Search results for: material library
5250 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory
Authors: Marilei Amadeu Sabino
Abstract:
The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology
Procedia PDF Downloads 3395249 Exploring the Potential of Phase Change Materials in Construction Environments
Authors: A. Ait Ahsene F., B. Boughrara S.
Abstract:
The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.Keywords: energy saving, phase change materials, material sustainability, buildings sector
Procedia PDF Downloads 445248 3D Printing of Dual Tablets: Modified Multiple Release Profiles for Personalized Medicine
Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek
Abstract:
Additive manufacturing technologies producing drug dosage forms aimed at personalized medicine applications are promising strategies with several advantages over the conventional production methods. One of the emerging technologies is 3D printing which reduces manufacturing steps and thus allows a significant drop in expenses. A decrease in material consumption is also a highly impactful benefit as the tested drugs are frequently expensive substances. In addition, 3D printed dosage forms enable increased patient compliance and prevent misdosing as the dosage forms are carefully designed according to the patient’s needs. The incorporation of multiple drugs into a single dosage form further increases the degree of personalization. Our research focuses on the development of 3D printed tablets incorporating multiple drugs (candesartan, losartan) and thermoplastic polymers (e.g., KlucelTM HPC EF). The filaments, an essential feed material for 3D printing,wereproduced via hot-melt extrusion. Subsequently, the extruded filaments of various formulations were 3D printed into tablets using an FDM 3D printer. Then, we have assessed the influence of the internal structure of 3D printed tablets and formulation on dissolution behaviour by obtaining the dissolution profiles of drugs present in the 3D printed tablets. In conclusion, we have developed tablets containing multiple drugs providing modified release profiles. The 3D printing experiments demonstrate the high tunability of 3D printing as each tablet compartment is constructed with a different formulation. Overall, the results suggest that the 3D printing technology is a promising manufacturing approach to dual tablet preparation for personalized medicine.Keywords: 3D printing, drug delivery, hot-melt extrusion, dissolution kinetics
Procedia PDF Downloads 1715247 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application
Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay
Abstract:
Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery
Procedia PDF Downloads 1265246 Characterization and Degradation of 3D Printed Polycaprolactone-Freeze Dried Bone Matrix Constructs for Use in Critical Sized Bone Defects
Authors: Samantha Meyr, Eman Mirdamadi, Martha Wang, Tao Lowe, Ryan Smith, Quinn Burke
Abstract:
Critical-sized bone defects (CSD) treatment options remain a major clinical orthopedic challenge. They are uniquely contoured diseased or damaged bones and can be defined as those that will not heal spontaneously and require surgical intervention. Autografts are the current gold standard CSD treatment, which are histocompatible and provoke a minimal immunogenic response; however, they can cause donor site morbidity and will not suffice for the size required for replacement. As an alternative to traditional surgical methods, bone tissue engineering will be implemented via 3D printing methods. A freeze-dried bone matrix (FDBM) is a type of graft material available but will only function as desired when in the presence of bone growth factors. Polycaprolactone (PCL) is a known biodegradable material with good biocompatibility that has been proven manageable in 3D printing as a medical device. A 3D-extrusion printing strategy is introduced to print these materials into scaffolds for bone grafting purposes, which could be more accessible and rapid than the current standard. Mechanical, thermal, cytotoxic, and physical properties were investigated throughout a degradation period of 6 months using fibroblasts and dental pulp stem cells. PCL-FDBM scaffolds were successfully printed with high print fidelity in their respective pore sizes and allograft content. Additionally, we have created a method for evaluating PCL using differential scanning calorimetry (DSC) and have evaluated PCL degradation over roughly 6 months.Keywords: 3D printing, bone tissue engineering, cytotoxicity, degradation, scaffolds
Procedia PDF Downloads 1095245 Study of Methods to Reduce Carbon Emissions in Structural Engineering
Authors: Richard Krijnen, Alan Wang
Abstract:
As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design
Procedia PDF Downloads 445244 3D-Printing of Waveguide Terminations: Effect of Material Shape and Structuring on Their Characteristics
Authors: Lana Damaj, Vincent Laur, Azar Maalouf, Alexis Chevalier
Abstract:
