Search results for: recognition primed decision
5384 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 6675383 Financial Decision-Making among Finance Students: An Empirical Study from the Czech Republic
Authors: Barbora Chmelíková
Abstract:
Making sound financial decisions is an essential skill which can have an impact on life of each consumer of financial products. The aim of this paper is to examine decision-making concerning financial matters and personal finance. The selected target group was university students majoring in finance related fields. The study was conducted in the Czech Republic at Masaryk University in 2015. In order to analyze financial decision-making questions related to basic finance decisions were developed to address the research objective. The results of the study suggest gaps in detecting best solutions to given financial decision-making questions among finance students. The analysis results indicate relation between financial decision-making and own experience with holding and using concrete financial products.Keywords: financial decision-making, financial literacy, personal finance, university students
Procedia PDF Downloads 3265382 Unsupervised Reciter Recognition Using Gaussian Mixture Models
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model
Procedia PDF Downloads 3805381 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients
Procedia PDF Downloads 2595380 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 5055379 A Fast, Reliable Technique for Face Recognition Based on Hidden Markov Model
Authors: Sameh Abaza, Mohamed Ibrahim, Tarek Mahmoud
Abstract:
Due to the development in the digital image processing, its wide use in many applications such as medical, security, and others, the need for more accurate techniques that are reliable, fast and robust is vehemently demanded. In the field of security, in particular, speed is of the essence. In this paper, a pattern recognition technique that is based on the use of Hidden Markov Model (HMM), K-means and the Sobel operator method is developed. The proposed technique is proved to be fast with respect to some other techniques that are investigated for comparison. Moreover, it shows its capability of recognizing the normal face (center part) as well as face boundary.Keywords: HMM, K-Means, Sobel, accuracy, face recognition
Procedia PDF Downloads 3315378 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 4975377 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village
Procedia PDF Downloads 3085376 Decision Quality as an Antecedent to Export Performance. Empirical Evidence under a Contingency Theory Lens
Authors: Evagelos Korobilis-Magas, Adekunle Oke
Abstract:
The constantly increasing tendency towards a global economy and the subsequent increase in exporting, as a result, has inevitably led to a growing interest in the topic of export success as well. Numerous studies, particularly in the past three decades, have examined a plethora of determinants to export performance. However, to the authors' best knowledge, no study up to date has ever considered decision quality as a potential antecedent to export success by attempting to test the relationship between decision quality and export performance. This is a surprising deficiency given that the export marketing literature has long ago suggested that quality decisions are regarded as the crucial intervening variable between sound decision–making and export performance. This study integrates the different definitions of decision quality proposed in the literature and the key themes incorporated therein and adapts it to an export context. Apart from laying the conceptual foundations for the delineation of this elusive but very important construct, this study is the first ever to test the relationship between decision quality and export performance. Based on survey data from a sample of 189 British export decision-makers and within a contingency theory framework, the results reveal that there is a direct, positive link between decision quality and export performance. This finding opens significant future research avenues and has very important implications for both theory and practice.Keywords: export performance, decision quality, mixed methods, contingency theory
Procedia PDF Downloads 955375 Marketing Mix, Motivation and the Tendency of Consumer Decision Making in Buying Condominium
Authors: Bundit Pungnirund
Abstract:
This research aimed to study the relationship between marketing mix attitudes, motivation of buying decision and tendency of consumer decision making in buying the condominiums in Thailand. This study employed by survey and quantitative research. The questionnaire was used to collect the data from 400 sampled of customers who interested in buying condominium in Bangkok. The descriptive statistics and Pearson’s correlation coefficient analysis were used to analyze data. The research found that marketing mixed factors in terms of product and price were related to buying decision making tendency in terms of price and room size. Marketing mixed factors in terms of price, place and promotion were related to buying decision making tendency in term of word of mouth. Consumers’ buying motivation in terms of social acceptance, self-esteemed and self-actualization were related to buying decision making tendency in term of room size. In addition, motivation in self-esteemed was related to buying decision making tendency within a year.Keywords: condominium, marketing mix, motivation, tendency of consumer decision making
Procedia PDF Downloads 3095374 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform
Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu
Abstract:
Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform
Procedia PDF Downloads 655373 South Atlantic Architects Validation of the Construction Decision Making Inventory
Authors: Tulio Sulbaran, Sandeep Langar
Abstract:
Architects are an integral part of the construction industry and are continuously incorporating decisions that influence projects during their life cycle. These decisions aim at selecting best alternative from the ones available. Unfortunately, this decision making process is mainly unexplored in the construction industry. No instrument to measure construction decision, based on knowledgebase of decision-makers, has existed. Additionally, limited literature is available on the topic. Recently, an instrument to gain an understanding of the construction decision-making process was developed by Dr. Tulio Sulbaran from the University of Texas, San Antonio. The instrument’s name is 'Construction Decision Making Inventory (CDMI)'. The CDMI is an innovative idea to measure the 'What? When? How? Moreover, Who?' of the construction decision-making process. As an innovative idea, its statistical validity (accuracy of the assessment) is yet to be assessed. Thus, the purpose of this paper is to describe the results of a case study with architects in the south-east of the United States aimed to determine the CDMI validity. The results of the case study are important because they assess the validity of the tool. Furthermore, as the architects evaluated each question within the measurements, this study is also guiding the enhancement of the CDMI.Keywords: decision, support, inventory, architect
