Search results for: protein-protein interaction networks
6433 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3576432 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1946431 Voting Representation in Social Networks Using Rough Set Techniques
Authors: Yasser F. Hassan
Abstract:
Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices
Procedia PDF Downloads 3936430 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks
Procedia PDF Downloads 1426429 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks
Procedia PDF Downloads 1446428 Application of Wireless Sensor Networks: A Survey in Thailand
Authors: Sathapath Kilaso
Abstract:
Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.Keywords: wireless sensor network, smart city, survey, Adhoc Network
Procedia PDF Downloads 2076427 Combination Rule for Homonuclear Dipole Dispersion Coefficients
Authors: Giorgio Visentin, Inna S. Kalinina, Alexei A. Buchachenko
Abstract:
In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466.Keywords: combination rule, dipole-dipole dispersion coefficient, Casimir-Polder integral, Gauss-Legendre quadrature
Procedia PDF Downloads 1786426 Universality and Synchronization in Complex Quadratic Networks
Authors: Anca Radulescu, Danae Evans
Abstract:
The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity
Procedia PDF Downloads 3086425 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks
Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed
Abstract:
Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks
Procedia PDF Downloads 4966424 A System to Detect Inappropriate Messages in Online Social Networks
Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty
Abstract:
As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.Keywords: machine learning, online social networks, soft text classifier, support vector machine
Procedia PDF Downloads 5086423 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays
Authors: Sabri Arik
Abstract:
In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis
Procedia PDF Downloads 5276422 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma
Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam
Abstract:
Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.Keywords: systems biology, ependymoma, deg, network analysis
Procedia PDF Downloads 2986421 Clustering the Wheat Seeds Using SOM Artificial Neural Networks
Authors: Salah Ghamari
Abstract:
In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.Keywords: artificial neural networks, clustering, self organizing map, wheat variety
Procedia PDF Downloads 6566420 A Neural Network Approach to Understanding Turbulent Jet Formations
Authors: Nurul Bin Ibrahim
Abstract:
Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence
Procedia PDF Downloads 706419 A CM-Based Model for 802.11 Networks Security Policies Enforcement
Authors: Karl Mabiala Dondia, Jing Ma
Abstract:
In recent years, networks based on the 802.11 standards have gained a prolific deployment. The reason for this massive acceptance of the technology by both home users and corporations is assuredly due to the "plug-and-play" nature of the technology and the mobility. The lack of physical containment due to inherent nature of the wireless medium makes maintenance very challenging from a security standpoint. This study examines via continuous monitoring various predictable threats that 802.11 networks can face, how they are executed, where each attack may be executed and how to effectively defend against them. The key goal is to identify the key components of an effective wireless security policy.Keywords: wireless LAN, IEEE 802.11 standards, continuous monitoring, security policy
Procedia PDF Downloads 3806418 Challenge Appraisal Job, Hindrance Appraisal Job, and Negative Work-Life Interaction with the Mediating Role of Distress: A Survey on Sabah Public Secondary School Teachers
Authors: Pan Lee Ching, Chua Bee Seok
Abstract:
The experience of negative work-life interaction often confronted with work related stress includes workload. The appraisal of challenge and hindrance jobs depend on the type of workload to stimulate stress response. Nevertheless, the effects of challenge and hindrance jobs on distress and negative work-life interaction are scarcely explored. Thus, research objective was to examine the relationship among challenge appraisal job (qualitative workload), hindrance appraisal job (quantitative workload), and negative work-life interaction with the mediating role of distress. A survey with random sampling method was performed on current serving public secondary school teachers in Sabah. Collected data showed 447 respondents completed three questionnaires, namely Challenge-hindrance Appraisal Scale, Stress Professional Positive and Negative Questionnaire, and Survey Work-home Interaction-Nijmegan. Partial Least Square-Structural Equation Modeling (PLS-SEM) was used to analyse mediation effect. Results showed distress fully mediates the relationship between challenge appraisal job (qualitative workload) and negative work-life interaction. The indirect effect was significant and negative. While distress partially mediates the relationship between hindrance appraisal job (quantitative workload) and negative work-life interaction. The indirect effect was significant and positive. The study implied that challenge appraisal job could be a positive resource for teacher to facilitate work and life, whereas hindrance appraisal job could disengage the facilitation. Hence, strengthen challenge appraisal job and control hindrance appraisal job could curb distress at work and underpin life interaction among the teachers.Keywords: challenge-hindrance job, distress, work-life, workload
Procedia PDF Downloads 1926417 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge
Authors: Mohanad Alfach, Amjad Al Helwani
Abstract:
Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional
Procedia PDF Downloads 2596416 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks
Authors: Chad Brown
Abstract:
This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes
Procedia PDF Downloads 416415 Key Concepts of 5th Generation Mobile Technology
Authors: Magri Hicham, Noreddine Abghour, Mohamed Ouzzif
Abstract:
The 5th generation of mobile networks is term used in various research papers and projects to identify the next major phase of mobile telecommunications standards. 5G wireless networks will support higher peak data rate, lower latency and provide best connections with QoS guarenty. In this article, we discuss various promising technologies for 5G wireless communication systems, such as IPv6 support, World Wide Wireless Web (WWWW), Dynamic Adhoc Wireless Networks (DAWN), BEAM DIVISION MULTIPLE ACCESS (BDMA), Cloud Computing and cognitive radio technology.Keywords: WWWW, BDMA, DAWN, 5G, 4G, IPv6, Cloud Computing