Matched termination is an important part of the passive waveguide components. It is typically used at the end of a waveguide transmission line to prevent reflections and improve signal quality. Waveguide terminations (loads) are commonly used in microwave and RF applications. In traditional microwave architectures, usually, waveguide termination consists of a standard rectangular waveguide made by a lossy resistive material, and ended by shorting metallic plate. These types of terminations are used, to dissipate the energy as heat. However, these terminations may increase the size and the weight of the overall system. New alternative solution consists in developing terminations based on 3D-printing of materials. Designing such terminations is very challenging since it should meet the requirements imposed by the system. These requirements include many parameters such as the absorption, the power handling capability in addition to the cost, the size and the weight that have to be minimized. 3D-printing is a shaping process that enables the production of complex geometries. It allows to find best compromise between requirements. In this paper, a comparison study has been made between different existing and new shapes of waveguide terminations. Indeed, 3D printing of absorbers makes it possible to study not only standard shapes (wedge, pyramid, tongue) but also more complex topologies such as exponential ones. These shapes have been designed and simulated using CST MWS®. The loads have been printed using the carbon-filled PolyLactic Acid, conductive PLA from ProtoPasta. Since the terminations has been characterized in the X-band (from 8GHz to 12GHz), the rectangular waveguide standard WR-90 has been selected. The classical wedge shape has been used as a reference. First, all loads have been simulated with the same length and two parameters have been compared: the absorption level (level of |S11|) and the dissipated power density. This study shows that the concave exponential pyramidal shape has the better absorption level and the convex exponential pyramidal shape has the better dissipated power density level. These two loads have been printed in order to measure their properties. A good agreement between the simulated and measured reflection coefficient has been obtained. Furthermore, a study of material structuring based on the honeycomb hexagonal structure has been investigated in order to vary the effective properties. In the final paper, the detailed methodology and the simulated and measured results will be presented in order to show how 3D-printing can allow controlling mass, weight, absorption level and power behaviour.Keywords: additive manufacturing, electromagnetic composite materials, microwave measurements, passive components, power handling capacity (PHC), 3D-printing
Procedia PDF Downloads 245243 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS
Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren
Abstract:
An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.Keywords: lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS
Procedia PDF Downloads 2145242 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test
Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni
Abstract:
A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.Keywords: deflection, FE analysis, shaft, stress, three-point bending
Procedia PDF Downloads 1615241 Computed Tomography Differential Diagnose of Intraventicular Masses in the Emergency Departemen
Authors: Angelis P. Barlampas
Abstract:
Purpose: A 29 years old woman presented in the emergency department with psychiatric symptoms. The psychiatrist ordered a computed tomography scan as part of a general examination. Material and methods: The CT showed bilateral enlarged choroid plexus structures mimicking papillomata and situated in the trigones of the lateral ventricles. The left choroid plexus was heavily calcified, but the right one has no any obvious calcifications. Results: It is well kown that any brain mass can present with behavioral changes and even psychiatric symptomatology. Papillomata of the ventricular system have been described to cause psychotic episodes. According to literature, choroid plexus papillomas are seldom neuroepithelial intraventricular tumors, which are benign and categorized as WHO grade 1 tumors. They are more common in the pediatric population, but they can occur in the adults, too1. In addition, the distinction between choroid plexus papilloma and carcinoma is very difficult and impossible by imagine alone. It can only be implied with more advanced imaging, such as arterial spin labeling and MRI. The final diagnosis is, of course, after surgical excision. The usual location in adults is the fourth ventricle, but in children, it is the lateral ventricles. Their imaging appearance is that of a solid vascular tumor, which enhances intensely after the intravenous administration of contrast material. One out of fourth tumors presents speckled calcifications1. In our case, there are symmetrically sized masses at the trigones, and there are no calcifications in one of them, whereas the other one is grossly calcified. Also, there is no obvious hydrocephalus or any other evidence of increased intracranial pressure. General conclusions: When there is a new psychiatric patient, someone must undergo any possible examination, and of course, a brain CT study should be done to exclude any rare organic causes that may be responsible for the disease.Keywords: phycosis, intraventricular masses, CT, brain calcifications
Procedia PDF Downloads 595240 Policy and System Research for Health of Ageing Population
Authors: Sehrish Ather
Abstract:
Introduction: To improve organizational achievements through the production of new knowledge, health policy and system research is the basic requirement. An aging population is always the source of the increased burden of chronic diseases, disabilities, mental illnesses, and other co-morbidities; therefore the provision of quality health care services to every group of the population should be achieved by making strong policy and system research for the betterment of health care system. Unfortunately, the whole world is lacking policies and system research for providing health care to their elderly population. Materials and Methods: A literature review of published studies on aging diseases was done, ranging from the year 2011-2018. Geriatric, population, health policy, system, and research were the key terms used for the search. Databases searched were Google Scholar, PubMed, Science Direct, Ovid, and Research Gate. Grey literature was searched from various websites, including IHME, Library of the University of Lahore, World Health Organization (Ageing and Life Course), and Personal communication with Neuro-physicians. After careful reviewing published and un-published information, it was decided to carry on with commentary. Results and discussion: Most of the published studies have highlighted the need to advocate the funders of health policy and stakeholders of healthcare system research, and it was detected as a major issue, research on policy and healthcare system to provide health care to 'geriatric population' was found as highly neglected area. Conclusion: It is concluded that physicians are more involved with the policy and system research regarding any type of diseases, but scientists and researchers of basic and social science are less likely to be involved in methods used for health policy and system research due to lack of funding and resources. Therefore ageing diseases should be considered as a priority, and comprehensive policy and system research should be initiated for diseases of the geriatric population.Keywords: geriatric population, health care system, health policy, system research
Procedia PDF Downloads 1115239 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame
Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt
Abstract:
Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.Keywords: dissimilar metal, EMI shielding, joint strength, soldering
Procedia PDF Downloads 1655238 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design
Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon
Abstract:
The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites
Procedia PDF Downloads 1205237 TessPy – Spatial Tessellation Made Easy
Authors: Jonas Hamann, Siavash Saki, Tobias Hagen
Abstract:
Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies
Procedia PDF Downloads 1305236 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films
Procedia PDF Downloads 1675235 Digital Athena – Contemporary Commentaries and Greek Mythology Explored through 3D Printing
Authors: Rose Lastovicka, Bernard Guy, Diana Burton
Abstract:
Greek myth and art acted as tools to think with, and a lens through which to explore complex topics as a form of social media. In particular, coins were a form of propaganda to communicate the wealth and power of the city-states they originated from as they circulated from person to person. From this, how can the application of 3D printing technologies explore the infusion of ancient forms with contemporary commentaries to promote discussion? The digital reconstruction of artifacts is a topic that has been researched by various groups all over the globe. Yet, the exploration of Greek myth through artifacts infused with contemporary issues is currently unexplored in this medium. Using the Stratasys J750 3D printer - a multi-material, full-colour 3D printer - a series of coins inspired by ancient Greek currency and myth was created to present commentaries on the adversities surrounding individuals in the LGBT+ community. Using the J750 as the medium for expression allows for complete control and precision of the models to create complex high-resolution iconography. The coins are printed with a hard, translucent material with coloured 3D visuals embedded into the coin to then be viewed in close contact by the audience. These coins as commentaries present an avenue for wider understanding by drawing perspectives not only from sources concerned with the contemporary LGBT+ community but also from sources exploring ancient homosexuality and the perception and regulation of it in antiquity. By displaying what are usually points of contention between anti- and pro-LGBT+ parties, this visual medium opens up a discussion to both parties, suggesting heritage can play a vital interpretative role in the contemporary world.Keywords: 3D printing, design, Greek mythology, LGBT+ community
Procedia PDF Downloads 1215234 Studying the Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy-Nanocomposite for the Oil Field Applications
Authors: Mohammed Al-Bahrani, Alistair Cree, Zoltan J. Gombos
Abstract:
Carbon nanotubes are currently considered to be one of the strongest and stiffest engineering materials available, possessing a calculated tensile strength of σTS ≈ 200GPa and Young’s moduli up to E = 1.4 TPa. In the context of manufactured engineering composites, epoxy resin is the most commonly used matrix material for many aerospace and oil field, and other, industrial applications. This paper reports the initial findings of a study which considered the effects that small additions of nickel coated multi-wall carbon nanotubes (Ni-MWCNTs) would have on the mechanical properties of an epoxy resin matrix material. To successfully incorporate these particles into the matrix materials, with good dispersive properties, standard mixing techniques using an ultrasonic bath were used during the manufacture of appropriate specimens for testing. The tensile and flexural strength properties of these specimens, as well as the microstructure, were then evaluated and studied. Scanning Electronics Microscope (SEM) was used to visualise the degree of dispersion of the Ni-MWCNT’s in matrix. The results obtained indicated that the mechanical properties of epoxy resin can be improved significantly by the addition of the Ni-MWCNT’s. Further, the addition of Ni-MWCNT’s increased the tensile strength by approximately 19% and the tensile modulus by 28%. The flexural strength increased by 20.7% and flexural modulus by 22.6% compared to unmodified epoxy resin. It is suggested that these improvements, seen with the Ni-MWCNT’s particles, were due to an increase in the degree of interfacial bonding between Ni-MWCNT and epoxy, so leading to the improved mechanical properties of the nanocomposite observed. Theoretical modelling, using ANSYS finite element analysis, also showed good correlation with the experimental results obtained.Keywords: carbon nanotubes, nanocomposite, epoxy resin, ansys
Procedia PDF Downloads 1765233 Prevalence of Visual Impairment among School Children in Ethiopia: A Systematic Review and Meta-Analysis
Authors: Merkineh Markos Lorato, Gedefaw Diress Alene
Abstract:
Introduction: Visual impairment is any condition of the eye or visual system that results in loss/reduction of visual functioning. It significantly influences the academic routine and social activities of children, and the effect is severe for low-income countries like Ethiopia. So, this study aimed to determine the pooled prevalence of visual impairment among school children in Ethiopia. Methods: Databases such as Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, World Wide Web of Science, and Cochrane Library searched to retrieve eligible articles. In addition, Google Scholar and a reference list of the retrieved eligible articles were addressed. Studies that reported the prevalence of visual impairment were included to estimate the pooled prevalence. Data were extracted using a standardized data extraction format prepared in Microsoft Excel and analysis was held using STATA 11 statistical software. I² was used to assess the heterogeneity. Because of considerable heterogeneity, a random effect meta-analysis model was used to estimate the pooled prevalence of visual impairment among school children in Ethiopia. Results: The result of 9 eligible studies showed that the pooled prevalence of visual impairment among school children in Ethiopia was 7.01% (95% CI: 5.46, 8.56%). In the subgroup analysis, the highest prevalence was reported in South Nations Nationalities and Tigray region together (7.99%; 3.63, 12.35), while the lowest prevalence was reported in Addis Ababa (5.73%; 3.93, 7.53). Conclusion: The prevalence of visual impairment among school children is significantly high in Ethiopia. If it is not detected and intervened early, it will cause a lifetime threat to visually impaired school children, so that school vision screening program plan and its implementation may cure the life quality of future generations in Ethiopia.Keywords: visual impairment, school children, Ethiopia, prevalence
Procedia PDF Downloads 455232 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene
Authors: Małgorzata Golonka, Jadwiga Laska
Abstract:
Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.Keywords: self-healing polymers, polyethylene, microcapsules, extrusion
Procedia PDF Downloads 315231 Active Thermography Technique for High-Entropy Alloy Characterization Deposited with Cold Spray Technique
Authors: Nazanin Sheibanian, Raffaella Sesana, Sedat Ozbilen
Abstract:
In recent years, high-entropy alloys (HEAs) have attracted considerable attention due to their unique properties and potential applications. In this study, novel HEA coatings were prepared on Mg substrates using mechanically alloyed HEA powder feedstocks based on Al_(0.1-0.5)CoCrCuFeNi and MnCoCrCuFeNi multi-material systems. The coatings were deposited by the Cold Spray (CS) process using three different temperatures of the process gas (N2) (650°C, 750°C, and 850°C) to examine the effect of gas temperature on coating properties. In this study, Infrared Thermography (non-destructive) was examined as a possible quality control technique for HEA coatings applied to magnesium substrates. Active Thermography was employed to characterize coating properties using the thermal response of the coating. Various HEA chemical compositions and deposition temperatures have been investigated. As a part of this study, a comprehensive macro and microstructural analysis of Cold Spray (CS) HEA coatings has been conducted using macrophotography, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM+EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microhardness tests, roughness measurements, and porosity assessments. These analyses provided insight into phase identification, microstructure characterization, deposition, particle deformation behavior, bonding mechanisms, and identifying a possible relationship between physical properties and thermal responses. Based on the figures and tables, it is evident that the Maximum Relative Radiance (∆RMax) of each sample differs depending on both the chemical composition of HEA and the temperature at which Cold Spray is applied.Keywords: active thermography, coating, cold spray, high- entropy alloy, material characterization
