Search results for: silica sand particles
2624 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character
Authors: Nihit Madireddi, P. A. Mahanwar
Abstract:
We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.Keywords: FAS, nano-silica, PU clear coat, self-cleaning
Procedia PDF Downloads 3112623 Synthesis and Analytical Characterisation of Polymer-Silica Nanoparticles Composite for the Protection and Preservation of Stone Monuments
Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi
Abstract:
Historical stone surfaces and architectural heritage may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, the innovative properties of the nano - materials can have advantageous application in the restoration and conservation of the cultural heritage with relation to the tailoring of new products for protection and consolidation of stone. The current work evaluates the effectiveness of inorganic compatible treatments; based on nanosized particles of silica (SiO2) dispersed in silicon based product, commonly used as a water-repellent/ consolidation for the construction materials affected by different kinds of decay. The nanocomposites obtained by dispersing the silica nanoparticles in polymeric matrices SILRES® BS OH 100 (solventless mixtures of ethyl silicates), in order to obtain a new nanocomposite, with hydrophobic and consolidation properties, to improve the physical and mechanical properties of the stone material. The nanocomposites obtained and pure SILRES® BS OH 100 were applied by brush Experimental stone blocks. The efficacy of the treatments has been evaluated after consolidation and artificial Thermal aging, through capillary water absorption measurements, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the treated surface, Scanning electron microscopy (SEM) examination is performed to evaluate penetration depth, re-aggregating effects of the deposited phase and the surface morphology before and after artificialaging. Sterio microscopy investigation is performed to evaluate the resistant to the effects of the erosion, acids and salts. Improving of stone mechanical properties were evaluated by compressive strength tests, colorimetric measurements were used to evaluate the optical appearance. All the results get together with the apparent effect that, silica/polymer nanocomposite is efficient material for the consolidation of artistic and architectural sandstone monuments, completely compatible, enhanced the durability of sandstone toward thermal and UV aging. In addition, the obtained nanocomposite improved the stone mechanical properties and the resistant to the effects of the erosion, acids and salts compared to the samples treated with pure SILRES® BS OH 100 without silica nanoparticles.Keywords: colorimetric measurements, compressive strength, nanocomposites, porous stone consolidation, silica nanoparticles, sandstone
Procedia PDF Downloads 2502622 Investigation of the Morphology of SiO2 Nano-Particles Using Different Synthesis Techniques
Authors: E. Gandomkar, S. Sabbaghi
Abstract:
In this paper, the effects of variation synthesized methods on morphology and size of silica nanostructure via modifying sol-gel and precipitation method have been investigated. Meanwhile, resulting products have been characterized by particle size analyzer, scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Fourier transform infrared (FT-IR) spectra. As result, the shape of SiO2 with sol-gel and precipitation methods was spherical but with modifying sol-gel method we have been had nanolayer structure.Keywords: modified sol-gel, precipitation, nanolayer, Na2SiO3, nanoparticle
Procedia PDF Downloads 2922621 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite
Authors: G. Purushotham, Joel Hemanth
Abstract:
An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills
Procedia PDF Downloads 3982620 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand
Authors: S. A. Naeini, M. Mortezaee
Abstract:
The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.Keywords: fine-grained, liquefaction, plasticity, shear strength, sand
Procedia PDF Downloads 1312619 Displacement Fields in Footing-Sand Interactions under Cyclic Loading
Authors: S. Joseph Antony, Z. K. Jahanger
Abstract:
Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing
Procedia PDF Downloads 1672618 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt
Authors: Youssouf Benmeriem
Abstract:
Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength
Procedia PDF Downloads 3842617 Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application
Authors: Pemika Ketsuwan, Pitt Supaphol, Manit Nithitanakul
Abstract:
A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone.Keywords: ethylene methyl acrylate, HPMC, Silica, Thermal stability
Procedia PDF Downloads 1222616 Evaluation of Collagen Synthesis in Macrophages/Fibroblasts Co-Culture Using Polylactic Acid Particles as Stimulants
Authors: Feng Ju Chuang, Yu Wen Wang, Tai Jung Hsieh, Shyh Ming Kuo
Abstract:
Polylactic acid is a synthetic polymer with good biocompatibility and degradability, is widely used in clinical applications. In this study, we utilized Polylactic acid particles as stimulants for macrophages and the collagen synthesis of co-cultured fibroblasts was evaluated. The results indicated that Polylactic acid particles were nontoxic to cells from 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. No obvious inflammation effect was observed (under the PLLA concentration of 1 mg/mL) after 24-h co-culture of Raw264.7 and NIH3T3 cells (from TNF-α assay). The addition of PLLA particles to the Raw264.7 and NIH3T3 co-cultures increased the synthesis of collagen, the highest collagen synthesis from the fibroblast was the 0.2 mg/mL (approximately 60% increased as compared with without addition Polylactic acid particles). Moreover, a co-axial atomization delivery device was used to percutaneously introduce Polylactic acid particles into the dermis layer and stimulating macrophages to secrete growth factors promoting fibroblasts to produce collagen. The preliminary results demonstrated the synthesis of collagen was increased mildly after the introduction of Polylactic acid particles for 28-d post implantation. The Polylactic acid particles could be successfully introduced into the dermis layer from H&E staining examination, however, the optimum concentration of Polylactic acid particles and the time-period for collagen synthesis still need to be evaluated.Keywords: collagen synthesis, macrophage, NIH3T3 cells, polylactic acid particles
