Search results for: R data science
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26779

Search results for: R data science

24709 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey

Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff

Abstract:

This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.

Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction

Procedia PDF Downloads 168
24708 Psychological Distress and Associated Factors among Patients Attending Orthopedic Unit of at Dilla University Referral Hospital in Ethiopia, 2022

Authors: Chalachew Kassaw, Henok Ababu, Bethelhem Sileshy, Lulu Abebe, Birhanie Mekuriaw

Abstract:

Background: Psychological discomfort is a state of emotional distress caused by everyday stressors and obligations that are difficult to manage. Orthopedic trauma has a wide range of effects on survivors' physical health, as well as a variety of mental health concerns that impede recovery. Psychiatric and behavioral conditions are 3-5 times more common in people who have undergone physical trauma, and they are a predictor of poor outcomes. Despite the above facts, there is a shortage of research done on the subject. Therefore, this study aimed to determine the magnitude of psychological distress and associated factor among patients attending orthopedic treatment at Gedeo zone, South Ethiopia 2022. Methods: A cross-sectional study was undertaken at Dilla University Referral Hospital from October –November 2022. The data was collected via a face-to-face interview, and the Kessler psychological distress scale (K-10) was used to assess psychological distress. A total of 386 patients receiving outpatient and inpatient services at the orthopedic unit were chosen using a simple random selection technique. A Statistical Package for the Social Science version 21 (SPSS-21) was used to enter and evaluate the data. To find related factors, bivariate, and multivariate logistic regressions were used. Variables having a p-value of less than 0.05 were deemed statistically significant. Result: A total of 386 participants with a response rate of 94.8% were included in the study. Out of all respondents, 114 (31.4%) of the individuals have experienced psychological distress. Independent variables such as Females [Adjusted odds ratio (AOR)=5.8, 95%CI=(4.6-15.6)], Average monthly income of <3500 birrs [Adjusted odds ratio (AOR) =4.8, 95% CI=(2.4-9.8) ], Current history of substance use [Adjusted odds ratio (AOR) =2.6, 95% CI=(1.66-4.7)], Strong social support [Adjusted odds ratio (AOR)=0.4, 95% CI= 0.4(0.2-0.8)], and Poor sleep quality (PSQI score>5) [Adjusted odds ratio (AOR)=2.0, 95%CI= 2.0(1.2-2.8)] were significantly associated with psychological distress. Conclusion: The prevalence of psychological distress was high. Being female, having poor social support, and having a high PSQI score were significantly associated factors with psychological distress. It is good if clinicians emphasize orthopedic patients, especially females and those having poor social support and low sleep quality symptoms.

Keywords: psychological distress, orthopedic unit, Dilla University hospital, Dilla Town, Southern Ethiopia

Procedia PDF Downloads 89
24707 Holistic Risk Assessment Based on Continuous Data from the User’s Behavior and Environment

Authors: Cinzia Carrodano, Dimitri Konstantas

Abstract:

Risk is part of our lives. In today’s society risk is connected to our safety and safety has become a major priority in our life. Each person lives his/her life based on the evaluation of the risk he/she is ready to accept and sustain, and the level of safety he/she wishes to reach, based on highly personal criteria. The assessment of risk a person takes in a complex environment and the impact of actions of other people’actions and events on our perception of risk are alements to be considered. The concept of Holistic Risk Assessment (HRA) aims in developing a methodology and a model that will allow us to take into account elements outside the direct influence of the individual, and provide a personalized risk assessment. The concept is based on the fact that in the near future, we will be able to gather and process extremely large amounts of data about an individual and his/her environment in real time. The interaction and correlation of these data is the key element of the holistic risk assessment. In this paper, we present the HRA concept and describe the most important elements and considerations.