Procedia PDF Downloads 745230 A Deleuzean Feminist Analysis of the Everyday, Gendered Performances of Teen Femininity: A Case Study on Snaps and Selfies in East London
Authors: Christine Redmond
Abstract:
This paper contributes to research on gendered, digital identities by exploring how selfies offer scope for disrupting and moving through gendered and racial ideals of feminine beauty. The selfie involves self-presentation, filters, captions, hashtags, online publishing, likes and more, constituting the relationship between subjectivity, practice and social use of selfies a complex process. Employing qualitative research methods on youth selfies in the UK, the author investigates interdisciplinary entangling between studies of social media and fields within gender, media and cultural studies, providing a material discursive treatment of the selfie as an embodied practice. Drawing on data collected from focus groups with teenage girls in East London, the study explores how girls experience and relate to selfies and snaps in their everyday lives. The author’s Deleuzean feminist approach suggests that bodies and selfies are not individual, disembodied entities between which there is a mediating inter-action. Instead, bodies and selfies are positioned as entangled to a point where it becomes unclear as to where a selfie ends and a body begins. Recognising selfies not just as images but as material and social assemblages opens up possibilities for unpacking the selfie in ways that move beyond the representational model in some studies of socially mediated digital images. The study reveals how the selfie functions to enable moments of empowerment within limiting, dominant ideologies of Euro-centrism, patriarchy and heteronormativity.Keywords: affect theory, femininity, gender, heteronormativity, photography, selfie, snapchat
Procedia PDF Downloads 2495229 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger
Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe
Abstract:
Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fractionKeywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat
Procedia PDF Downloads 1555228 Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530oC. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.Keywords: heat transfer, Cu-Cl cycle, hydrogen production, oxygen, clean energy
Procedia PDF Downloads 2635227 Use of Concept Maps as a Tool for Evaluating Students' Understanding of Science
Authors: Aregamalage Sujeewa Vijayanthi Polgampala, Fang Huang
Abstract:
This study explores the genesis and development of concept mapping as a useful tool for science education and its effectiveness as technique for teaching and learning and evaluation for secondary science in schools and the role played by National College of Education science teachers. Concept maps, when carefully employed and executed serves as an integral part of teaching method and measure of effectiveness of teaching and tool for evaluation. Research has shown that science concept maps can have positive influence on student learning and motivation. The success of concept maps played in an instruction class depends on the type of theme selected, the development of learning outcomes, and the flexibility of instruction in providing library unit that is equipped with multimedia equipment where learners can interact. The study was restricted to 6 male and 9 female respondents' teachers in third-year internship pre service science teachers in Gampaha district Sri Lanka. Data were collected through 15 item questionnaire provided to learners and in depth interviews and class observations of 18 science classes. The two generated hypotheses for the study were rejected, while the results revealed that significant difference exists between factors influencing teachers' choice of concept maps, its usefulness and problems hindering the effectiveness of concept maps for teaching and learning process of secondary science in schools. It was examined that concept maps can be used as an effective measure to evaluate students understanding of concepts and misconceptions. Even the teacher trainees could not identify, key concept is on top, and subordinate concepts fall below. It is recommended that pre service science teacher trainees should be provided a thorough training using it as an evaluation instrument.Keywords: concept maps, evaluation, learning science, misconceptions
Procedia PDF Downloads 2765226 Another Beautiful Sounds: Building the Memory of Sound of Peddling in Beijing with Digital Technology
Authors: Dan Wang, Qing Ma, Xiaodan Wang, Tianjiao Qi
Abstract:
The sound of peddling in Beijing, also called “yo-heave-ho” or “cry of one's ware”, is a unique folk culture and usually found in Beijing hutong. For the civilians in Beijing, sound of peddling is part of their childhood. And for those who love the traditional culture of Beijing, it is an old song singing the local conditions and customs of the ancient city. For example, because of his great appreciation, the British poet Osbert Stewart once put sound of peddling which he had heard in Beijing as a street orchestra performance in the article named "Beijing's sound and color".This research aims to collect and integrate the voice/photo resources and historical materials of sound concerning peddling in Beijing by digital technology in order to protect the intangible cultural heritage and pass on the city memory. With the goal in mind, the next stage is to collect and record all the materials and resources based on the historical documents study and