Procedia PDF Downloads 1132615 Valorization of the Algerian Plaster and Dune Sand in the Building Sector
Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh
Abstract:
The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.Keywords: local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance
Procedia PDF Downloads 4832614 Evaluation of Heavy Metal Contamination and Assessment of the Suitability of Water for Irrigation: A Case Study of the Sand River, Limpopo Province, South Africa
Authors: Ngonidzashe Moyo, Mmaditshaba Rapatsa
Abstract:
The primary objective of this study was to determine heavy metal contamination in the water, sediment, grass and fish in Sand River, South Africa. This river passes through an urban area and sewage effluent is discharged into it. Water from the Sand river is subsequently used for irrigation downstream of the sewage treatment works. The suitability of this water and the surrounding boreholes for irrigation was determined. This study was undertaken between January, 2014 and January, 2015. Monthly samples were taken from four sites. Sites 1 was upstream of the Polokwane Wastewater Treatment Plant, sites 2, 3 and 4 were downstream. Ten boreholes in the vicinity of the Sand River were randomly selected and the water was tested for heavy metal contamination. The concentration of heavy metals in Sand River water followed the order Mn>Fe>Pb>Cu≥Zn≥Cd. Manganese concentration averaged 0.34 mg/L. Heavy metal concentration in the sediment, grass and fish followed the order Fe>Mn>Zn>Cu>Pb>Cd. The bioaccumulation factor from grass to fish was highest in manganese (19.25), followed by zinc (16.39) and iron (14.14). Soil permeability index (PI) and sodium adsorption ratio (SAR) were used to determine the suitability of Sand River and borehole water for irrigation. The PI index for Sand River water was 75.1% and this indicates that Sand River water is suitable for irrigation of crops. The PI index for the borehole water ranged from 65.8-72.8% and again this indicates suitability of borehole water for crop irrigation. The sodium adsorption ratio also indicated that both Sand River and borehole water were suitable for irrigation. A risk assessment study is recommended to determine the suitability of the fish for human consumption.Keywords: bioaccumulation, bioavailability, heavy metals, sodium adsorption ratio
Procedia PDF Downloads 2232613 Effect of Al Particles on Corrosion Resistance of Electrodeposited Ni-Al Composite Coatings
Abstract:
Electrodeposition is known as a relatively economical and simple technique commonly used for preparation of metallic and composite coatings. Electrodeposited composite coatings produced by dispersion of particles into the metal matrix show better properties than pure metallic coatings. In recent years, many researches were carried out on Ni matrix coatings reinforced by ceramic particles such as Ni-SiC, Ni-Al2O3, Ni-WC, Ni-CeO2, Ni-ZrO2, Ni-TiO2 to improve their corrosion and wear resistance. However, little effort has been made on incorporation of metal particles into Ni matrix. Therefore, the aim of this work was to produce Ni–Al composite coating on 6061 aluminum alloy by pulse plating and to investigate the effects of electrodeposition parameters, e.g. concentration Al particles in the electrolyte and current density, on composition and corrosion resistance of the composite coatings. The morphology and corrosion behavior of the coated 6061 Al alloys were studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and potentiodynamic polarization method, respectively. The results indicated that the addition of Al particles up to 50 g L-1 increased the amount of co-deposited Al particles in nickel matrix. It is also observed that the incorporation of Al particles decreased with increasing current density. Meanwhile, the corrosion resistance of the coatings shows an increment by increasing the content of Al particles into nickel matrix.Keywords: Ni-Al composite coating, current density, corrosion resistance
Procedia PDF Downloads 4872612 Bending Moment of Flexible Batter Pile in Sands under Horizontal Loads
Authors: Fabian J. Manoppo, Dody M. J. Sumayouw
Abstract:
The bending moment of a single free head model flexible batter piles in sand under horizontal loads is investigated. The theoretical estimate of the magnitude maximum bending moment for the piles was considering a vertical rigid pile under an inclined load and using semi-empirical relations. The length of the equivalent rigid pile was based on the relative stiffness factor of the pile. Model tests were carried out using instrumented piles of wide-ranging flexibilities. The piles were buried in loose sand at batter angles of β=±150, β=±300 and were applied to incrementally increasing lateral loads. The pile capacities and the variation of bending moment along the pile shaft were measured. The new coefficient of 0.5 was proposed to estimate the bending moment of a flexible batter pile in the sand under horizontal.Keywords: batter pile, bending moment, sand, horizontal loads
Procedia PDF Downloads 222611 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products
Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh
Abstract:
The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.Keywords: foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage
Procedia PDF Downloads 2302610 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells
Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne
Abstract:
Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging
Procedia PDF Downloads 2392609 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet
Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri
Abstract:
The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.Keywords: erosion-corrosion, flow velocity, jet impingement, sand loading
Procedia PDF Downloads 2732608 The Gravitational Impact of the Sun and the Moon on Heavy Mineral Deposits and Dust Particles in Low Gravity Regions of the Earth
Authors: T. B. Karu Jayasundara
Abstract:
The Earth’s gravity is not uniform. The satellite imageries of the Earth’s surface from NASA reveal a number of different gravity anomaly regions all over the globe. When the moon rotates around the earth, its gravity has a major physical influence on a number of regions on the earth. This physical change can be seen by the tides. The tides make sea levels high and low in coastal regions. During high tide, the gravitational force of the Moon pulls the Earth’s gravity so that the total gravitational intensity of Earth is reduced; it is further reduced in the low gravity regions of Earth. This reduction in gravity helps keep the suspended particles such as dust in the atmosphere, sand grains in the sea water for longer. Dramatic differences can be seen from the floating dust in the low gravity regions when compared with other regions. The above phenomena can be demonstrated from experiments. The experiments have to be done in high and low gravity regions of the earth during high and low tide, which will assist in comparing the final results. One of the experiments that can be done is by using a water filled cylinder about 80 cm tall, a few particles, which have the same density and same diameter (about 1 mm) and a stop watch. The selected particles were dropped from the surface of the water in the cylinder and the time taken for the particles to reach the bottom of the cylinder was measured using the stop watch. The times of high and low tide charts can be obtained from the regional government authorities. This concept is demonstrated by the particle drop times taken at high and low tides. The result of the experiment shows that the particle settlement time is less in low tide and high in high tide. The experiment for dust particles in air can be collected on filters, which are cellulose ester membranes and using a vacuum pump. The dust on filters can be used to make slides according to the NOHSC method. Counting the dust particles on the slides can be done using a phase contrast microscope. The results show that the concentration of dust is high at high tide and low in low tide. As a result of the high tides, a high concentration of heavy minerals deposit on placer deposits and dust particles retain in the atmosphere for longer in low gravity regions. These conditions are remarkably exhibited in the lowest low gravity region of the earth, mainly in the regions of India, Sri Lanka and in the middle part of the Indian Ocean. The biggest heavy mineral placer deposits are found in coastal regions of India and Sri Lanka and heavy dust particles are found in the atmosphere of India, particularly in the Delhi region.Keywords: gravity, minerals, tides, moon, costal, atmosphere
Procedia PDF Downloads 1282607 Using Micropiles to Improve the Anzali's Saturated Loose Silty Sand
Authors: S. A. Naeini, M. Hamidzadeh
Abstract:
Today, with the daily advancement of geotechnical engineering on soil improvement and modification of the physical properties and shear strength of soil, it is now possible to construct structures with high-volume and high service load on loose sandy soils. One of such methods is using micropiles, which are mostly used to control asymmetrical subsidence, increase bearing capacity, and prevent soil liquefaction. This study examined the improvement of Anzali's saturated loose silty sand using 192 micropiles with a length of 8 meters and diameter of 75 mm. Bandar-e Anzali is one of Iran's coastal populated cities which are located in a high-seismicity region. The effects of the insertion of micropiles on prevention of liquefaction and improvement of subsidence were examined through comparison of the results of Standard Penetration Test (SPT) and Plate Load Test (PLT) before and after implementation of the micropiles. The results show that the SPT values and the ultimate bearing capacity of silty sand increased after the implementation of the micropiles. Therefore, the installation of micropiles increases the strength of silty sand improving the resistance of soil against liquefaction.Keywords: soil improvement, silty sand, micropiles, SPT, PLT, strength
Procedia PDF Downloads 1952606 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances
Authors: Nour Hassan Ismail, Abdelmonem Nassar, Khaled Baz
Abstract:
Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper, new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.Keywords: quantum dots, nano-particles, LSPR
Procedia PDF Downloads 4812605 Synthesis of Polystyrene Grafted Filler Nanoparticles: Effect of Grafting on Mechanical Reinforcement
Authors: M. Khlifa, A. Youssef, A. F. Zaed, A. Kraft, V. Arrighi
Abstract:
A series of PS-nanoparticles were prepared by grafting PS from both aggregated silica and colloidally silica using atom-transfer radical polymerisation (ATRP). The mechanical behaviour of the nanocomposites have been examined by differential scanning calorimetry (DSC)and dynamic mechanical thermal analysis (DMTA).Keywords: ATRP, nanocomposites, polystyrene, reinforcement
Procedia PDF Downloads 6242604 Characterization of Performance of Blocks Produced from Dredged Sample
Authors: Adebayo B., Omotehinse A. O.