Keywords: continuous data, dynamic risk, holistic risk assessment, risk concept

Procedia PDF Downloads 127
24706 Navigating Rough Seas: A Qualitative Exploration of National Sociotechnical Imaginaries of Myanmar’s Future Marine Fisheries

Authors: Hannes Groeneweg

Abstract:

Myanmar is considered one of the largest fishing nations in the world. The country’s rapid economic and political reform process since 2011 entails both challenges and opportunities for its marine fishing sector. The development pathway of the sector remains unclear. Which future will eventually materialize is shaped and determined by the various visions and actions of the stakeholders engaging in political debates and decision-making. These visions can be conceptualized through the Science and Technology Studies (STS) concept of sociotechnical imaginaries. The research of this article is guided by the question of which imaginaries are currently relevant, who is propagating these imaginaries, and how are these imaginaries produced and contested. Using qualitative documentary analysis of policy documents, reports, and media articles as well as in-depth interviews with key stakeholders, three archetypical national sociotechnical imaginaries of Myanmar’s future marine fisheries were identified: The industrial scale extractivism imaginary views marine fishing sector as a driver for national economic growth and focuses on the industrial and technological development of the production chain, increasing yield and exports. Sustainable fishing management encompasses the vulnerability of marine ecosystems and views increasing efficient sustainability governance, planning, and management into existing fishing practices. In the traditional sufficiency fishing imaginary, small-scale fishing practices are viewed as an important livelihood practice for millions of coastal dwellers. The need to conserve them through strengthening the self-reliance, autonomy, and resilience of these communities is stressed. In national debates, the first two imaginaries are currently dominant. The imaginaries, as well as their contestations, are also linked to other critical political issues. The paper suggests that participatory decision-making processes are needed to create an inclusive imaginary of the future marine fishing sector.

Keywords: science and technology studies, sociotechnical imaginaries, marine fishing, knowledge coproduction, Myanmar

Procedia PDF Downloads 181
24705 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 166
24704 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases

Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou

Abstract:

A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.

Keywords: ontologies, relational databases, SPARQL, web interface

Procedia PDF Downloads 272
24703 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 69
24702 Promoting Students' Worldview Through Integrative Education in the Process of Teaching Biology in Grades 11 and 12 of High School

Authors: Saule Shazhanbayeva, Denise van der Merwe

Abstract:

Study hypothesis: Nazarbayev Intellectual School of Kyzylorda’s Biology teachers can use STEM-integrated learning to improve students' problem-solving ability and responsibility as global citizens. The significance of this study is to indicate how the use of STEM integrative learning during Biology lessons could contribute to forming globally-minded students who are responsible community members. For the purposes of this study, worldview is defined as a view that is broader than the country of Kazakhstan, allowing students to see the significance of their scientific contributions to the world as global citizens. The context of worldview specifically indicates that most students have never traveled outside of their city or region within Kazakhstan. In order to broaden student understanding, it is imperative that students are exposed to different world views and contrasting ideas within the educational setting of Biology as the science being used for the research. This exposure promulgates students understanding of the significance they have as global citizens alongside the obligations which would rest on them as scientifically minded global citizens. Integrative learning should be Biological Science - with Technology and engineering in the form of problem-solving, and Mathematics to allow improved problem-solving skills to develop within the students of Nazarbayev Intellectual School (NIS) of Kyzylorda. The school's vision is to allow students to realise their role as global citizens and become responsible community members. STEM allows integrations by combining four subject skills to solve topical problems designed by educators. The methods used are based on qualitative analysis: for students’ performance during a problem-solution scenario; and Biology teacher interviews to ascertain their understanding of STEM implementation and willingness to integrate it into current lessons. The research indicated that NIS is ready for a shift into STEM lessons to promote globally responsible students. The only additional need is for proper STEM integrative lesson method training for teachers.

Keywords: global citizen, STEM, Biology, high-school

Procedia PDF Downloads 72
24701 Analyzing the Relationship between the Spatial Characteristics of Cultural Structure, Activities, and the Tourism Demand

Authors: Deniz Karagöz

Abstract:

This study is attempt to comprehend the relationship between the spatial characteristics of cultural structure, activities and the tourism demand in Turkey. The analysis divided into four parts. The first part consisted of a cultural structure and cultural activity (CSCA) index provided by principal component analysis. The analysis determined four distinct dimensions, namely, cultural activity/structure, accessing culture, consumption, and cultural management. The exploratory spatial data analysis employed to determine the spatial models of cultural structure and cultural activities in 81 provinces in Turkey. Global Moran I indices is used to ascertain the cultural activities and the structural clusters. Finally, the relationship between the cultural activities/cultural structure and tourism demand was analyzed. The raw/original data of the study official databases. The data on the cultural structure and activities gathered from the Turkish Statistical Institute and the data related to the tourism demand was provided by the Republic of Turkey Ministry of Culture and Tourism.

