Search results for: ultra thin section
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2959

Search results for: ultra thin section

2779 Structural, Optical and Electrical Properties of PbS Thin Films Deposited by CBD at Different Bath pH

Authors: Lynda Beddek, Nadhir Attaf, Mohamed Salah Aida

Abstract:

PbS thin films were grown on glass substrates by chemical bath deposition (CBD). The precursor aqueous bath contained 1 mole of lead nitrate, 1 mole of Thiourea and complexing agents (triethanolamine (TEA) and NaOH). Bath temperature and deposition time were fixed at 60°C and 3 hours, respectively. However, the PH of bath was varied from 10.5 to 12.5. Structural properties of the deposited films were characterized by X-ray diffraction and Raman spectroscopy. The preferred direction was revealed to be along (111) and the PbS crystal structure was confirmed. Strains and grains sizes were also calculated. Optical studies showed that films thicknesses do not exceed 600nm. Energy band gap values of films decreases with increase in pH and reached a value ~ 0.4eV at pH equal 12.5. The small value of the energy band gap makes PbS one of the most interesting candidate for solar energy conversion near the infrared ray.

Keywords: CBD, PbS, pH, thin films, x-ray diffraction

Procedia PDF Downloads 438
2778 Low Temperature Solution Processed Solar Cell Based on ITO/PbS/PbS:Bi3+ Heterojunction

Authors: M. Chavez, H. Juarez, M. Pacio, O. Portillo

Abstract:

PbS chemical bath heterojunction sollar cells have shown significant improvements in performance. Here we demonstrate a solar cell based on the heterojunction formed between PbS layer and PbS:Bi3+ thin films that are deposited via solution process at 40°C. The device achieve an current density of 4 mA/cm2. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: PbS doped, Bismuth, solar cell, thin films

Procedia PDF Downloads 549
2777 Medical Aspects, Professionalism, and Bioethics of Anesthesia in Caesarean Section on Self-Request

Authors: Nasrudin Andi Mappaware, Muh. Wirawan Harahap, Erlin Syahril, Farah Ekawati Mulyadi

Abstract:

The increasing trend of cesarean sections, especially those performed on self-request without medical indications, presents complex dilemmas related to medical aspects, professionalism, and bioethics. This study aims to investigate the medical, professional, and bioethical considerations surrounding anesthesia in cesarean sections performed on self-request without medical indications. We report the case of a 27-year-old woman, G1P0A0 gravid 38 weeks, admitted to the hospital for a planned cesarean section on request for the reason that she could not tolerate pain and requested on a date that corresponded to the date and month of her mother's birth. Cesarean section on patient request fulfills the principle of autonomy, which states that patients have the right to themselves. However, this medical procedure is still considered no safer and riskier even though medical technology has developed rapidly. Furthermore, anesthesia during cesarean section at self-request without medical indications is a dilemma for anesthesiologists considering the risks and complications of anesthesia for both the fetus and the mother. The trend in increasing the number of cesarean sections is influenced by patient reasons such as not being able to tolerate pain, trust factors, and worry about damage to the birth canal.

Keywords: anesthesia, bioethics, cesarean section, self-request, professionalism

Procedia PDF Downloads 45
2776 Development of Alpha Spectroscopy Method with Solid State Nuclear Track Detector Using Aluminium Thin Films

Authors: Nidal Dwaikat

Abstract:

This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 Mev, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 Mev) can penetrate the film and reach the detector’s surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 Mev and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source.

Keywords: aluminium thin film, alpha particles, copper substrate, CR-39 detector

Procedia PDF Downloads 364
2775 Slant and Hemislant Submanifolds of an Indefi nite Trans-Sasakian Manifold

Authors: Barnali Laha

Abstract:

In this paper, we would like to establish some of the properties of slant and hemislant submanifolds of an indefi nite trans-Sasakian manifold. We have four sections in this paper. The first section is introductory. In Section 2, we recall some necessary details of an indefi nite trans-Sasakian manifold. In Section 3, we have obtained some interesting properties on a totally umbilical slant submanifolds of an inde finite trans-Sasakian manifold. Finally, in Section 4, some results on integrability conditions of the distributions of hemislant submanifolds of an inde finite trans-Sasakian manifold have been obtained.