Abstract:
The performance and characteristics of blocks produced from dredged sample was investigated. Blocks were produced using appropriate mixes of dredged sample and sharp sand. Some geotechnical properties (moisture content, grain size distribution) of the dredged sample (Igbokoda dredged sample) were determined using the British Standard. The physico-mechanical properties (water absorption, density and compressive strength) of blocks produced were evaluated. The dredged sample is classified as a silty material. Seven replacement levels of sharp sand were considered in the study (SS- Sharp Sand and DS – Dredged Sample) was done with constant amount of cement. 1- 85 % DS and 15 % SS, 2- 70 % DS and 30 % SS, 3- 55 % DS and 45 % SS, 4- 50 % DS and 50 % SS, 5- 45 % DS and 55 % SS, 6- 30 % DS and 70 % SS, 7- 15 % DS and 85 % SS and 8 – IS 100 % with cement; 9 – SS 100 % with cement) of different ages (7 days, 14 days, 21 days and 28 days) for the production of blocks. The compressive strength of the blocks produced ranges between 0.52 MPa to 3.0 MPa and considering the mixes, the highest compressive strength was found in mix of 15 % DS and 85 % SS.Keywords: dredge sample, silt, sharp sand, block, cement
Procedia PDF Downloads 3662603 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water
Authors: Moosa Mazloom, Hojjat Hatami
Abstract:
The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.Keywords: magnetic water, self-compacting light weight concrete, silica fume, superplasticizer
Procedia PDF Downloads 3682602 Variation of Compressive Strength of Hollow Sand Crate Block (6”) with Mix Ratio Using Locally Made Cement (Sokoto Cement)
Authors: Idris Adamu Idris
Abstract:
The Nigerian construction industry is faced with problems of failure of structures/buildings. These failures are attributed to the use of low quality construction materials of which sand crate bock is inclusive. The research was conducted to determine the compressive strength of hollow sand crate block (6”) using locally made cement (Sokoto cement). Samples were tested for 7, 14, 21 and 28 days for mix ratio of 1:3 to 1:12. From the laboratory results obtained, a mix ratio of 1:10 corresponding to a minimum compressive strength of 1.9N/mm2 at 7 days should be adopted. This satisfies the BS 2028, 1364 1986 which specified a minimum compressive strength of 1.8N/mm2 at 7 days. At 28 days of curing, the same mix ratio meets the minimum BS standard of 2.5N/mm2 .Keywords: buildings, cement, construction, hollow sand crate block, Nigeria
Procedia PDF Downloads 4062601 Preparation and Characterization of a Nickel-Based Catalyst Supported by Silica Promoted by Cerium for the Methane Steam Reforming Reaction
Authors: Ali Zazi, Ouiza Cherifi
Abstract:
Natural gas currently represents a raw material of choice for the manufacture of a wide range of chemical products via synthesis gas, among the routes of transformation of methane into synthesis gas The reaction of the oxidation of methane by gas vapor 'water. This work focuses on the study of the effect of cerieum on the nickel-based catalyst supported by silica for the methane vapor reforming reaction, with a variation of certain parameters of the reaction. The reaction temperature, the H₂O / CH₄ ratio and the flow rate of the reaction mixture (CH₄-H₂O). Two catalysts were prepared by impregnation of Degussa silica with a solution of nickel nitrates and a solution of cerium nitrates [Ni (NO₃) 2 6H₂O and Ce (NO₃) 3 6H₂O] so as to obtain the 1.5% nickel concentrations. For both catalysts and plus 1% cerium for the second catalyst. These Catalysts have been characterized by physical and chemical analysis techniques: BET technique, Atomic Absorption, IR Spectroscopy, X-ray diffraction. These characterizations indicated that the nitrates had impregnated the silica. And that the NiO and Ce₂O3 phases are present and Ni°(after reaction). The BET surface of the silica decreases without being affected. The catalytic tests carried out on the two catalysts for the steam reforming reactions show that the addition of cerium to the nickel improves the catalytic performances of the nickel. And that these performances also depend on the parameters of the reaction, namely the temperature, the rate of the reaction mixture, and the ratio (H₂O / CH₄).Keywords: heterogeneous catalysis, steam reforming, Methane, Nickel, Cerium, synthesis gas, hydrogen