Keywords: cultural activities, cultural structure, spatial characteristics, tourism demand, Turkey

Procedia PDF Downloads 561
24700 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts

Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman

Abstract:

Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.

Keywords: artificial intelligence, blockchain, data integrity, smart contracts

Procedia PDF Downloads 55
24699 Time-Series Load Data Analysis for User Power Profiling

Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi

Abstract:

In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.

Keywords: power profiling, user privacy, dynamic time warping, smart grid

Procedia PDF Downloads 149
24698 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle

Authors: Ryan Messina, Mehedi Hasan

Abstract:

This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.

Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking

Procedia PDF Downloads 204
24697 Wreathed Hornbill (Rhyticeros undulatus) on Mount Ungaran: Are their Habitat Threatened?

Authors: Margareta Rahayuningsih, Nugroho Edi K., Siti Alimah

Abstract:

Wreathed Hornbill (Rhyticeros undulatus) is the one of hornbill species (Family: Bucerotidae) that found on Mount Ungaran. In the preservation or planning in situ conservation of Wreathed Hornbill require the habitat condition data. The objective of the research was to determine the land cover change on Mount Ungaran using satellite image data and GIS. Based on the land cover data on 1999-2009 the research showed that the primer forest on Mount Ungaran was decreased almost 50%, while the seconder forest, tea and coffee plantation, and the settlement were increased.

Keywords: GIS, Mount Ungaran, threatened habitat, Wreathed Hornbill (Rhyticeros undulatus)

Procedia PDF Downloads 360
24696 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
24695 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025

Authors: Alfi Al Fahreizy

Abstract:

Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.

Keywords: LEAP, energy consumption, Yogyakarta, BAU

Procedia PDF Downloads 598
24694 Principal Component Analysis in Drug-Excipient Interactions

Authors: Farzad Khajavi

Abstract:

Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.

Keywords: API, compatibility, DSC, TG, interactions

Procedia PDF Downloads 133
24693 Monitoring of Educational Achievements of Kazakhstani 4th and 9th Graders

Authors: Madina Tynybayeva, Sanya Zhumazhanova, Saltanat Kozhakhmetova, Merey Mussabayeva

Abstract:

One of the leading indicators of the education quality is the level of students’ educational achievements. The processes of modernization of Kazakhstani education system have predetermined the need to improve the national system by assessing the quality of education. The results of assessment greatly contribute to addressing questions about the current state of the educational system in the country. The monitoring of students’ educational achievements (MEAS) is the systematic measurement of the quality of education for compliance with the state obligatory standard of Kazakhstan. This systematic measurement is independent of educational organizations and approved by the order of the Minister of Education and Scienceof Kazakhstan. The MEAS was conducted in the regions of Kazakhstanfor the first time in 2022 by the National Testing Centre. The measurement does not have legal consequences either for students or for educational organizations. Students’ achievements were measured in three subject areas: reading, mathematics and science literacy. MEAS was held for the first time in April this year, 105 thousand students from 1436 schools of Kazakhstan took part in the testing. The monitoring was accompanied by a survey of students, teachers, and school leaders. The goal is to identify which contextual factors affect learning outcomes. The testing was carried out in a computer format. The test tasks of MEAS are ranked according to the three levels of difficulty: basic, medium, and high. Fourth graders are asked to complete 30 closed-type tasks. The average score of the results is 21 points out of 30, which means 70% of tasks were successfully completed. The total number of test tasks for 9th grade students – 75 questions. The results of ninth graders are comparatively lower, the success rate of completing tasks is 63%. MEAS participants did not reveal a statistically significant gap in results in terms of the language of instruction, territorial status, and type of school. The trend of reducing the gap in these indicators is also noted in the framework of recent international studies conducted across the country, in particular PISA for schools in Kazakhstan. However, there is a regional gap in MOES performance. The difference in the values of the indicators of the highest and lowest scores of the regions was 11% of the success of completing tasks in the 4th grade, 14% in the 9thgrade. The results of the 4th grade students in reading, mathematics, and science literacy are: 71.5%, 70%, and 66.9%, respectively. The results of ninth-graders in reading, mathematics, and science literacy are 69.6%, 54%, and 60.8%, respectively. From the surveys, it was revealed that the educational achievements of students are considerably influenced by such factors as the subject competences of teachers, as well as the school climate and motivation of students. Thus, the results of MEAS indicate the need for an integrated approach to improving the quality of education. In particular, the combination of improving the content of curricula and textbooks, internal and external assessment of the educational achievements of students, educational programs of pedagogical specialties, and advanced training courses is required.