Keywords: slant submanifold, indefi nite trans-Sasakian manifold, hemislant submanifold, integrability conditions

Procedia PDF Downloads 479
2774 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 362
2773 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films

Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit

Abstract:

Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.

Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy

Procedia PDF Downloads 280
2772 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells

Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy

Abstract:

Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.

Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells

Procedia PDF Downloads 277
2771 A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures

Authors: Djamal Hamadi, Oussama Temami, Abdallah Zatar, Sifeddine Abderrahmani

Abstract:

The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation.

Keywords: displacement formulation, finite elements, strain based approach, shell structures

Procedia PDF Downloads 415
2770 Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking

Authors: Ameni Mahmoudi, Manel Troudi, Paolo Bondavalli, Nabil Sghaier

Abstract:

In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking.

Keywords: charge storage, thin-film SWCNT based transistors, C-V hysteresis, memory effect, trapping and detrapping charges, stored charge density, the carrier retention time

Procedia PDF Downloads 74
2769 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition

Authors: Damous Mohamed, Zeroudi Nasredine

Abstract:

High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.

Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams

Procedia PDF Downloads 15
2768 Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process

Authors: Somnath Mahato, Minarul Islam Sarkar, Luis Guillermo Gerling, Joaquim Puigdollers, Asit Kumar Kar

Abstract:

Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc.

Keywords: electrodeposition, microstructure, optical properties, ZnO thin films

Procedia PDF Downloads 315
2767 A Real Time Ultra-Wideband Location System for Smart Healthcare

Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang

Abstract:

Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.

Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare

Procedia PDF Downloads 136
2766 Assessment of Aminopolyether on 18F-FDG Samples

Authors: Renata L. C. Leão, João E. Nascimento, Natalia C. E. S. Nascimento, Elaine S. Vasconcelos, Mércia L. Oliveira

Abstract:

The quality control procedures of a radiopharmaceutical include the assessment of its chemical purity. The method suggested by international pharmacopeias consists of a thin layer chromatographic run. In this paper, the method proposed by the United States Pharmacopeia (USP) is compared to a direct method to determine the final concentration of aminopolyether in Fludeoxyglucose (18F-FDG) preparations. The approach (no chromatographic run) was achieved by placing the thin-layer chromatography (TLC) plate directly on an iodine vapor chamber. Both methods were validated and they showed adequate results to determine the concentration of aminopolyether in 18F-FDG preparations. However, the direct method is more sensitive, faster and simpler when compared to the reference method (with chromatographic run), and it may be chosen for use in routine quality control of 18F-FDG.

Keywords: chemical purity, Kryptofix 222, thin layer chromatography, validation

Procedia PDF Downloads 195
2765 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading

Procedia PDF Downloads 447
2764 SnSₓ, Cu₂ZnSnS₄ Nanostructured Thin Layers for Thin-Film Solar Cells

Authors: Elena A. Outkina, Marina V. Meledina, Aliaksandr A. Khodin

Abstract:

Nanostructured thin films of SnSₓ, Cu₂ZnSnS₄ (CZTS) semiconductors were fabricated by chemical processing to produce thin-film photoactive layers for photocells as a prospective lowest-cost and environment-friendly alternative to Si, Cu(In, Ga)Se₂, and other traditional solar cells materials. To produce SnSₓ layers, the modified successive ionic layer adsorption and reaction (SILAR) technique were investigated, including successive cyclic dipping into Na₂S solution and SnCl₂, NaCl, triethanolamine solution. To fabricate CZTS layers, the cyclic dipping into CuSO₄ with ZnSO₄, SnCl₂, and Na₂S solutions was used with intermediate rinsing in distilled water. The nano-template aluminum/alumina substrate was used to control deposition processes. Micromorphology and optical characteristics of the fabricated layers have been investigated. Analysis of 2D-like layers deposition features using nano-template substrate is presented, including the effect of nanotips in a template on surface charge redistribution and transport.