interviews with civilians or performers. Then set up a metadata scheme (which refers to the domestic and international standards such as "Audio Data Processing Standards in the National Library", DC, VRA, and CDWA, etc.) to describe, process and organize the sound of peddling into a database. In order to fully show the traditional culture of sound of peddling in Beijing, web design and GIS technology are utilized to establish a website and plan holding offline exhibitions and events for people to simulate and learn the sound of peddling by using VR/AR technology. All resources are opened to the public and civilians can share the digital memory through not only the offline experiential activities, but also the online interaction. With all the attempts, a multi-media narrative platform has been established to multi-dimensionally record the sound of peddling in old Beijing with text, images, audio, video and so on.Keywords: sound of peddling, GIS, metadata scheme, VR/AR technology
Procedia PDF Downloads 3065225 Innovative Fabric Integrated Thermal Storage Systems and Applications
Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison
Abstract:
In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration
Procedia PDF Downloads 1675224 Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete
Authors: M. I. Nicolas, J. C. Cruz, Ysmael Verde, A.Yeladaqui-Tello
Abstract:
The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete.Keywords: concrete, pine wood ash, pozzolanic activity, X-ray
Procedia PDF Downloads 4585223 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1445222 Alcohol-Containing versus Aqueous-Based Solutions for Skin Preparation in Abdominal Surgery: A Systematic Review and Meta-Analysis
Authors: Dimitra V. Peristeri, Hussameldin M. Nour, Amiya Ahsan, Sameh Abogabal, Krishna K. Singh, Muhammad Shafique Sajid
Abstract:
Introduction: The use of optimal skin antiseptic agents for the prevention of surgical site infection (SSI) is of critical importance, especially during abdominal surgical procedures. Alcohol-based chlorhexidine gluconate (CHG) and aqueous-based povidone-iodine (PVI) are the two most common skin antiseptics used nowadays. The objective of this article is to evaluate the effectiveness of alcohol-based CHG versus aqueous-based PVI used for skin preparation before abdominal surgery to reduce SSIs. Methods: Standard medical databases such as MEDLINE, Embase, Pubmed, and Cochrane Library were searched to find randomised, controlled trials (RCTs) comparing alcohol-based CHG skin preparation versus aqueous-based PVI in patients undergoing abdominal surgery. The combined outcomes of SSIs were calculated using an odds ratio (OR) with 95% confidence intervals (95% CI). All data were analysed using Review Manager (RevMan) Software 5.4, and the meta-analysis was performed with a random effect model analysis. Results: A total of 11 studies, all RCTs, were included (n= 12072 participants), recruiting adult patients undergoing abdominal surgery. In the random effect model analysis, the use of alcohol-based CHG in patients undergoing abdominal surgery was associated with a reduced risk of SSI compared to aqueous-based PVI (OR: 0.84; 95% CI [0.74, 0.96], z= 2.61, p= 0.009). Conclusion: Alcohol-based CHG may be more effective for preventing the risk of SSI compared to aqueous-based PVI agents in abdominal surgery. The conclusion of this meta-analysis may add a guiding value to reinforce current clinical practice guidelines.Keywords: skin preparation, surgical site infection, chlorhexidine, skin antiseptics
Procedia PDF Downloads 1145221 Study of Ageing in the Marine Environment of Bonded Composite Structures by Ultrasonic Guided Waves. Comparison of the Case of a Conventional Carbon-epoxy Composite and a Recyclable Resin-Based Composite
Authors: Hamza Hafidi Alaoui, Damien Leduc, Mounsif Ech Cherif El Kettani
Abstract:
This study is dedicated to the evaluation of the ageing of turbine blades in sea conditions, based on ultrasonic Non Destructive Testing (NDT) methods. This study is being developed within the framework of the European Interreg TIGER project. The Tidal Stream Industry Energiser Project, known as TIGER, is the biggest ever Interreg project driving collaboration and cost reductionthrough tidal turbine installations in the UK and France. The TIGER project will drive the growth of tidal stream energy to become a greater part of the energy mix, with significant benefits for coastal communities. In the bay of Paimpol-Bréhat (Brittany), different samples of composite material and bonded composite/composite structures have been immersed at the same time near a turbine. The studied samples are either conventional carbon-epoxy composite samples or composite samples based on a recyclable resin (called recyclamine). One of the objectives of the study is to compare the ageing of the two types of structure. A sample of each structure is picked up every 3 to 6 months and analyzed using ultrasonic guided waves and bulk waves and compared to reference samples. In order to classify the damage level as a function of time spent under the sea, the measure have been compared to a rheological model based on the Finite Elements Method (FEM). Ageing of the composite material, as well as that of the adhesive, is identified. The aim is to improve the quality of the turbine blade structure in terms of longevity and reduced maintenance needs.Keywords: non-destructive testing, ultrasound, composites, guides waves
Procedia PDF Downloads 224