Search results for: clinical deterioration prediction
4215 Numerical Prediction of Wall Eroded Area by Cavitation
Authors: Ridha Zgolli, Ahmed Belhaj, Maroua Ennouri
Abstract:
This study presents a new method to predict cavitation area that may be eroded. It is based on the post-treatment of URANS simulations in cavitant flows. The most RANS calculations with incompressible consideration are based on cavitation model using mixture fluid with density (ρm) calculated as a function of liquid density (ρliq), vapour or gas density (ρvap) and vapour or gas volume fraction α (ρm = αρvap + (1-α) ρliq). The calculations are performed on hydrofoil geometries and compared with experimental works concerning flows characteristics (size of pocket, pressure, velocity). We present here the used cavitation model and the approach followed to evaluate the value of α fixing the shape of pocket around wall before collapsing.Keywords: flows, CFD, cavitation, erosion
Procedia PDF Downloads 3384214 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 2384213 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators
Authors: Fathi Abid, Bilel Kaffel
Abstract:
The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode
Procedia PDF Downloads 3394212 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 394211 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 1874210 Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)
Authors: Dawang D. N., Dasat G. S., Nden D.
Abstract:
Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance.Keywords: endophyte, fungal extract, antimicrobial, potato
Procedia PDF Downloads 1234209 Analysis of Ferroresonant Overvoltages in Cable-fed Transformers
Authors: George Eduful, Ebenezer A. Jackson, Kingsford A. Atanga
Abstract:
This paper investigates the impacts of cable length and capacity of transformer on ferroresonant overvoltage in cable-fed transformers. The study was conducted by simulation using the EMTP RV. Results show that ferroresonance can cause dangerous overvoltages ranging from 2 to 5 per unit. These overvoltages impose stress on insulations of transformers and cables and subsequently result in system failures. Undertaking Basic Multiple Regression Analysis (BMR) on the results obtained, a statistical model was obtained in terms of cable length and transformer capacity. The model is useful for ferroresonant prediction and control in cable-fed transformers.Keywords: ferroresonance, cable-fed transformers, EMTP RV, regression analysis
Procedia PDF Downloads 5334208 The Role Collagen VI Plays in Heart Failure: A Tale Untold
Authors: Summer Hassan, David Crossman
Abstract:
Myocardial fibrosis (MF) has been loosely defined as the process occurring in the pathological remodeling of the myocardium due to excessive production and deposition of extracellular matrix (ECM) proteins, including collagen. This reduces tissue compliance and accelerates progression to heart failure, as well as affecting the electrical properties of the myocytes resulting in arrhythmias. Microscopic interrogation of MF is key to understanding the molecular orchestrators of disease. It is well-established that recruitment and stimulation of myofibroblasts result in Collagen deposition and the resulting expansion in the ECM. Many types of Collagens have been identified and implicated in scarring of tissue. In a series of experiments conducted at our lab, we aim to elucidate the role collagen VI plays in the development of myocardial fibrosis and its direct impact on myocardial function. This was investigated through an animal experiment in Rats with Collagen VI knockout diseased and healthy animals as well as Collagen VI wild diseased and healthy rats. Echocardiogram assessments of these rats ensued at four-time points, followed by microscopic interrogation of the myocardium aiming to correlate the role collagen VI plays in myocardial function. Our results demonstrate a deterioration in cardiac function as represented by the ejection fraction in the knockout healthy and diseased rats. This elucidates a potential protective role that collagen-VI plays following a myocardial insult. Current work is dedicated to the microscopic characterisation of the fibrotic process in all rat groups, with the results to follow.Keywords: heart failure, myocardial fibrosis, collagen, echocardiogram, confocal microscopy
Procedia PDF Downloads 824207 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems
Procedia PDF Downloads 1234206 The Importance of Psychiatric Nursing in the Care of Mental Health in Transex Patient in Brazil
