Search results for: zirconia nanoparticles
1319 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions
Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes
Abstract:
Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture
Procedia PDF Downloads 2741318 Mechanistic Insights Into The Change Behavior; Its Relationship With Water Velocity, Nanoparticles, Gut Bacterial Composition, And Its Functional Metabolites
Authors: Mian Adnan Kakakhel, NIshita Narwal, Majid Rasta, Shi Xiaotao
Abstract:
The widespread use of nanoparticles means that they are significantly increasing in the aquatic ecosystem, where they are likely to pose threat to aquatic organism. In particular, the influence of nanoparticles exposure combined with varying water velocities on fish behavior remain poorly understood. Emerging evidences suggested a probable correlation between fish swimming behavior and gut bacterial dysbiosis. Therefore, the current study aimed to investigate the effects of nanomaterials in different water velocities on fish gut bacterial composition, which in results change in fish swimming behavior. The obtained findings showed that the contamination of nanoparticles was reduced as the velocity increased. However, the synergetic effects of nanoparticles and water velocity significantly (p < 0.05) decreased the bacterial composition, which plays a critical role in fish development, metabolism, digestion, enzymes production, and energy production such as Bacteroidetes and Firmicutes. This group of bacterial also support fish in swimming behavior by providing them a significant energy during movement. The obtained findings of this study suggested that the presence of nanoparticles in different water velocities have had a significant correlation with fish gut bacterial dysbiosis, as results the gut dysbiosis had been linked to the change in fish behavior. The study provides an important insight into the mechanisms by which the nanoparticles possibly affect the fish behavior.Keywords: water velocities, fish behavior, gut bacteria, secondary metabolites, regulation
Procedia PDF Downloads 821317 An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel
Authors: S. Singh, P. Patel, D. Kachhadiya, Swapnil Dharaskar
Abstract:
The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel.Keywords: aluminium oxide nanoparticles, cobalt oxide nanoparticles, fuel additives, fuel characteristics
Procedia PDF Downloads 3221316 Systematic Exploration and Modulation of Nano-Bio Interactions
Authors: Bing Yan
Abstract:
Nanomaterials are widely used in various industrial sectors, biomedicine, and more than 1300 consumer products. Although there is still no standard safety regulation, their potential toxicity is a major concern worldwide. We discovered that nanoparticles target and enter human cells1, perturb cellular signaling pathways2, affect various cell functions3, and cause malfunctions in animals4,5. Because the majority of atoms in nanoparticles are on the surface, chemistry modification on their surface may change their biological properties significantly. We modified nanoparticle surface using nano-combinatorial chemistry library approach6. Novel nanoparticles were discovered to exhibit significantly reduced toxicity6,7, enhance cancer targeting ability8, or re-program cellular signaling machineries7. Using computational chemistry, quantitative nanostructure-activity relationship (QNAR) is established and predictive models have been built to predict biocompatible nanoparticles.Keywords: nanoparticle, nanotoxicity, nano-bio, nano-combinatorial chemistry, nanoparticle library
Procedia PDF Downloads 4091315 An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers
Authors: Salwa Mowafi, Mohamed Rehan, Hany Kafafy
Abstract:
In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles.Keywords: microwave irradiation technique, multi-functionality properties, silver nanoparticles, wool fibers
Procedia PDF Downloads 2071314 Catalytic Conversion of Methane into Benzene over CZO Promoted Mo/HZSM-5 for Methane Dehydroaromatization
Authors: Deepti Mishra, Arindam Modak, K. K. Pant, Xiu Song Zhao
Abstract:
The promotional effect of mixed ceria-zirconia oxides (CZO) over the Mo/HZSM-5 catalyst for methane dehydroaromatization (MDA) reaction was studied. The surface and structural properties of the synthesized catalyst were characterized using a range of spectroscopic and microscopic techniques, and the correlation between catalytic properties and its performance for MDA reaction is discussed. The impregnation of CZO solid solution on Mo/HZSM-5 was observed to give an excellent catalytic performance and improved benzene formation rate (4.5 μmol/gcat. s) as compared to the conventional Mo/HZSM-5 (3.1 μmol/gcat. s) catalyst. In addition, a significant reduction in coke formation was observed in the CZO-modified Mo/HZSM-5 catalyst. The prevailing comprehension for higher catalytic activity could be because of the redox properties of CZO deposited Mo/HZSM-5, which acts as a selective oxygen supplier and performs hydrogen combustion during the reaction, which is indirectly probed by O₂-TPD and H₂-TPR analysis. The selective hydrogen combustion prevents the over-oxidation of aromatic species formed during the reaction while the generated steam helps in reducing the amount of coke generated in the MDA reaction. Thus, the advantage of CZO incorporated Mo/HZSM-5 is manifested as it promotes the reaction equilibrium to shift towards the formation of benzene which is favourable for MDA reaction.Keywords: Mo/HZSM-5, ceria-zirconia (CZO), in-situ combustion, methane dehydroaromatization
Procedia PDF Downloads 961313 Khaya Cellulose Supported Copper Nanoparticles for Chemo Selective Aza-Michael Reactions
Authors: M. Shaheen Sarkar, M. Lutfor Rahman, Mashitah Mohd Yusoff
Abstract:
We prepared a highly active Khaya cellulose supported poly(hydroxamic acid) copper nanoparticles by the surface modification of Khaya cellulose through graft co-polymerization and subsequently amidoximation. The Cu-nanoparticle (0.05 mol% to 50 mol ppm) was selectively promoted Aza-Michael reaction of aliphatic amines to give the corresponding alkylated products at room temperature in methanol. The supported nanoparticle was easy to recover and reused seven times without significance loss of its activity.Keywords: Aza-Michael, copper, cellulose, nanoparticles, poly(hydroxamic acid)
Procedia PDF Downloads 3431312 Preparation of Superparamagnetic Functionalized Magnetite Nanoparticles for Magnetically Separable Catalysis
Authors: Priya Arora, Jaspreet K. Rajput
Abstract:
Superparamagnetism has accelerated the research and use of more economical and ecological magnetically separable catalysts due to their more efficient isolation by response to an applied magnetic field. Magnetite nanomaterials coated by SiO2 shell have received a great deal of focus in the last decades as it provides high stability and also easy further surface functionalization depending upon the application. In this protocol, Fe3O4 magnetic nanoparticles have been synthesized by co-precipitation combined with sonication method. Further, Fe3O4 superparamagnetic nanoparticles have been functionalized by various moieties to serve as efficient catalysts for multicomponent reactions. The functionalized nanoparticles were characterized by techniques like Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis. The as prepared nanocatalysts can be reused for several times without any significant loss in its activity. The utilization of magnetic nanoparticles as catalysts for this reaction is one approach i.e. green, inexpensive, facile and widely applicable.Keywords: functionalized, magnetite, multicomponent reactions, superparamagnetic
Procedia PDF Downloads 3401311 Radiation Stability of Pigment ZnO Modified by Nanopowders
Authors: Chundong Li, V. V. Neshchimenko, M. M. Mikhailov
Abstract:
The effect of the modification of ZnO powders by ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 nanoparticles with a concentration of 1-30 wt % is investigated by diffuse reflectance spectra within the wavelength range 200 to 2500 nm before and after 100 keV proton and electron irradiation. It has been established that the introduction of nanoparticles ZrO2, Al2O3 enhances the optical stability of the pigments under proton irradiation, but reduces it under electron irradiation. Modifying with TiO2, SiO2, CeO2, Y2O3 nanopowders leads to decrease radiation stability in both types of irradiation. Samples modified by 5 wt. % of ZrO2 nanoparticles have the highest stability of optical properties after proton exposure. The degradation of optical properties under electron irradiation is not high for this concentration of nanoparticles. A decrease in the absorption of pigments modified with nanoparticles proton exposure is determined by a decrease in the intensity of bands located in the UV and visible regions. After electron exposure the absorption bands have in the whole spectrum range.Keywords: irradiation, nanopowders, radiation stability, zinc oxide
Procedia PDF Downloads 4251310 Core-Shell Type Magnetic Nanoparticles for Targeted Drug Delivery
Authors: Yogita Patil-Sen
Abstract:
Magnetic nanoparticles such as those made of iron oxide have been widely explored as biocatalysts, contrast agents, and drug delivery systems. However, some of the challenges associated with these particles are agglomeration and biocompatibility, which lead to concern of toxicity of the particles, especially for drug delivery applications. Coating the particles with biocompatible materials such as lipids and peptides have shown to improve the mentioned issues. Thus, these core-shell type nanoparticles are emerging as the new class of nanomaterials for targeted drug delivery applications. In this study, various types of core-shell magnetic nanoparticles are prepared and characterized using techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and Thermogravimetric Analysis (TGA). The heating ability of nanoparticles is tested under oscillating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of oscillating field. The results suggest that the core-shell nanoparticles exhibit superparamagnetic behaviour, although, coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the oscillating magnetic field. Thus, the results strongly indicate the suitability of the prepared core-shell type nanoparticles as drug delivery vehicles and their potential in magnetic hyperthermia applications and for hyperthermia cancer therapy.Keywords: core-shell, hyperthermia, magnetic nanoparticles, targeted drug delivery
Procedia PDF Downloads 3361309 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models
Authors: Sina Gharevali
Abstract:
Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.Keywords: nanoparticles, copper, staphylococcus, aureus
Procedia PDF Downloads 961308 Surface Segregation-Inspired Design for Bimetallic Nanoparticle Catalysts
Authors: Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo
Abstract:
Bimetallic nanoparticles serve as a promising class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their actual structures under operating conditions and the optimal design principles remains largely elusive. In this study, we unveil a prevalent surface segregation phenomenon in nearly 100 platinum-group-element-based bimetallic nanoparticles through first principles-based molecular dynamics simulations. Our findings highlight that two components in a nanoparticle with relatively lower surface energy tend to segregate to the surface. Motivated by this discovery, we propose a deliberate exploitation of surface segregation in designing bimetallic nanoparticle catalysts, aiming for heightened stability and reduced consumption of precious metals. To validate this strategy, we further investigate 36 platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis. Through a systematic examination of catalytic sites on nanoparticles, we identify several systems as top candidates with Pt-enriched surfaces, remarkable thermal stability, and superior catalytic activity for propane dehydrogenation. The insights gained garnered from this study are anticipated to provide a valuable framework for the optimal design of other bimetallic nanoparticles.Keywords: bimetallic nanoparticles, platinum-group element, catalysis, surface segregation, first-principles calculations
Procedia PDF Downloads 501307 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth
Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey
Abstract:
Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.Keywords: nanoparticles, seed germination, seed soaking, wheat
Procedia PDF Downloads 2271306 Two-Protein Modified Gold Nanoparticles for Serological Diagnosis of Borreliosis
Authors: Mohammed Alasel, Michael Keusgen
Abstract:
Gold is a noble metal; in its nano-scale level (e.g. spherical nanoparticles), the conduction electrons are triggered to collectively oscillate with a resonant frequency when certain wavelengths of electromagnetic radiation interact with its surface; this phenomenon is known as surface plasmon resonance (SPR). SPR is responsible for giving the gold nanoparticles its intense red color depending mainly on its size, shape and distance between nanoparticles. A decreased distance between gold nanoparticles results in aggregation of them causing a change in color from red to blue. This aggregation enables gold nanoparticles to serve as a sensitive biosensoric indicator. In the proposed work, gold nanoparticles were modified with two proteins: i) Borrelia antigen, variable lipoprotein surface-exposed protein (VlsE), and ii) protein A. VlsE antigen induces a strong antibody response against Lyme disease and can be detected from early to late phase during the disease in humans infected with