Procedia PDF Downloads 1652600 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis
Authors: Pragyan Paramita Das, Vishwas N. Khatri
Abstract:
By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.Keywords: bearing capacity, conic programming, finite elements, seismic forces
Procedia PDF Downloads 1702599 Modeling the Performance of Natural Sand-Bentonite Barriers after Infiltration with Polar and Non-Polar Hydrocarbon Leachates
Authors: Altayeb Qasem, Mousa Bani Baker, Amani Nawafleh
Abstract:
The complexity of the sand-bentonite liner barrier system calls for an adequate model that reflects the conditions depending on the barrier materials and the characteristics of the permeates which lead to hydraulic conductivity changes when liners infiltrated with polar, no-polar, miscible and immiscible liquids. This paper is dedicated to developing a model for evaluating the hydraulic conductivity in the form of a simple indicator for the compatibility of the liner versus leachate. Based on two liner compositions (95% sand: 5% bentonite; and 90% sand: 10% bentonite), two pressures (40 kPa and 100 kPa), and three leachates: water, ethanol and biofuel. Two characteristics of the leacahtes were used: viscosity of permeate and its octanol-water partitioning coefficient (Kow). Three characteristics of the liners mixtures were evaluated which had impact on the hydraulic conductivity of the liner system: the initial content of bentonite (%), the free swelling index, and the shrinkage limit of the initial liner’s mixture. Engineers can use this modest tool to predict a potential liner failure in sand-bentonite barriers.Keywords: liner performance, sand-bentonite barriers, viscosity, free swelling index, shrinkage limit, octanol-water partitioning coefficient, hydraulic conductivity, theoretical modeling
Procedia PDF Downloads 4132598 Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles
Authors: Merve Küçük, M. Lütfi Öveçoğlu
Abstract:
Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics.Keywords: dip coating, polyester fabrics, sol gel, zinc oxide
Procedia PDF Downloads 4342597 An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation
Authors: Yuxin Wu, Yu-Shing Wang, Zitao Zhang
Abstract:
A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand.Keywords: bender element, pile, shaft resistance, shear wave velocity, tomography
Procedia PDF Downloads 4292596 The Influence of the Form of Grain on the Mechanical Behaviour of Sand
Authors: Mohamed Boualem Salah
Abstract:
The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior.Keywords: angularity, eccentricity, shape particle, behavior of soil
Procedia PDF Downloads 4122595 Synthesis of Gold Nanoparticles Stabilized in Na-Montmorillonite for Nitrophenol Reduction
Authors: Fatima Ammari, Meriem Chenouf
Abstract:
Synthesis of gold nano particles has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nano particles in the reaction of CO oxidation at low temperature. In this research field, we used Na-montmorillonite for gold nanoparticles stabilization; different loading percentage 1, 2 and 5%. The gold nano particles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nano particles Au-mont stabilized in Na-montmorillonite were used as catalysts for reduction of 4-nitrophenol to aminophenol with sodium borohydride at room temperature. The UV-Vis results confirm directly the gold nano particles formation. The XRD and N2 adsorption results showed the formation of gold nano particles in the pores of montmorillonite with an average size of 5 nm obtained on samples with 2%Au-mont. The gold particles size increased with the increase of gold loading percentage. The reduction reaction of 4-nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au-Na-montmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 9 min for 1Au-mont and within 3 min for 2Au-mont.Keywords: chemical reduction, gold, montmorillonite, nano particles, 4-nitrophenol
Procedia PDF Downloads 327