Authors: Aline Giardin, Ana Fontoura, Thomas Anderson
Abstract:
Transsexuality is a condition that requires the work of professionals from various fields for diagnosis and treatment. The correct diagnosis is very important because the surgery is irreversible. Diagnostic elements are essentially clinical and an observation period of two years prior to surgery is recommended. In this review article, we discuss the importance of psychiatric nursing for the care of transgender patients, as well as their mental health. Transsexuality is a phenomenon that contrasts our common understandings of sexuality, but it is not a sexual issue. Also called gender dysphoria is a mismatch between the anatomical sex of an individual and their gender identity. In relation to mental health, among transsexuals, we find variations ranging from psychoses to total normality. As the etiology is still controversial, there is no biological marker and only the clinical criteria can be used. Portaria nº 2803, of November 19, 2013, Brazil, regulates the surgical reassignment of sex by the SUS and the nurse started to work also in operational groups (transsexuals who wish to perform surgery and other procedures of reassignment of sex). Health and education, establishes links and guides the care that female and male transsexual patients will have to have before and after surgery. It is also important to say that the work of health education is not only concerned with aspects related to the sexual reassignment surgery, but also with the mental health of its patients and with the family. One of the main complaints of patients is the impression that professionals seem to find them strange and feel extremely uncomfortable when they talk about their desire to undergo sex-change surgery: Investigate the role of nursing in the process of change sexual. Our methodology was a review of articles produced between 1994 and 2015. It was concluded that nursing should specialize for this new demand, which is growing more and more in our health services. We believe that nursing is specializing to enter this context and the expectations are good for the professionals and for the reception of the transsexual patient.Keywords: transex, nursing, importance, patient
Procedia PDF Downloads 2694205 Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions
Authors: A. I. O. Zaid, A. M. Attieh, S. M. A. Al Qawabah
Abstract:
Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together.Keywords: ECAP, aluminum, cast, mechanical characteristics, Mo grain refiner
Procedia PDF Downloads 4724204 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India
Authors: Mahesh Kothari, K. D. Gharde
Abstract:
The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification
Procedia PDF Downloads 5694203 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties
Authors: Yoshio Kurosawa, Takao Yamaguchi
Abstract:
High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.Keywords: automobile, acoustics, porous material, transfer matrix method
Procedia PDF Downloads 5094202 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice
Authors: Jaspal Rana, Varinder Singh
Abstract:
Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.Keywords: allium cepa, cerebral ischemia, memory, sensorimotor
Procedia PDF Downloads 1154201 Planning Quality and Maintenance Activities in a Closed-Loop Serial Multi-Stage Manufacturing System under Constant Degradation
Authors: Amauri Josafat Gomez Aguilar, Jean Pierre Kenné
Abstract:
This research presents the development of a self-sustainable manufacturing system from a circular economy perspective, structured by a multi-stage serial production system consisting of a series of machines under deterioration in charge of producing a single product and a reverse remanufacturing system constituted by the same productive systems of the first scheme and different tooling, fed by-products collected at the end of their life cycle, and non-conforming elements of the first productive scheme. Since the advanced production manufacturing system is unable to satisfy the customer's quality expectations completely, we propose the development of a mixed integer linear mathematical model focused on the optimal search and assignment of quality stations and preventive maintenance operation to the machines over a time horizon, intending to segregate the correct number of non-conforming parts for reuse in the remanufacturing system and thereby minimizing production, quality, maintenance, and customer non-conformance penalties. Numerical experiments are performed to analyze the solutions found by the model under different scenarios. The results showed that the correct implementation of a closed manufacturing system and allocation of quality inspection and preventive maintenance operations generate better levels of customer satisfaction and an efficient manufacturing system.Keywords: closed loop, mixed integer linear programming, preventive maintenance, quality inspection
