosion resistance. Their density reaches 99.5-99.6% TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM- 800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer.Keywords: α-alumina, consolidation, phase transformation, powdery composites
Procedia PDF Downloads 3511543 Averting Food Crisis in Nigeria and Beyond, Activities of the National Food Security Programme
Authors: Musa M. Umar, S. G. Ado
Abstract:
The paper examines the activities of the National Programme for food security (NPFS) for averting food insecurity in Nigeria and beyond. The components of the NPFS include site development, outreach, community development and management support. On each site, core activities comprise crop productivity, production diversification and agro-processing. The outreach activities consist of inputs and commodity marketing, rural finance, strengthening research-extension-farmers-inputs linkages, health and nutrition and expansion of site activities. The community development activities include small-scale rural infrastructure, micro-earth dams and community forestry. The overall benefits include food security, improved productivity, marketing and processing, enhanced land and water use, increased animal production and fish catches, improved nutrition, reduction in post-harvest losses and value addition, improved rural infrastructure and diversification of production leading to improved livelihood. The NPFS would poster sustained development of small-holder agricultural and income generation.Keywords: food-security, community development, post-harvest, production
Procedia PDF Downloads 3601542 Tribological Properties of Different Mass Ratio High Velocity Oxygen Fuel-Sprayed Al₂O₃-TiO₂ Coatings on Ti-6Al-4V Alloy
Authors: Mehmet Fahri Sarac, Gokcen Akgun
Abstract:
Ti–6Al–4V alloys are widely used in biomedical industries because of its attractive mechanical and physicochemical properties. However, they have poor wear resistance. High velocity oxygen fuel (HVOF) coatings were investigated as a way to improve the wear resistance of this alloy. In this paper, different mass ratio of Al₂O₃-TiO₂ powders (60/40, 87/13 and 97/3) was employed to enhance the tribological properties of Ti–6Al–4V. The tribological behavior was investigated by wear tests using ball-on-disc and pin-on-disc tribometer. The microstructures of the contact surfaces were determined by a scanning electron microscopy before and after the test to study the wear mechanism. Uncoated and coated surfaces after wear test are also subjected to micro-hardness tests. The tribological test results showed that the microhardness, friction and wear resistance of coated Ti-6Al-4V alloys increases by increasing TiO₂ content in the powder composite when other experimental conditions were constant. Finally, Al₂O₃-TiO₂ powder composites for the investigated conditions, both coating samples had satisfactory values of friction and wear resistance, and they could be suitable candidates for Ti–6Al–4V material.Keywords: HVOF (High Velocity Oxygen Fuel), Al₂O₃-TiO₂, Ti-6Al-4V, tribology
Procedia PDF Downloads 2011541 Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites
Authors: Tahir Ahmad, M. Kamran, R. Ahmad, M. T. Z. Butt
Abstract:
Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties.Keywords: aluminum based hybrid composites, mechanical properties, microstructure, microstructure and mechanical properties relationship
Procedia PDF Downloads 4161540 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: dynamic algorithm, load imbalance, mapping, task scheduling
Procedia PDF Downloads 4531539 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 3931538 Modular Power Bus for Space Vehicles (MPBus)
Authors: Eduardo Remirez, Luis Moreno
Abstract:
The rapid growth of the private satellite launchers sector is leading the space race. Hence, with the privatization of the sector, all the companies are racing for a more efficient and reliant way to set satellites in orbit. Having detected the current needs for power management in the launcher vehicle industry, the Modular Power Bus is proposed as a technology to revolutionize power management in current and future Launcher Vehicles. The MPBus Project is committed to develop a new power bus architecture combining ejectable batteries with the main bus through intelligent nodes. These nodes are able to communicate between them and a battery controller using an improved, data over DC line technology, expected to reduce the total weight in two main areas: improving the use of the batteries and reducing the total weight due to harness. This would result in less weight for each launch stage increasing the operational satellite payload and reducing cost. These features make the system suitable for a number of launchers.Keywords: modular power bus, Launcher vehicles, ejectable batteries, intelligent nodes
Procedia PDF Downloads 4821537 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 1661536 Educational Deprivation and Their Determinants in India: Evidence from National Sample Survey
Authors: Mukesh Ranjan
Abstract:
Applying probit model on the micro data of NSS 71st round on education for understanding the access to education post the passage of Right to Education act,2009 in India. The empirical analysis shows that at all India level the mean age of enrollment in school is 5.5 years and drop-out age is around 14 years (or studied up to class 7) and around 60 percent females never get enrolled in any school in their lifetime. Nearly 20 percent children in Bihar never seen school and surprisingly, the relatively developed states like Gujarat, Maharashtra, Karnataka, Kerala and Tamil Nadu have more than one-third of the children and half of the children in Andhra Pradesh, West Bengal and Orissa as educationally wasted. The relative contribution in educational wastage is maximum by Bengal (10 %) while UP contributed a maximum of 30 % in educational non-enrollment in the country. Educational wastage is more likely to increase with age. Marriage is a resistive factor in getting education. Muslims are educationally more deprived than Hindus. Larger family and rich household are less likely to be educationally deprived. Major reasons for drop-out until 9 years were lack of interest in education and financial constraint; between 10-12 years, lack of interest and unable to cope up with studies and post 12 years financial constraint, marriage and other household reasons.Keywords: probit model, educational wastage, educational non-enrollment, educational deprivation
Procedia PDF Downloads 3161535 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles
Authors: Samir Dekali, David Crouzier
Abstract:
Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology
Procedia PDF Downloads 4411534 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2921533 A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence
Authors: Laila Seada, Hanan Oreiby, Fawaz Al Rashid, Ashraf Negm
Abstract:
Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.Keywords: thyroid, hail, papillary, microcarcinoma
Procedia PDF Downloads 3111532 Detecting Heartbeat Architectural Tactic in Source Code Using Program Analysis
Authors: Ananta Kumar Das, Sujit Kumar Chakrabarti
Abstract:
Architectural tactics such as heartbeat, ping-echo, encapsulate, encrypt data are techniques that are used to achieve quality attributes of a system. Detecting architectural tactics has several benefits: it can aid system comprehension (e.g., legacy systems) and in the estimation of quality attributes such as safety, security, maintainability, etc. Architectural tactics are typically spread over the source code and are implicit. For large codebases, manual detection is often not feasible. Therefore, there is a need for automated methods of detection of architectural tactics. This paper presents a formalization of the heartbeat architectural tactic and a program analytic approach to detect this tactic in source code. The experiment of the proposed method is done on a set of Java applications. The outcome of the experiment strongly suggests that the method compares well with a manual approach in terms of its sensitivity and specificity, and far supersedes a manual exercise in terms of its scalability.Keywords: software architecture, architectural tactics, detecting architectural tactics, program analysis, AST, alias analysis
Procedia PDF Downloads 1631531 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 941530 Gross and Histological Studies on the Thymus of the Grasscutter (Thyronomys swinderianus)
Authors: R. M. Korzerzer, J. O. Hambolu, S. O. Salami, S. B. Oladele
Abstract:
Twelve apparently healthy grasscutters between the ages of three and seven months were used for this study. The animals were purchased from local breeders in Oturkpo, Benue state, Nigeria and transported to the research laboratory in the Department of Veterinary Anatomy, Ahmadu Bello University, Zaria by means of constructed cages. The animals were divided into three groups according to their ages and acclimatised. Sacrifice was done using chloroform gaseous inhalation anaesthesia. An incision was made at the neck region and the thymus located and identified by its prominent bilateral nature. Extirpated thymuses from each animal were immediately weighed and fixed in Bouin’s fluid for 48 hours. The tissues were then prepared using standard methods. Haematoxilin and eosin was used for routine histology and Rhodamine B aniline methylene blue was for studying the architecture of the elastic and reticular fibres of the thymus. Grossly, the thymus appeared as a bilateral organ on either side of the thoracic midline. The organ size decreased consistently as the animals advanced in age. Mean ± SEM values for thymic weights were 1.23 ± 0.048 g, 0.53 ± 0.019 g and 0.30 ± 0.042 g at three, five and seven months of age respectively.Keywords: gross, histological, thymus, grasscutter
Procedia PDF Downloads 7741529 Experimental Research on the Elastic Modulus of Bones at the Lamellar Level under Fatigue Loading
Authors: Xianjia Meng, Chuanyong Qu
Abstract:
Compact bone produces fatigue damage under the inevitable physiological load. The accumulation of fatigue damage can change the bone’s micro-structure at different scales and cause the catastrophic failure eventually. However, most tests were limited to the macroscopic modulus of bone and there is a need to assess the microscopic modulus during fatigue progress. In this paper, nano-identation was used to investigate the bone specimen subjected to four point bending. The microscopic modulus of the same area were measured at different degrees of damage including fracture. So microscopic damage can be divided into three stages: first, the modulus decreased rapidly and then They fell slowly, before fracture the decline became fast again. After fracture, the average modulus decreased by 20%. The results of inner and outer planes explained the influence of compressive and tensile loads on modulus. Both the compressive and tensile moduli decreased with the accumulation of damage. They reached the minimum at ending and increased after fracture. The modulus evolution under different strains were revealed by the side. They all fell slowly and then fast with the accumulation of damage. The fractured results indicated that the elastic modulus decreased obviously at the high strain while decreased less at the low strain. During the fatigue progress, there was a significant difference in modulus at low degree of damage. However, the dispersed modulus tended to be similar at high degree of damage, but they became different again after the failure.Keywords: fatigue damage, fracture, microscopic modulus, bone, nano-identation
Procedia PDF Downloads 1691528 An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop
Authors: J. A. Louw Coetzee, Josua P. Meyer
Abstract:
The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2.Keywords: aspect ratio, microchannel, two-phase, pressure gradient
Procedia PDF Downloads 3691527 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine
Authors: Allouache Nadia
Abstract:
Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine
Procedia PDF Downloads 2561526 An Integrated Approach of Islamic Social Financing for Achieving Sustainable Development Goals (SDGS) Through Crowdfunding: A Model for Sharing Economy for Community Development in Bangladesh
Authors: Md. Abu Yousuf
Abstract:
Islamic social financing (ISF) refers to the fair distribution of wealth and financial dealings and prevents economic exploitation at all levels. ISF instruments include Islamic institutions Zakat (obligatory charity), Sadaqah (voluntary charity) and Waqf (endowment) based on philanthropy such and Qard-al Hasan (beautiful loan), micro takaful (insurance) and social investments through Sukuk (bonds) based on cooperation. ISF contributes to socio-economic development, end poverty, protects environmental sustainability, promotes education, equality, social justice and above all, establishes social well-being since the birth of Islam. ISF tools are instrumental towards achieving sustainable development goals (SDGs) set by United Nations (UN). The present study will explore the scope of ISF for community development in Bangladesh and examine the challenges in implementing ISF tools and will provide the most practical model of ISF. The study will adopt a mixed-method (MM) design in the process of data collection and analysis. The researcher will consider all issues related to ethics, reliability, validity and feasibility while conducting the study.Keywords: Islamic social financing, sustainable development goals, poverty eradication, zakat, waqf, sadaqah, Islamic microfinance
Procedia PDF Downloads 1921525 Structural Analysis on the Composition of Video Game Virtual Spaces
Authors: Qin Luofeng, Shen Siqi
Abstract:
For the 58 years since the first video game came into being, the video game industry is getting through an explosive evolution from then on. Video games exert great influence on society and become a reflection of public life to some extent. Video game virtual spaces are where activities are taking place like real spaces. And that’s the reason why some architects pay attention to video games. However, compared to the researches on the appearance of games, we observe a lack of theoretical comprehensive on the construction of video game virtual spaces. The research method of this paper is to collect literature and conduct theoretical research about the virtual space in video games firstly. And then analogizing the opinions on the space phenomena from the theory of literature and films. Finally, this paper proposes a three-layer framework for the construction of video game virtual spaces: “algorithmic space-narrative space players space”, which correspond to the exterior, expressive, affective parts of the game space. Also, we illustrate each sub-space according to numerous instances of published video games. Hoping this writing could promote the interactive development of video games and architecture.Keywords: video game, virtual space, narrativity, social space, emotional connection
Procedia PDF Downloads 2721524 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning
Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.Keywords: apartment housing, machine learning, multi-objective optimization, performance prediction
Procedia PDF Downloads 485