Keywords: assessment, secondary school, monitoring, functional literacy, kazakhstan

Procedia PDF Downloads 107
24692 Activity Data Analysis for Status Classification Using Fitness Trackers

Authors: Rock-Hyun Choi, Won-Seok Kang, Chang-Sik Son

Abstract:

Physical activity is important for healthy living. Recently wearable devices which motivate physical activity are quickly developing, and become cheaper and more comfortable. In particular, fitness trackers provide a variety of information and need to provide well-analyzed, and user-friendly results. In this study, frequency analysis was performed to classify various data sets of Fitbit into simple activity status. The data from Fitbit cloud server consists of 263 subjects who were healthy factory and office workers in Korea from March 7th to April 30th, 2016. In the results, we found assumptions of activity state classification seem to be sufficient and reasonable.

Keywords: activity status, fitness tracker, heart rate, steps

Procedia PDF Downloads 384
24691 Governance of Climate Adaptation Through Artificial Glacier Technology: Lessons Learnt from Leh (Ladakh, India) In North-West Himalaya

Authors: Ishita Singh

Abstract:

Social-dimension of Climate Change is no longer peripheral to Science, Technology and Innovation (STI). Indeed, STI is being mobilized to address small farmers’ vulnerability and adaptation to Climate Change. The experiences from the cold desert of Leh (Ladakh) in North-West Himalaya illustrate the potential of STI to address the challenges of Climate Change and the needs of small farmers through the use of Artificial Glacier Techniques. Small farmers have a unique technique of water harvesting to augment irrigation, called “Artificial Glaciers” - an intricate network of water channels and dams along the upper slope of a valley that are located closer to villages and at lower altitudes than natural glaciers. It starts to melt much earlier and supplements additional irrigation to small farmers’ improving their livelihoods. Therefore, the issue of vulnerability, adaptive capacity and adaptation strategy needs to be analyzed in a local context and the communities as well as regions where people live. Leh (Ladakh) in North-West Himalaya provides a Case Study for exploring the ways in which adaptation to Climate Change is taking place at a community scale using Artificial Glacier Technology. With the above backdrop, an attempt has been made to analyze the rural poor households' vulnerability and adaptation practices to Climate Change using this technology, thereby drawing lessons on vulnerability-livelihood interactions in the cold desert of Leh (Ladakh) in North-West Himalaya, India. The study is based on primary data and information collected from 675 households confined to 27 villages of Leh (Ladakh) in North-West Himalaya, India. It reveals that 61.18% of the population is driving livelihoods from agriculture and allied activities. With increased irrigation potential due to the use of Artificial Glaciers, food security has been assured to 77.56% of households and health vulnerability has been reduced in 31% of households. Seasonal migration as a livelihood diversification mechanism has declined in nearly two-thirds of households, thereby improving livelihood strategies. Use of tactical adaptations by small farmers in response to persistent droughts, such as selling livestock, expanding agriculture lands, and use of relief cash and foods, have declined to 20.44%, 24.74% and 63% of households. However, these measures are unsustainable on a long-term basis. The role of policymakers and societal stakeholders becomes important in this context. To address livelihood challenges, the role of technology is critical in a multidisciplinary approach involving multilateral collaboration among different stakeholders. The presence of social entrepreneurs and new actors on the adaptation scene is necessary to bring forth adaptation measures. Better linkage between Science and Technology policies, together with other policies, should be encouraged. Better health care, access to safe drinking water, better sanitary conditions, and improved standards of education and infrastructure are effective measures to enhance a community’s adaptive capacity. However, social transfers for supporting climate adaptive capacity require significant amounts of additional investment. Developing institutional mechanisms for specific adaptation interventions can be one of the most effective ways of implementing a plan to enhance adaptation and build resilience.

Keywords: climate change, adaptation, livelihood, stakeholders

Procedia PDF Downloads 70
24690 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies

Authors: Praniil Nagaraj

Abstract:

This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.

Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis

Procedia PDF Downloads 46
24689 A View from inside: Case Study of Social Economy Actors in Croatia

Authors: Drazen Simlesa, Jelena Pudjak, Anita Tonkovic Busljeta

Abstract:

Regarding social economy (SE), Croatia is, on general level, considered as ex-communist country with good tradition, bad performance in second part of 20th Century because of political control in the business sector, which has in transition period (1990-1999) became a problem of ignorance in public administration (policy level). Today, social economy in Croatia is trying to catch up with other EU states on all important levels of SE sector: legislative and institutional framework, financial infrastructure, education and capacity building, and visibility. All four are integral parts of Strategy for the Development of Social Entrepreneurship in the Republic of Croatia for the period of 2015 – 2020. Within iPRESENT project, funded by Croatian Science Foundation, we have mapped social economy actors and after many years there is a clear and up to date social economy base. At the ICSE 2016 we will present main outcomes and results of this process. In the second year of the project we conducted a field research across Croatia carried out 19 focus groups with most influential, innovative and inspirational social economy actors. We divided interview questions in four themes: laws on social economy and public policies, definition/ideology of social economy and cooperation on SE scene, the level of democracy and working conditions, motivation and existence of intrinsic values. The data that are gathered through focus group interviews has been analysed via qualitative data analysis software (Atlas ti.). Major finding that will be presented in ICSA 2016 are: Social economy actors are mostly unsatisfied with legislative and institutional framework in Croatia and consider it as unsupportive and confusing. Social economy actors consider SE to be in the line with WISE model and as a tool for community development. The SE actors that are more active express satisfaction with cooperation amongst SE actors and other partners and stakeholders, but the ones that are in more isolated conditions (spatially) express need for more cooperation and networking. Social economy actors expressed their praise for democratic atmosphere in their organisations and fair working conditions. And finally, they expressed high motivation to continue to work in the social economy and are dedicated to the concept, including even those that were at the beginning interested just in getting a quick job. It means that we can detect intrinsic values for employees in social economy organisations. This research enabled us to describe for the first time in Croatia the view from the inside, attitudes and opinion of employees of social economy organisations.

Keywords: employees, focus groups, mapping, social economy

Procedia PDF Downloads 253
24688 Does Level of Countries Corruption Affect Firms Working Capital Management?

Authors: Ebrahim Mansoori, Datin Joriah Muhammad

Abstract:

Recent studies in finance have focused on the effect of external variables on working capital management. This study investigates the effect of corruption indexes on firms' working capital management. A large data set that covers data from 2005 to 2013 from five ASEAN countries, namely, Malaysia, Indonesia, Singapore, Thailand, and the Philippines, was selected to investigate how the level of corruption in these countries affect working capital management. The results of panel data analysis include fixed effect estimations showed that a high level of countries' corruption indexes encourages managers to shorten the CCC length. Meanwhile, the managers reduce the level of investment in cash and cash equivalents when the levels of corruption indexes increase. Therefore, increasing the level of countries' corruption indexes encourages managers to select conservative working capital strategies by reducing the level of NLB.

Keywords: ASEAN, corruption indexes, panel data analysis, working capital management

Procedia PDF Downloads 438
24687 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future

Authors: Mazharuddin Syed Ahmed

Abstract:

This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.

Keywords: building information modelling, circular economy integration, digital twin, predictive analytics

Procedia PDF Downloads 43
24686 Monitor Vehicle Speed Using Internet of Things Based Wireless Sensor Network System

Authors: Akber Oumer Abdurezak

Abstract:

Road traffic accident is a major problem in Ethiopia, resulting in the deaths of many people and potential injuries and crash every year and loss of properties. According to the Federal Transport Authority, one of the main causes of traffic accident and crash in Ethiopia is over speeding. Implementation of different technologies is used to monitor the speed of vehicles in order to minimize accidents and crashes. This research aimed at designing a speed monitoring system to monitor the speed of travelling vehicles and movements, reporting illegal speeds or overspeeding vehicles to the concerned bodies. The implementation of the system is through a wireless sensor network. The proposed system can sense and detect the movement of vehicles, process, and analysis the data obtained from the sensor and the cloud system. The data is sent to the central controlling server. The system contains accelerometer and gyroscope sensors to sense and collect the data of the vehicle. Arduino to process the data and Global System for Mobile Communication (GSM) module for communication purposes to send the data to the concerned body. When the speed of the vehicle exceeds the allowable speed limit, the system sends a message to database as “over speeding”. Both accelerometer and gyroscope sensors are used to collect acceleration data. The acceleration data then convert to speed, and the corresponding speed is checked with the speed limit, and those above the speed limit are reported to the concerned authorities to avoid frequent accidents. The proposed system decreases the occurrence of accidents and crashes due to overspeeding and can be used as an eye opener for the implementation of other intelligent transport system technologies. This system can also integrate with other technologies like GPS and Google Maps to obtain better output.