Procedia PDF Downloads 864200 Application of Neural Network on the Loading of Copper onto Clinoptilolite
Authors: John Kabuba
Abstract:
The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.Keywords: clinoptilolite, loading, modeling, neural network
Procedia PDF Downloads 4154199 Impact of Socio-Cultural Attributes of Imo Communities on Widowhood Practice in Imo State, Nigeria
Authors: Otuu O. Obasi, Jude C. Ajaraogu, Happiness C. Anthony-Ikpe
Abstract:
Women in Igbo land generally experience culture-related mistreatment in the event of the death of their husbands. The mistreatment ranges from scraping of widows’ hair to denial of the right to see their husbands’ corpses. The objectives of the study were to determine the forms and prevalence of widowhood practice in the studied communities, the effects of the socio-cultural attributes of the people on the practice, and the perceived effect of the practice on the victims. Data for the study were collected from 64 randomly selected communities out of 640 communities in Imo State, Nigeria. 450 copies of the researcher-made-questionnaire were distributed across the three senatorial zones of the State. A total of 418 or 92.8% were completely filled and returned. The result of the study showed, among other things, that the majority of males and females recognized widowhood practice as dehumanizing, but opined that it cannot be stopped because it is rooted in culture. However, 30.2% of the female population did not agree that the practice is dehumanizing to women since it was their cultural practice. The study also revealed that scrapping of widows’ hair was the commonest practice while sleeping alone with the husband’s corpse was the least practice. Regarding the effect which this practice has on widows, emotional trauma topped the list; and was followed by economic hardship and health deterioration. Also shown by the study was that the level of education and religion did not have a notable effect on widowhood practice. With regard to possible stoppage measures, greater number of the respondents (38%) indicated that a synergy of efforts was needed to curb the social scourge.Keywords: widowhood practice, socio-cultural attributes, violence, impact
Procedia PDF Downloads 1334198 Research Trends in Using Virtual Reality for the Analysis and Treatment of Lower-Limb Musculoskeletal Injury of Athletes: A Literature Review
Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes
Abstract:
There is little research applying virtual reality (VR) to the treatment of musculoskeletal injury in athletes. This is despite their prevalence, and the implications for physical and psychological health. Nevertheless, developments of wireless VR headsets better facilitate dynamic movement in VR environments (VREs), and more research is expected in this emerging field. This systematic review identified publications that used VR interventions for the analysis or treatment of lower-limb musculoskeletal injury of athletes. It established a search protocol, and through narrative discussion, identified existing trends. Database searches encompassed four term sets: 1) VR systems; 2) musculoskeletal injuries; 3) sporting population; 4) movement outcome analysis. Overall, a total of 126 publications were identified through database searching, and twelve were included in the final analysis and discussion. Many of the studies were pilot and proof of concept work. Seven of the twelve publications were observational studies. However, this may provide preliminary data from which clinical trials will branch. If specified, the focus of the literature was very narrow, with very similar population demographics and injuries. The trends in the literature findings emphasised the role of VR and attentional focus, the strategic manipulation of movement outcomes, and the transfer of skill to the real-world. Causal inferences may have been undermined by flaws, as most studies were limited by the practicality of conducting a two-factor clinical-VR-based study. In conclusion, by assessing the exploratory studies, and combining this with the use of numerous developments, techniques, and tools, a novel application could be established to utilise VR with dynamic movement, for the effective treatment of specific musculoskeletal injuries of athletes.Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality
Procedia PDF Downloads 2334197 Factors Associated with Oral Cavity Colonization by Candida albicans
Authors: Nwafia Ifeyinwa Nkeiruka, Nwafia Walter Chukwuma
Abstract:
Since the early 1980’s fungi have emerged as major causes of human diseases, especially among immunocompromised. The most commonly isolated yeast is Candida albicans and constitutes the 4th most common nosocomial BSI in humans. It is progressive and cumulative and become more complex over time.It can even lead to leaky gut syndrome that causes food and environmental allergies. It is worthy of note that all the available data on oral Candida risk factors in humans were documented essentially using data from studies conducted in other areas, hence there is need for comparative and complementary information from the South eastern part of Nigeria. Method: 200 subjects of all age groups of both sexes were randomly examined,by swabbing their palatine mucosa and dorsal tongue with sterile cotton wool,then cultured into Sabouraud dextrose agar plates supplemented with antibiotics and incubated aerobically at 37 degree for 48 hrs. Identification of Candida albicans was done by germ tubes tests, chlamydospores production on cornmeal agar supplemented with 1% Tween 80.Sugar and nitrogen assimilation test using API 20C Auxanogram and potassium nitrate agar. Results: Out of 30 samples that were positive for candida, 15 (50%) were candida albicans. Using the anova test (P < 0.05) this variation is significant (P = 0016). followed by C. dublinensis 3 (13%), C. tropicalis 3 (10%), C. pseudotropicalis 3 (10%), C, glabrata 2 (7%), C. parapsilosis 2 (7%) and lastly C. krusei 1 (3%).However, 53% of the patients were female while 47% were male. Among the HIV positive isolates.67% were HIV isolates not on drugs while 33% positives isolates were on drugs and the percentages of candida species in these patients were as follows C. albicans were 45% followed by C. glabrata and C.tropicalis which were 17% each, C.parapsilosis, C.dubliensis and C.pseudotropicalis were all 8% each. Conclusion: Oral Candidiasis is a marker of systemic diseases and in some cases, it may be the first clinical presentation. There is need for more intensive clinical and laboratory monitoring and possible early intervention to prevent the reoccurrence and resistance to treatment.Keywords: oral cavity, Candida species, oral Candidiasis, risk factors
Procedia PDF Downloads 3634196 Effective Tandem Mesh Nebulisation of Pulmonary Vasodilator and Bronchodilators in Critical Respiratory Failure
Authors: Nathalie Bolding, Marta Montero, Joaquim Cevallos, Juan F. Martin-Lazaro
Abstract:
Background: Inhaled epoprostenol (iEPO) have been shown to improve PaO2:FiO2 (PF) in combination with bronchodilators (BD). However, there is not an available device to deliver these two therapies concomitantly. We describe a new method to provide this therapy successfully. Objective: To evaluate the response to continuous nebulization of iEPO and intermittent nebulization of Salbutamol/Ipratropium bromide in adults with severe respiratory failure through a double mesh nebulisation in tandem. Methods: This observational study included two mechanical ventilated adults under hourly ventilatory, gasometrical and clinical measurements during 48h. Both had severe respiratory failure treated with continuous iEPO (50 – 200 micrograms/h) and BD (Salbutamol 2.5 mg and Ipratropium bromide 500 mcg every 6 hours) through double mesh nebulisation (Aerogen solo®) placed in tandem in the dry side of the humidificator. The primary endpoints were the variables associated with a positive response to this tandem nebulised therapy (PaFiO2 index, ROX index). Secondary endpoints were laboratory (ABG) clinical and ventilatory variables. Statistical analysis (SPSS v29) included linear regression and ANOVA. Results: The patients included (n=2) survived, both extubated, one after ECMO therapy. Severe acute respiratory failure had a positive response rate to continuous iEPO and intermittent BD: PaFiO2 increased (7.40 to 30.91; P75: 27%) as well as ROX index (2.91 to 11.43; P75: 33%). There was a linear correlation of improvement between iEPO with PaFiO2 (ANOVA, r=0.393, p<0.002) and ROX (r=0.419, p<0.001). iEPO+BD therapy did not show any complications. Conclusion: Continuous and intermittent mesh tandem nebulisation can be effectively delivered with this method with a positive effect in ventilatory parameters without observed complications. Randomised studies will be able to provide reassurance in this new therapy.Keywords: tandem, mesh, nebulisers, pulmonary, vasoldilators, bronchodilators, respiratory, failure