Procedia PDF Downloads 3285372 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV
Authors: Maria Pavlova
Abstract:
In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.Keywords: camera, object recognition, OpenCV, Raspberry
Procedia PDF Downloads 2185371 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces
Authors: Shih-Yu Lo
Abstract:
Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.Keywords: gender stereotype, object recognition, signal detection theory, weapon
Procedia PDF Downloads 2095370 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs
Authors: Mina Youssef Makram Ibrahim
Abstract:
Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition
Procedia PDF Downloads 625369 Evaluate the Changes in Stress Level Using Facial Thermal Imaging
Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian
Abstract:
This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.Keywords: stress, thermal imaging, face, SVM, polygraph
Procedia PDF Downloads 4865368 Decision Making during the Project Management Life Cycle of Infrastructure Projects
Authors: Karrar Raoof Kareem Kamoona, Enas Fathi Taher AlHares, Zeynep Isik
Abstract:
The various disciplines in the construction industry and the co-existence of the people in the various disciplines are what builds well-developed, closely-knit interpersonal skills at various hierarchical levels thus leading to a varied way of leadership. The varied decision making aspects during the lifecycle of a project include: autocratic, participatory and last but not least, free-rein. We can classify some of the decision makers in the construction industry in a hierarchical manner as follows: project executive, project manager, superintendent, office engineer and finally the field engineer. This survey looked at how decisions are made during the construction period by the key stakeholders in the project. From the paper it is evident that the three decision making aspects can be used at different times or at times together in order to bring out the best leadership decision. A blend of different leadership styles should be used to enhance the success rate during the project lifecycle.Keywords: leadership style, construction, decision-making, built environment
Procedia PDF Downloads 3595367 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis
Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha
Abstract:
Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier
Procedia PDF Downloads 4675366 Marketing Factors Influencing the Decision to Choose Low Cost Airlines
Authors: Noppadol Sritragool
Abstract:
The objectives of this research were to investigate the decision of passengers who choose to fry with low cost airlines and to study marketing factors which have the influence to the decision to choose each low cost airlines. This paper was a quantitative research technique. A total of 400 low cost airlines’ passengers were interviewed via English questionnaire to collect the respondents’ opinions. The findings revealed that respondents were male and female at a similar proportion. The majority had at least an undergraduate degree, have a lower management level jobs, and had income in the range of 25,000 -35,000 baht per month.. In addition, the findings also revealed that the first three marketing factors influencing the decision of the respondents to choose low-cost airlines were low price, direct flight, and online system.Keywords: decision to choose, marketing factors, low-cost airlines
Procedia PDF Downloads 4275365 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans
Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee
Abstract:
This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.Keywords: flexible job shop scheduling, decision tree, priority rules, case study
Procedia PDF Downloads 3585364 The Role of Marketing Information System on Decision-Making: An Applied Study on Algeria Telecoms Mobile "MOBILIS"
Authors: Benlakhdar Mohamed Larbi, Yagoub Asma
Abstract:
Purpose: This study aims at highlighting the significance and importance of utilizing marketing information system (MKIS) on decision-making, by clarifying the need for quick and efficient decision-making due to time saving and preventing of duplication of work. Design, methodology, approach: The study shows the roles of each part of MKIS for developing marketing strategy, which present a real challenge to individuals and institutions in an era characterized by uncertainty and clarifying the importance of each part separately, depending on decision type and the nature of the situation. The empirical research method was evaluated by specialized experts, conducted by means of questionnaires. Correlation analysis was employed to test the validity of the procedure. Results: The empirical study findings confirmed positive relationships between the level of utilizing and adopting ‘decision support system and marketing intelligence’ and the success of an organizational decision-making, and provide the organization with a competitive advantage as it allows the organization to solve problems. Originality/value: The study offer better understanding of performance- increasing market share as an organizational decision making based on marketing information system.Keywords: database, marketing research, marketing intelligence, decision support system, decision-making
Procedia PDF Downloads 3305363 Decision Support for Modularisation: Engineering Construction Case Studies
Authors: Rolla Monib, Chris Ian Goodier, Alistair Gibb
Abstract:
This paper aims to investigate decision support strategies in the EC sector to determine the most appropriate degree of modularization. This is achieved through three oil and gas (O&G) and two power plant case studies via semi-structured interviews (n=59 and n=27, respectively), analysis of project documents, and case study-specific semi-structured validation interviews (n=12 and n=8). New terminology to distinguish degrees of modularization is proposed, along with a decision-making support checklist and a diagrammatic decision-making support figure. Results indicate that the EC sub-sectors were substantially more satisfied with the application of component, structural, or traditional modularization compared with system modularization for some types of modules. Key drivers for decisions on the degree of modularization vary across module types. This paper can help the EC sector determine the most suitable degree of modularization via a decision-making support strategy.Keywords: modularization, engineering construction, case study, decision support