Keywords: accelerometer, IOT, GSM, gyroscope

Procedia PDF Downloads 75
24685 Impact of a Home-Based Health Intervention on Older Adults at Risk of Chronic Diseases: A Study Protocol

Authors: Elaine Wong Yee-Sing

Abstract:

Older adults are at high risk of chronic health conditions in Singapore. A closer examination at all facets of their aging process has revealed that they may not be necessary aging well. This demands for an increasing healthcare services brought to their home environment due to limited mobility and in the interest of time management. The home environment is an ideal setting to implement self-directed health promoting activities at their convenience and enable family’s support and motivation. This research protocol aims to explore their healthcare concerns, and creation of age appropriate interventions targeted to improve their chronic disease biomarkers. Convenience sampling of 130 families residing in private housing within five major districts in Singapore will be selected to participate in the health intervention. Statistical Package for Social Science 25 will be used to examine the pre and post screening results of their lipid, glycaemia and anthropometric outcomes. Using focus interviews, data results will be translated and transcribed to investigate on enablers, barriers and improvement on these services. Both qualitative and quantitative research outcomes are crucial to examine the impact of these services for these older adults living in private housing as they are not exposed to government subsidized community health programs. It is hypothesized that provision of relevant yet engaging health programs at their homes may mitigate the rising burden of chronic health conditions and result in successful aging outcomes among older Singaporeans.

Keywords: chronic diseases, health program, older adults, residential homes

Procedia PDF Downloads 163
24684 Nanoparticles in Diagnosis and Treatment of Cancer, and Medical Imaging Techniques Using Nano-Technology

Authors: Rao Muhammad Afzal Khan

Abstract:

Nano technology is emerging as a useful technology in nearly all areas of Science and Technology. Its role in medical imaging is attracting the researchers towards existing and new imaging modalities and techniques. This presentation gives an overview of the development of the work done throughout the world. Furthermore, it lays an idea into the scope of the future use of this technology for diagnosing different diseases. A comparative analysis has also been discussed with an emphasis to detect diseases, in general, and cancer, in particular.

Keywords: medical imaging, cancer detection, diagnosis, nano-imaging, nanotechnology

Procedia PDF Downloads 479
24683 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection

Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi

Abstract:

The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.

Keywords: image stabilization, motion sensor, safety inspection, sonar image, underwater structure

Procedia PDF Downloads 280
24682 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters

Authors: K. Parandhama Gowd

Abstract:

The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.

Keywords: flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC)

Procedia PDF Downloads 572
24681 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis

Authors: Mouataz Zreika, Maria Estela Varua

Abstract:

Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.

Keywords: clustering, force-directed, graph drawing, stock investment analysis

Procedia PDF Downloads 302
24680 Clinical and Laboratory Diagnosis of Malaria in Surat Thani, Southern Thailand

Authors: Manas Kotepui, Chatree Ratcha, Kwuntida Uthaisar

Abstract:

Malaria infection is still to be considered a major public health problem in Thailand. This study, a retrospective data of patients in Surat Thani Province, Southern Thailand during 2012-2015 was retrieved and analyzed. These data include demographic data, clinical characteristics and laboratory diagnosis. Statistical analyses were performed to demonstrate the frequency, proportion, data tendency, and group comparisons. Total of 395 malaria patients were found. Most of patients were male (253 cases, 64.1%). Most of patients (262 cases, 66.3%) were admitted at 6 am-11.59 am of the day. Three hundred and fifty-five patients (97.5%) were positive with P. falciparum. Hemoglobin, hematocrit, and MCHC between P. falciparum and P. vivax were significant different (P value<0.05).During 2012-2015, prevalence of malaria was highest in 2013. Neutrophils, lymphocytes, and monocytes were significantly changed among patients with fever ≤ 3 days compared with patients with fever >3 days. This information will guide to understanding pathogenesis and characteristic of malaria infection in Sothern Thailand.

Keywords: prevalence, malaria, Surat Thani, Thailand

Procedia PDF Downloads 276