Procedia PDF Downloads 834195 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal
Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali
Abstract:
The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management
Procedia PDF Downloads 814194 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3354193 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model
Authors: Autcha Araveeporn
Abstract:
This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)
Procedia PDF Downloads 4404192 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model
Procedia PDF Downloads 3234191 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case
Authors: Lukas Reznak, Maria Reznakova
Abstract:
Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany
Procedia PDF Downloads 2484190 Sudanese Dietitian’s Role in the Provision of Parenteral Nutrition: The Past, Present, and Future
Authors: Reem Osama Yousif Ali, Osama Yousif Ali Al Gibali
Abstract:
Introduction: Balanced nutrition is undeniably essential for maintaining health, body functions, and integrity of cell metabolism; however, some sick patients cannot tolerate oral or enteral feeding to meet their nutritional needs, so partial or total parenteral nutrition (PN) may be the most suitable alternative route in such situations. Dietitians are fundamental personnel among the medical team to ensure the proper provision of PN service, which was introduced in Sudan in the 1980s. Objective: The study aimed to recognize the dietitians' awareness of parenteral nutrition and their role in providing this service in Sudan – Khartoum State. Methodology: Formulated questionnaire forms composed of twelve questions were distributed to the dietitians working in four tertiary level hospitals. Results: The majority (75%) of the responded dietitians had reasonable knowledge about the importance of PN, its advantages, and its indications. Sixty percent of them were mindful of the PN side effects. Most of the dietitians were aware of the different assessment measurements and PN calculations and were exposed in their clinical practice to patients who were in need of PN, but only a few of them (about 30%) had the actual chance to participate in the formulation and application of PN therapy. The unavailability of the multidisciplinary team, lack of the required equipment and financial support, and associated complications were basic obstacles to the provision of long-term PN service in Khartoum state hospitals. Conclusion: Although dietitians in Khartoum state hospitals have good information about PN definition, indications, accesses, and assessment measures, they do not have enough knowledge and clinical exposure that make them confident to provide the PN service. Establishing a few models of parenteral nutrition units in tertiary hospitals will be of great help, as well as providing the dietitian's training in the area of parenteral nutrition. Further study can explore more requirements to run this service.Keywords: nutrition support, dietitian, Sudan, parenteral nutrition, nutrition support team
Procedia PDF Downloads 1054189 Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers
Authors: U. Chattaraj, K. Dhusiya, M. Raviteja
Abstract:
Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly.Keywords: driver, fuzzy logic, perception reaction time, premise variable
Procedia PDF Downloads 3044188 Experience of Two Major Research Centers in the Diagnosis of Cardiac Amyloidosis from Transthyretin
Authors: Ioannis Panagiotopoulos, Aristidis Anastasakis, Konstantinos Toutouzas, Ioannis Iakovou, Charalampos Vlachopoulos, Vasilis Voudris, Georgios Tziomalos, Konstantinos Tsioufis, Efstathios Kastritis, Alexandros Briassoulis, Kimon Stamatelopoulos, Alexios Antonopoulos, Paraskevi Exadaktylou, Evanthia Giannoula, Anastasia Katinioti, Maria Kalantzi, Evangelos Leontiadis, Eftychia Smparouni, Ioannis Malakos, Nikolaos Aravanis, Argyrios Doumas, Maria Koutelou
Abstract:
Introduction: Cardiac amyloidosis from Transthyretin (ATTR-CA) is an infiltrative disease characterized by the deposition of pathological transthyretin complexes in the myocardium. This study describes the characteristics of patients diagnosed with ATTR-CA from 2019 until present at the Nuclear Medicine Department of Onassis Cardiac Surgery Center and AHEPA Hospital. These centers have extensive experience in amyloidosis and modern technological equipment for its diagnosis. Materials and Methods: Records of consecutive patients (N=73) diagnosed with any type of amyloidosis were collected, analyzed, and prospectively followed. The diagnosis of amyloidosis was made using specific myocardial scintigraphy with Tc-99m DPD. Demographic characteristics, including age, gender, marital status, height, and weight, were collected in a database. Clinical characteristics, such as amyloidosis type (ATTR and AL), serum biomarkers (BNP, troponin), electrocardiographic findings, ultrasound findings, NYHA class, aortic valve replacement, device implants, and medication history, were also collected. Some of the most significant results are presented. Results: A total of 73 cases (86% male) were diagnosed with amyloidosis over four years. The mean age at diagnosis was 82 years, and the main symptom was dyspnea. Most patients suffered from ATTR-CA (65 vs. 8 with AL). Out of all the ATTR-CA patients, 61 were diagnosed with wild-type and 2 with two rare mutations. Twenty-eight patients had systemic amyloidosis with extracardiac involvement, and 32 patients had a history of bilateral carpal tunnel syndrome. Four patients had already developed polyneuropathy, and the diagnosis was confirmed by DPD scintigraphy, which is known for its high sensitivity. Among patients with isolated cardiac involvement, only 6 had left ventricular ejection fraction below 40%. The majority of ATTR patients underwent tafamidis treatment immediately after diagnosis. Conclusion: In conclusion, the experiences shared by the two centers and the continuous exchange of information provide valuable insights into the diagnosis and management of cardiac amyloidosis. Clinical suspicion of amyloidosis and early diagnostic approach are crucial, given the availability of non-invasive techniques. Cardiac scintigraphy with DPD can confirm the presence of the disease without the need for a biopsy. The ultimate goal still remains continuous education and awareness of clinical cardiologists so that this systemic and treatable disease can be diagnosed and certified promptly and treatment can begin as soon as possible.Keywords: amyloidosis, diagnosis, myocardial scintigraphy, Tc-99m DPD, transthyretin
Procedia PDF Downloads 914187 Information Visualization Methods Applied to Nanostructured Biosensors
Authors: Osvaldo N. Oliveira Jr.
Abstract:
The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique
Procedia PDF Downloads 3374186 The Efficacy of Box Lesion+ Procedure in Patients with Atrial Fibrillation: Two-Year Follow-up Results
Authors: Oleg Sapelnikov, Ruslan Latypov, Darina Ardus, Samvel Aivazian, Andrey Shiryaev, Renat Akchurin
Abstract:
OBJECTIVE: MAZE procedure is one of the most effective surgical methods in atrial fibrillation (AF) treatment. Nowadays we are all aware of its modifications. In our study we conducted clinical analysis of “Box lesion+” approach during MAZE procedure in two-year follow-up. METHODS: We studied the results of the open-heart on-pump procedures performed in our hospital from 2017 to 2018 years. Thirty-two (32) patients with atrial fibrillation (AF) were included in this study. Fifteen (15) patients had concomitant coronary bypass grafting and seventeen (17) patients had mitral valve repair. Mean age was 62.3±8.7 years; prevalence of men was admitted (56.1%). Mean duration of AF was 4.75±5.44 and 7.07±8.14 years. In all cases, we performed endocardial Cryo-MAZE procedure with one-time myocardium revascularization or mitral-valve surgery. All patients of this study underwent pulmonary vein (PV) isolation and ablation of mitral isthmus with additional isolation of LA posterior wall (Box-lesion+ procedure). Mean follow-up was 2 years. RESULTS: All cases were performed without any complications. Additional isolation of posterior wall did not prolong the operative time and artificial circulation significantly. Cryo-MAZE procedure directly lasted 20±2.1 min, the whole operation time was 192±24 min and artificial circulation time was 103±12 min. According to design of the study, we performed clinical investigation of the patients in 12 months and in 2 years from the initial procedure. In 12 months, the number of AF free patients 81.8% and 75.8% in two years of follow-up. CONCLUSIONS: Isolation of the left atrial posterior wall and perimitral area may considerably improve the efficacy of surgical treatment, which was demonstrated in significant decrease of AF recurrences during the whole period of follow-up.Keywords: atrial fibrillation, cryoablation, left atrium isolation, open heart procedure
Procedia PDF Downloads 128