Keywords: kesterite, nanotemplate, SILAR, solar cell, tin sulphide

Procedia PDF Downloads 137
2763 Undoped and Fluorine Doped Zinc Oxide (ZnO:F) Thin Films Deposited by Ultrasonic Chemical Spray: Effect of the Solution on the Electrical and Optical Properties

Authors: E. Chávez-Vargas, M. de la L. Olvera-Amador, A. Jimenez-Gonzalez, A. Maldonado

Abstract:

Undoped and fluorine doped zinc oxide (ZnO) thin films were deposited on sodocalcic glass substrates by the ultrasonic chemical spray technique. As the main goal is the manufacturing of transparent electrodes, the effects of both the solution composition and the substrate temperature on both the electrical and optical properties of ZnO thin films were studied. As a matter of fact, the effect of fluorine concentration ([F]/[F+Zn] at. %), solvent composition (acetic acid, water, methanol ratios) and ageing time, regarding solution composition, were varied. In addition, the substrate temperature and the deposition time, regarding the chemical spray technique, were also varied. Structural studies confirm the deposition of polycrystalline, hexagonal, wurtzite type, ZnO. The results show that the increase of ([F]/[F+Zn] at. %) ratio in the solution, decreases the sheet resistance, RS, of the ZnO:F films, reaching a minimum, in the order of 1.6 Ωcm, at 60 at. %; further increase in the ([F]/[F+Zn]) ratio increases the RS of the films. The same trend occurs with the variation in substrate temperature, as a minimum RS of ZnO:F thin films was encountered when deposited at TS= 450 °C. ZnO:F thin films deposited with aged solution show a significant decrease in the RS in the order of 100 ΩS. The transmittance of the films was also favorable affected by the solvent ratio and, more significantly, by the ageing of the solution. The whole evaluation of optical and electrical characteristics of the ZnO:F thin films deposited under different conditions, was done under Haacke’s figure of Merit in order to have a clear and quantitative trend as transparent conductors application.

Keywords: zinc oxide, ZnO:F, TCO, Haacke’s figure of Merit

Procedia PDF Downloads 309
2762 Federalism and Foreign Affairs: The International Relations of Mexican Sub-State Governments

Authors: Jorge A. Schiavon

Abstract:

This article analyzes the international relations of sub-State governments (IRSSG) in Mexico. It aims to answer five questions: 1) What explains the recent and dramatic increase in their international activities? 2) What is the impact of federalism on the foreign affairs of the federal units? 3) What are the levels or degrees of IRSSG and how have they changed over the last years? 4) How do Mexican federal units institutionalize their international activities? 5) What are the perceptions and capacities of the federal units in their internationalization process? The first section argues that the growth in the IRSSG is generated by growing interdependence and globalization in the international system, and democratization, decentralization and structural reform in the national arena. The second section sustains that the renewed Mexican federalism has generated the incentives for SSG to participate more intensively in international affairs. The third section defends that there is a wide variation in their degree of international participation, which is measured in three moments in time (2004 2009 and 2014), and explains how this activity has changed in the last decade. The fourth section studies the institutionalization of the IRSSG in Mexico through the analysis of Inter-Institutional Agreements (IIA). Finally, the last section concentrates in explaining the perceptions and capacities of Mexican sub-State governments to conduct international relations.