Procedia PDF Downloads 945362 Stereotypical Perception as an Influential Factor in the Judicial Decision Making Process for Shoplifting Cases Presided over in the UK
Authors: Mariam Shah
Abstract:
Stereotypes are not generally considered to be an acceptable influence upon any decision making process, particularly those involving judicial decision making outcomes. Yet, we are confronted with an uncomfortable truth that stereotypes may be operating to influence judicial outcomes. Variances in sentencing outcomes are not easily explained away by criminological, psychological, or sociological theorem, but may be answered via qualitative research produced within the field of phenomenology. This paper will examine the current literature pertaining to the effect of stereotypes on the criminal justice system within the UK, and will also discuss what the implications are for stereotypical influences upon decision making in the criminal justice system. This paper will give particular focus to shoplifting offences dealt with in UK criminal courts, but this research has long reaching implications for the criminal process more generally.Keywords: decision making, judicial decision making, phenomenology, shoplifting, stereotypes
Procedia PDF Downloads 3345361 The Location Problem of Electric Vehicle Charging Stations: A Case Study of Istanbul
Authors: Müjde Erol Genevois, Hatice Kocaman
Abstract:
Growing concerns about the increasing consumption of fossil energy and the improved recognition of environmental protection require sustainable road transportation technology. Electric vehicles (EVs) can contribute to improve environmental sustainability and to solve the energy problem with the right infrastructure. The problem of where to locate electric vehicle charging station can be grouped as decision-making problems because of including many criteria and alternatives that have to be considered simultaneously. The purpose of this paper is to present an integrated AHP and TOPSIS model to rank the optimal sites of EVs charging station in Istanbul, Turkey. Ten different candidate points and three decision criteria are identified. The performances of each candidate points with respect to criteria are obtained according to AHP calculations. These performances are used as an input for TOPSIS method to rank the candidate points. It is obtained accurate and robust results by integrating AHP and TOPSIS methods.Keywords: electric vehicle charging station (EVCS), AHP, TOPSIS, location selection
Procedia PDF Downloads 3245360 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1535359 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance
Authors: Hirokatsu Kawashima
Abstract:
One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).Keywords: auditory error recognition, intensive listening, interaction, investigation
Procedia PDF Downloads 5135358 Decision Making in Medicine and Treatment Strategies
Authors: Kamran Yazdanbakhsh, Somayeh Mahmoudi
Abstract:
Three reasons make good use of the decision theory in medicine: 1. Increased medical knowledge and their complexity makes it difficult treatment information effectively without resorting to sophisticated analytical methods, especially when it comes to detecting errors and identify opportunities for treatment from databases of large size. 2. There is a wide geographic variability of medical practice. In a context where medical costs are, at least in part, by the patient, these changes raise doubts about the relevance of the choices made by physicians. These differences are generally attributed to differences in estimates of probabilities of success of treatment involved, and differing assessments of the results on success or failure. Without explicit criteria for decision, it is difficult to identify precisely the sources of these variations in treatment. 3. Beyond the principle of informed consent, patients need to be involved in decision-making. For this, the decision process should be explained and broken down. A decision problem is to select the best option among a set of choices. The problem is what is meant by "best option ", or know what criteria guide the choice. The purpose of decision theory is to answer this question. The systematic use of decision models allows us to better understand the differences in medical practices, and facilitates the search for consensus. About this, there are three types of situations: situations certain, risky situations, and uncertain situations: 1. In certain situations, the consequence of each decision are certain. 2. In risky situations, every decision can have several consequences, the probability of each of these consequences is known. 3. In uncertain situations, each decision can have several consequences, the probability is not known. Our aim in this article is to show how decision theory can usefully be mobilized to meet the needs of physicians. The decision theory can make decisions more transparent: first, by clarifying the data systematically considered the problem and secondly by asking a few basic principles should guide the choice. Once the problem and clarified the decision theory provides operational tools to represent the available information and determine patient preferences, and thus assist the patient and doctor in their choices.Keywords: decision making, medicine, treatment strategies, patient
Procedia PDF Downloads 5795357 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1165356 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3355355 Integrating Human Preferences into the Automated Decisions of Unmanned Aerial Vehicles
Authors: Arwa Khannoussi, Alexandru-Liviu Olteanu, Pritesh Narayan, Catherine Dezan, Jean-Philippe Diguet, Patrick Meyer, Jacques Petit-Frere
Abstract:
Due to the nature of autonomous Unmanned Aerial Vehicles (UAV) missions, it is important that the decisions of a UAV stay consistent with the priorities of an operator, while at the same time allowing them to be easily audited and explained. We propose a multi-layer decision engine that integrates the operator (human) preferences by using the Multi-Criteria Decision Aiding (MCDA) methods. A software implementation of a UAV simulator and of the decision engine is presented to highlight the advantage of using such techniques on high-level decisions. We demonstrate that, with such a preference-based decision engine, the decisions of the UAV are compatible with the priorities of the operator, which in turn increases her/his confidence in its autonomous behavior.Keywords: autonomous UAV, multi-criteria decision aiding, multi-layers decision engine, operator's preferences, traceable decisions, UAV simulation
Procedia PDF Downloads 255