Procedia PDF Downloads 5146414 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter
Procedia PDF Downloads 4566413 Social Networks Global Impact on Protest Movements and Human Rights Activism
Authors: Marcya Burden, Savonna Greer
Abstract:
In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.Keywords: activism, protests, human rights, networks
Procedia PDF Downloads 956412 Smart Trust Management for Vehicular Networks
Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel
Abstract:
Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.Keywords: active vehicle, cooperation, petri nets, trust management, VANET
Procedia PDF Downloads 4056411 Spectrofluorimetric Investigation of Copper (II), Cobalt (II), Calcium (II), and Ferric (III) Influence on the Ciprofloxacin Binding to Bovine Serum Albumin
Authors: Ahmed K. Youssef, Shawkat M. B. Aly
Abstract:
The interaction between ciprofloxacin and bovine serum albumin (BSA) was investigated by UV-Visible absorption and fluorescence spectroscopy. The influence of Cu²⁺ Ca²⁺, Co²⁺, and Fe³⁺ on the Cip-BSA interaction was investigated. The quenching of the BSA fluorescence emission in presence of ciprofloxacin as well as the influence of metal ions on the interaction was analyzed using the Stern-Volmer equation. The Stern-Volmer quenching constant, Kₛᵥ was calculated in presence and absence of the metal ions at the physiological pH of 7.4 using phosphate buffer. The experimental results showed that interaction mainly static in nature and quenching rate constant is decreased in presence of the studied metal ions with exception of Cu²⁺ ions. The decrease observed in the Kₛᵥ values in presence of Co²⁺, Ca²⁺, and Fe³⁺ can be understood on basis of competition between these metal and Cip when both of them existed in the BSA solution. Cu²⁺ induces interaction between Cip and BSA at faster quenching rates as inferred from the observed increase in the Kₛᵥ value. This allowed us to propose that copper (II) ions are directly involved in the process of Cip binding to BSA. The binding constant for Cip on BSA was determined and the metal ions effect on it was examined as well and their values were in line with the Kₛᵥ values.Keywords: bovine serum albumin, ciprofloxacin, fluorescence, metal ions effect
Procedia PDF Downloads 3926410 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation
Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira
Abstract:
This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.Keywords: wireless sensor networks, RSSI, Arduino, environments
Procedia PDF Downloads 6196409 A Case Study of Typhoon Tracks: Insights from the Interaction between Typhoon Hinnamnor and Ocean Currents in 2022
Authors: Wei-Kuo Soong
Abstract:
The forecasting of typhoon tracks remains a formidable challenge, primarily attributable to the paucity of observational data in the open sea and the intricate influence of weather systems at varying scales. This study investigates the case of Typhoon Hinnamnor in 2022, examining its trajectory and intensity fluctuations in relation to the interaction with a concurrent tropical cyclone and sea surface temperatures (SST). Utilizing the Weather Research and Forecasting Model (WRF), to simulate and analyze the interaction between Typhoon Hinnamnor and its environmental factors, shedding light on the mechanisms driving typhoon development and enhancing forecasting capabilities.Keywords: typhoon, sea surface temperature, forecasting, WRF
Procedia PDF Downloads 526408 Stimulating the Social Interaction Development of Children through Computer Play Activities: The Role of Teachers
Authors: Mahani Razali, Abd Halim Masnan, Nordin Mamat, Seah Siok Peh
Abstract:
This research is based on three main objectives which are to identify children`s social interaction behaviour during computer play activities, teacher’s role and to explore teacher’s beliefs, views and knowledge about computers use in four Malaysian pre-schools.This qualitative study was carried out among 25 pre-school children and three teachers as the research sample. The data collection procedures involved structured observation which was to identify social interaction behavior among pre-school children through computer play activities; as for semi-structured interviews, it was done to study the perception of the teachers on the acquired of social interaction behavior development among the children. A variety of patterns can be seen within the peer interactions indicating that children exhibit a vast range of social interactions at the computer, and they varied each day. The findings of this study guide us to certain conclusions, which have implications in understanding the phenomena of how computers were used and how its relationship to the children’s social interactions emerge in the four Malaysian preschools. This study provides evidence that the children’s social interactions with peers and adults were mediated by the engagement of the children in the computer environments.Keywords: computer, play, preschool, social interaction
Procedia PDF Downloads 2996407 Investigating Breakdowns in Human Robot Interaction: A Conversation Analysis Guided Single Case Study of a Human-Robot Communication in a Museum Environment
Authors: B. Arend, P. Sunnen, P. Caire
Abstract:
In a single case study, we show how a conversation analysis (CA) approach can shed light onto the sequential unfolding of human-robot interaction. Relying on video data, we are able to show that CA allows us to investigate the respective turn-taking systems of humans and a NAO robot in their dialogical dynamics, thus pointing out relevant differences. Our fine grained video analysis points out occurring breakdowns and their overcoming, when humans and a NAO-robot engage in a multimodally uttered multi-party communication during a sports guessing game. Our findings suggest that interdisciplinary work opens up the opportunity to gain new insights into the challenging issues of human robot communication in order to provide resources for developing mechanisms that enable complex human-robot interaction (HRI).Keywords: human robot interaction, conversation analysis, dialogism, breakdown, museum
Procedia PDF Downloads 3056406 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis
Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta
Abstract:
Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer
Procedia PDF Downloads 5366405 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing
Authors: Alona Faktor
Abstract:
In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.Keywords: cognitive science, attentin, deep learning, generalization
Procedia PDF Downloads 1986404 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hocs networks, blockchain, MPR, security
Procedia PDF Downloads 185