Borrelia. In addition, it shows low cross-reaction with the other non-pathogenic Borrelia strains. The high specificity of VlsE antigen to anti-Borrelia antibodies, combined simultaneously with the high specificity of protein A to the Fc region of all IgG human antibodies, was utilized to develop a rapid test for serological point of care diagnosis of borreliosis in human serum. Only in the presence of anti-Borrelia antibodies in the serum probe, an aggregation of gold nanoparticles can be observed, which is visible by a concentration-dependent colour shift from red (low IgG) to blue (high IgG). Experiments showed it is clearly possible to distinguish between positive and negative sera samples using a simple suspension of the two-protein modified gold nanoparticles in a very short time (30 minutes). The proposed work showed the potential of using such modified gold nanoparticles generally for serological diagnosis. Improved specificity and reduced assay time can be archived in applying increased salt concentrations combined with decreased pH values (pH 5).Keywords: gold nanoparticles, gold aggregation, serological diagnosis, protein A, lyme borreliosis
Procedia PDF Downloads 3981305 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor
Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles
Procedia PDF Downloads 3151304 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles
Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi
Abstract:
Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization
Procedia PDF Downloads 3951303 Effect of Silver Nanoparticles in Temperature Polarization of Distillation Membranes for Desalination Technologies
Authors: Lopez J., Mehrvar M., Quinones E., Suarez A., Romero C.
Abstract:
Membrane Distillation is an emerging technology that uses thermal and membrane steps for the desalination process to get drinking water. In this study, silver nanoparticles (AgNP) were deposited by dip-coating process over Polyvinylidene Fluoride, Fiberglass hydrophilic, and Polytetrafluoroethylene hydrophobic commercial membranes as substrate. Membranes were characterized and used in a Vacuum Membrane Distillation cell under Ultraviolet light with sea salt feed solution. The presence of AgNP increases the absorption of energy on the membrane, which improves the transmembrane flux.Keywords: silver nanoparticles, membrane distillation, desalination technologies, heat deliver
Procedia PDF Downloads 1671302 Modifying the Electrical Properties of Liquid Crystal Cells by Including TiO₂ Nanoparticles on a Substrate
Authors: V. Marzal, J. C. Torres, B. Garcia-Camara, Manuel Cano-Garcia, Xabier Quintana, I. Perez Garcilopez, J. M. Sanchez-Pena
Abstract:
At the present time, the use of nanostructures in complex media, like liquid crystals, is widely extended to manipulate their properties, either electrical or optical. In addition, these media can also be used to control the optical properties of the nanoparticles, for instance when they are resonant. In this work, the change on electrical properties of a liquid crystal cell by adding TiO₂ nanoparticles on one of the alignment layers has been analyzed. These nanoparticles, with a diameter of 100 nm and spherical shape, were deposited in one of the substrates (ITO + polyimide) by spin-coating in order to produce a homogeneous layer. These substrates were checked using an optical microscope (objective x100) to avoid potential agglomerates. The liquid crystal cell is then fabricated, using one of these substrates and another without nanoparticles, and filled with E7. The study of the electrical response was done through impedance measurements in a long range of frequencies (3 Hz- 6 MHz) and at ambient temperature. Different nanoparticle concentrations were considered, as well as pure E7 and an empty cell for comparison purposes. Results about the effective dielectric permittivity and conductivity are presented along with models of equivalent electric circuits and its physical interpretation. As a summary, it has been observed the clear influence of the presence of the nanoparticles, strongly modifying the electric response of the device. In particular, a variation of both the effective permittivity and the conductivity of the device have been observed. This result requires a deep analysis of the effect of these nanoparticles on the trapping of free ions in the device, allowing a controlled manipulation and frequency tuning of the electrical response of these devices.Keywords: alignment layer, electrical behavior, liquid crystal, TiO₂ nanoparticles
Procedia PDF Downloads 2131301 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy
Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas
Abstract:
In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell
Procedia PDF Downloads 3991300 Advanced Nanostructured Materials and Their Application for Solar Fuel
Authors: A. Hegazy, Ahmed Elsayed, Essam El Shenawy, N. Allam, Hala Handal, K. R. Mahmoud
Abstract:
Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production.Keywords: positron annihilation, solar energy, TiO2 nanoparticles, water splitting
Procedia PDF Downloads 1451299 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles
Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III
Abstract:
Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography
Procedia PDF Downloads 3281298 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor
Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis
Procedia PDF Downloads 2731297 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles
Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat
Abstract:
The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle
Procedia PDF Downloads 4021296 Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier
Authors: Jolanta Pulit-Prociak, Olga Dlugosz, Marcin Banach
Abstract:
The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.Keywords: nanomaterials, zinc oxide, drug delivery system, toxicity
Procedia PDF Downloads 1911295 Doxorubicin and Cyclosporine Loaded PLGA Nanoparticles to Combat Multidrug Resistance
Authors: Senthil Rajan Dharmalingam, Shamala Nadaraju, Srinivasan Ramamurthy
Abstract:
Doxorubicin is the most widely used anticancer drugs in chemotherapy treatment. However, problems related to the development of multidrug resistance (MDR) and acute cardiotoxicity have led researchers to investigate alternative forms of administering doxorubicin for cancer therapy. Several methods have been attempted to overcome MDR, including the co-administration of a chemosensitizer inhibiting the efflux caused by ATP binding cassette transporters with anticancer drugs, and the bypass of the efflux mechanism. Co encapsulation of doxorubicin (Dox) and cyclosporine A (CSA) into poly (DL-lactide-co-glycolide) nanoparticles was emulsification-solvent evaporation method using polyvinyl alcohol as emulsion stabilizers. The Dox-CSA loaded nanoparticles were evaluated for particle size, zeta potential and PDI by light scattering analysis and thermal characterizations by differential scanning calorimetry (DSC). Loading efficiency (LE %) and in-vitro dissolution samples were evaluated by developed and validated HPLC method. The optimum particle size obtained is 298.6.8±39.4 nm and polydispersity index (PDI) is 0.098±0.092. Zeta potential is found to be -29.9±4.23. Optimum pH to increase Dox LE% was found 7.1 which gave 42.5% and 58.9% increase of LE% for pH 6.6 and pH 8.6 compared respectively. LE% achieved for Dox is 0.07±0.01 % and CSA is 0.09±0.03%. Increased volume of PVA and weight of PLGA shows increase in size of nanoparticles. DSC thermograms showed shift in the melting peak for the nanoparticles compared to Dox and CSA indicating encapsulation of drugs. In conclusion, these preliminary studies showed the feasibility of PLGA nanoparticles to entrap Dox and CSA and require future in-vivo studies to be performed to establish its potential.Keywords: doxorubicin, cyclosporine, PLGA, nanoparticles
Procedia PDF Downloads 4601294 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines
Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu
Abstract:
The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity
Procedia PDF Downloads 4901293 Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity
Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein
Abstract:
Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, XRD
Procedia PDF Downloads 6541292 Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity
Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein
Abstract:
Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, anti cancer activity, XRD
Procedia PDF Downloads 5151291 Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications
Authors: Manel Bouloudenine, Karima Djeddou, Hadjer Ben Manser, Hana Soualah Alila, Mohmed Bououdina
Abstract:
This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones.Keywords: silvers nanoparticles, microwaves, EDS, TEM
Procedia PDF Downloads 1471290 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties
Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti
Abstract:
High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia
Procedia PDF Downloads 148