Search results for: Tulio Sulbaran
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Tulio Sulbaran

4 South Atlantic Architects Validation of the Construction Decision Making Inventory

Authors: Tulio Sulbaran, Sandeep Langar

Abstract:

Architects are an integral part of the construction industry and are continuously incorporating decisions that influence projects during their life cycle. These decisions aim at selecting best alternative from the ones available. Unfortunately, this decision making process is mainly unexplored in the construction industry. No instrument to measure construction decision, based on knowledgebase of decision-makers, has existed. Additionally, limited literature is available on the topic. Recently, an instrument to gain an understanding of the construction decision-making process was developed by Dr. Tulio Sulbaran from the University of Texas, San Antonio. The instrument’s name is 'Construction Decision Making Inventory (CDMI)'. The CDMI is an innovative idea to measure the 'What? When? How? Moreover, Who?' of the construction decision-making process. As an innovative idea, its statistical validity (accuracy of the assessment) is yet to be assessed. Thus, the purpose of this paper is to describe the results of a case study with architects in the south-east of the United States aimed to determine the CDMI validity. The results of the case study are important because they assess the validity of the tool. Furthermore, as the architects evaluated each question within the measurements, this study is also guiding the enhancement of the CDMI.

Keywords: decision, support, inventory, architect

Procedia PDF Downloads 298
3 Enhancing Construction Project Management through Cognitive Science and Neuroimaging: A Comprehensive Literature Review

Authors: Krishna Kisi, Tulio Sulbaran

Abstract:

This literature review offers valuable insights into integrating cognitive science and neuroimaging with project management practices, presenting a crucial resource for leadership within the construction industry. This paper highlights the significant benefits of applying interdisciplinary approaches to enhance project management effectiveness and project outcomes by exploring the intricate connections between cognitive processes, decision-making, and project management. Key findings emphasize the critical role of cognitive status in determining the performance and project outcomes of construction workers, underlining the necessity for leadership to prioritize cognitive well-being and mental health as central components of project management strategies. The review identifies a gap in current practices, particularly the need for more objective tools for assessing cognitive status within the construction sector, and proposes the adoption of neuroimaging technologies to bridge this gap. The study highlights how integrating cognitive psychology and neuroscience clarifies decision-making processes, aiding leaders in comprehending the mental constraints and biases that influence project decisions. By integrating neuroscientific insights with traditional management practices, leaders can enhance their strategies for training, team dynamics, and risk assessment, ultimately leading to more informed, efficient, and productive construction project management. This comprehensive literature review underscores the importance of adopting an interdisciplinary approach to leadership and management within high-risk industries. It provides a foundation for construction project managers to leverage cognitive science and neuroimaging advancements to improve efficiency, productivity, and decision-making in construction projects' complex and dynamic environments.

Keywords: decision making, literature review, neuroimaging, project management

Procedia PDF Downloads 14
2 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Authors: Marco Tulio C. Faria

Abstract:

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent load-carrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steady-state and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Keywords: elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method

Procedia PDF Downloads 424
1 Computational Aided Approach for Strut and Tie Model for Non-Flexural Elements

Authors: Mihaja Razafimbelo, Guillaume Herve-Secourgeon, Fabrice Gatuingt, Marina Bottoni, Tulio Honorio-De-Faria

Abstract:

The challenge of the research is to provide engineering with a robust, semi-automatic method for calculating optimal reinforcement for massive structural elements. In the absence of such a digital post-processing tool, design office engineers make intensive use of plate modelling, for which automatic post-processing is available. Plate models in massive areas, on the other hand, produce conservative results. In addition, the theoretical foundations of automatic post-processing tools for reinforcement are those of reinforced concrete beam sections. As long as there is no suitable alternative for automatic post-processing of plates, optimal modelling and a significant improvement of the constructability of massive areas cannot be expected. A method called strut-and-tie is commonly used in civil engineering, but the result itself remains very subjective to the calculation engineer. The tool developed will facilitate the work of supporting the engineers in their choice of structure. The method implemented consists of defining a ground-structure built on the basis of the main constraints resulting from an elastic analysis of the structure and then to start an optimization of this structure according to the fully stressed design method. The first results allow to obtain a coherent return in the first network of connecting struts and ties, compared to the cases encountered in the literature. The evolution of the tool will then make it possible to adapt the obtained latticework in relation to the cracking states resulting from the loads applied during the life of the structure, cyclic or dynamic loads. In addition, with the constructability constraint, a final result of reinforcement with an orthogonal arrangement with a regulated spacing will be implemented in the tool.

Keywords: strut and tie, optimization, reinforcement, massive structure

Procedia PDF Downloads 118