Keywords: federalism, foreign policy, international relations of sub-state governments, paradiplomacy, Mexico

Procedia PDF Downloads 141
2761 Sensing Characteristics of Gold Nanoparticles Decorated Sputtered Tin Oxide Thin Films as Nitrogen Oxide Sensor

Authors: Qasem Drmosh, Zain Yamai, Amar Mohamedkhair, Abdulmajid Hendi

Abstract:

In recent years, there has been a growing interest in the reduction of the nitrogen oxides NOx (NO2, NO) gases resulting from automotive or combustion emissions. Recently, metal additives in nanometer dimension onto the surface of SnO2 nanorods, nanowires and nanotubes sensitizer to further increase the sensor response have been used. In contrast, there is a lack study focused on modifying the surface of SnO2 thin films by nanoparticles. The challenge in case of thin films is how to fabricate these nanoparticles on the surfaces in cost-effective method, high purity as well as without hampering electrical and topographical properties. Here in this report, a simple and facile strategy has been demonstrated to acquire high sensitive and fast response NO2 gas sensor. Structural, electrical, morphological, optical, and compositional properties of the fabricated sensors were investigated through different analytical technique including X-ray diffraction (XRD), Field emission scanning emission microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). The sensing performance of the prepared sensors are studied at different temperatures for various concentrations of NO2 and compared with pristine SnO2 film.

Keywords: NO2 sensor, SnO2, sputtering, thin films

Procedia PDF Downloads 208
2760 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique

Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal

Abstract:

Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.

Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis

Procedia PDF Downloads 445
2759 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame

Authors: Seong Do Kim, Woo Young Jung

Abstract:

Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.

Keywords: aluminum frame soundproofing wall, Monte Carlo simulation, numerical simulation, wind fragility

Procedia PDF Downloads 253
2758 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting

Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach

Abstract:

A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875

Keywords: UWB planar antenna, L-shaped slots, wireless applications, impedance band-width, radiation pattern, CST

Procedia PDF Downloads 480
2757 Development of Underactuated Robot Hand Using Cross Section Deformation Spring

Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato

Abstract:

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of a cross section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Keywords: robot hand, underactuated mechanism, cross-section deformation spring, prosthetic hand

Procedia PDF Downloads 368
2756 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol

Abstract:

In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.

Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.

Procedia PDF Downloads 175
2755 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions

Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn

Abstract:

We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.

Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions

Procedia PDF Downloads 150
2754 Entrepreneurship as a Strategy for National Development and Attainment of Millennium Development Goals (MDGs)

Authors: Udokporo Emeka Leonard

Abstract:

The thrust of this paper is to examine how entrepreneurship can assist in the attainment of the first goal among the MDGs – eradication of extreme poverty and hunger in Nigeria. The paper discusses how national development can be driven through employment creation and wealth generation that can lead to reduction in widespread poverty so as to attain one crucial target, in fewer years. The task before Nigeria is certainly a herculean one; it is, in fact a race against time. However, in view of the clear and present danger that the increasing rate of poverty portends for our democracy and our nation, is a race we must; for it is a time bomb on our hands. The paper has been structured into sections; with the introduction as section one. Section two discusses the concept of entrepreneurship; Section three examines the link between entrepreneurship and economic development, while section four examines the challenges facing entrepreneurship in Nigeria. In section five, measures and recommendations to boost entrepreneurship that can drive economic development that translates into poverty reduction and employment creation in Nigeria are suggested. This work is a literature review with some understanding of current trends and situations. It outlines some of the difficulties facing entrepreneurship in Nigeria as the operating environment, inadequate understanding and skewed incentive. It also makes recommendations on possible ways to significantly reduce poverty in 2015.

Keywords: development, entrepreneur, Nigeria, poverty

Procedia PDF Downloads 281
2753 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 347
2752 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method

Authors: Rabah Bensaha, Badreeddine Toubal

Abstract:

Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.

Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity

Procedia PDF Downloads 440
2751 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section

Authors: Mohammed Alrajhi

Abstract:

Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.

Keywords: cross-section, neutron, photon, coefficient, mathematics

Procedia PDF Downloads 368
2750 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning

Procedia PDF Downloads 112