Search results for: mutation detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3674

Search results for: mutation detection

3494 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: attention, fire detection, smoke detection, spatio-temporal

Procedia PDF Downloads 203
3493 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 129
3492 Attack Redirection and Detection using Honeypots

Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat

Abstract:

A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.

Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner

Procedia PDF Downloads 156
3491 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection

Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary

Abstract:

We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.

Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning

Procedia PDF Downloads 238
3490 Strabismus Detection Using Eye Alignment Stability

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.

Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization

Procedia PDF Downloads 78
3489 Outdoor Anomaly Detection with a Spectroscopic Line Detector

Authors: O. J. G. Somsen

Abstract:

One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application

Keywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection

Procedia PDF Downloads 481
3488 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence

Authors: Chawarat Rotejanaprasert, Andrew Lawson

Abstract:

Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.

Keywords: Bayesian, spatial, temporal, surveillance, prospective

Procedia PDF Downloads 312
3487 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.

Keywords: object-based, roof material, concrete tile, WorldView-2

Procedia PDF Downloads 424
3486 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 54
3485 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing

Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila

Abstract:

Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.

Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing

Procedia PDF Downloads 176
3484 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic

Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato

Abstract:

Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.

Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security

Procedia PDF Downloads 371
3483 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications

Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef

Abstract:

Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.

Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis

Procedia PDF Downloads 458
3482 Developing Artificial Neural Networks (ANN) for Falls Detection

Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai

Abstract:

The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.

Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold

Procedia PDF Downloads 497
3481 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform

Authors: Enqing Chen, Jianbo Wang

Abstract:

It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.

Keywords: edge detection, NSCT, shift invariant, modulus maxima

Procedia PDF Downloads 490
3480 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA

Procedia PDF Downloads 230
3479 Detection of Nanotoxic Material Using DNA Based QCM

Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na

Abstract:

Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nanotoxic material, qcm, frequency, in situ sensing

Procedia PDF Downloads 422
3478 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 92
3477 Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode

Authors: Oluwole Opeyemi Dina, Saheed E. Elugoke, Peter Olutope Fayemi, Omolola E. Fayemi

Abstract:

This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode.

Keywords: screenprint electrode, iron oxide nanoparticle, epinephrine, serum, cyclic voltametry

Procedia PDF Downloads 167
3476 Point-Mutation in a Rationally Engineered Esterase Inverts its Enantioselectivity

Authors: Yasser Gaber, Mohamed Ismail, Serena Bisagni, Mohamad Takwa, Rajni Hatti-Kaul

Abstract:

Enzymes are safe and selective catalysts. They skillfully catalyze chemical reactions; however, the native form is not usually suitable for industrial applications. Enzymes are therefore engineered by several techniques to meet the required catalytic task. Clopidogrel is recorded among the five best selling pharmaceutical in 2010 under the brand name Plavix. The commonly used route for production of the drug on an industrial scale is the synthesis of the racemic mixture followed by diastereomeric resolution to obtain the pure S isomer. The process consumes a lot of solvents and chemicals. We have evaluated a biocatalytic cleaner approach for asymmetric hydrolysis of racemic clopidogrel. Initial screening of a selected number of hydrolases showed only one enzyme EST to exhibit activity and selectivity towards the desired stereoisomer. As the crude EST is a mixture of several isoenzymes, a homology model of EST-1 was used in molecular dynamic simulations to study the interaction of the enzyme with R and S isomers of clopidogrel. Analysis of the geometric hindrances of the tetrahedral intermediates revealed a potential site for mutagenesis in order to improve the activity and the selectivity. Single point mutation showed dramatic increase in activity and inversion of the enantioselectivity (400 fold change in E value).

Keywords: biocatalysis, biotechnology, enzyme, protein engineering, molecular modeling

Procedia PDF Downloads 448
3475 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 244
3474 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: neural network, motion detection, signature detection, convolutional neural network

Procedia PDF Downloads 89
3473 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates

Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine

Abstract:

The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.

Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch

Procedia PDF Downloads 402
3472 Comparative Analysis of Edge Detection Techniques for Extracting Characters

Authors: Rana Gill, Chandandeep Kaur

Abstract:

Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.

Keywords: segmentation, edge detection, text, extracting characters

Procedia PDF Downloads 426
3471 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 203
3470 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le

Abstract:

Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.

Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease

Procedia PDF Downloads 455
3469 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking

Procedia PDF Downloads 197
3468 Microarrays: Wide Clinical Utilities and Advances in Healthcare

Authors: Salma M. Wakil

Abstract:

Advances in the field of genetics overwhelmed detecting large number of inherited disorders at the molecular level and directed to the development of innovative technologies. These innovations have led to gene sequencing, prenatal mutation detection, pre-implantation genetic diagnosis; population based carrier screening and genome wide analyses using microarrays. Microarrays are widely used in establishing clinical and diagnostic setup for genetic anomalies at a massive level, with the advent of cytoscan molecular karyotyping as a clinical utility card for detecting chromosomal aberrations with high coverage across the entire human genome. Unlike a regular karyotype that relies on the microscopic inspection of chromosomes, molecular karyotyping with cytoscan constructs virtual chromosomes based on the copy number analysis of DNA which improves its resolution by 100-fold. We have been investigating a large number of patients with Developmental Delay and Intellectual disability with this platform for establishing micro syndrome deletions and have detected number of novel CNV’s in the Arabian population with the clinical relevance.

Keywords: microarrays, molecular karyotyping, developmental delay, genetics

Procedia PDF Downloads 458
3467 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 226
3466 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang

Abstract:

In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 469
3465 Cognitive Methods for Detecting Deception During the Criminal Investigation Process

Authors: Laid Fekih

Abstract:

Background: It is difficult to detect lying, deception, and misrepresentation just by looking at verbal or non-verbal expression during the criminal investigation process, as there is a common belief that it is possible to tell whether a person is lying or telling the truth just by looking at the way they act or behave. The process of detecting lies and deception during the criminal investigation process needs more studies and research to overcome the difficulties facing the investigators. Method: The present study aimed to identify the effectiveness of cognitive methods and techniques in detecting deception during the criminal investigation. It adopted the quasi-experimental method and covered a sample of (20) defendants distributed randomly into two homogeneous groups, an experimental group of (10) defendants be subject to criminal investigation by applying cognitive techniques to detect deception and a second experimental group of (10) defendants be subject to the direct investigation method. The tool that used is a guided interview based on models of investigative questions according to the cognitive deception detection approach, which consists of three techniques of Vrij: imposing the cognitive burden, encouragement to provide more information, and ask unexpected questions, and the Direct Investigation Method. Results: Results revealed a significant difference between the two groups in term of lie detection accuracy in favour of defendants be subject to criminal investigation by applying cognitive techniques, the cognitive deception detection approach produced superior total accuracy rates both with human observers and through an analysis of objective criteria. The cognitive deception detection approach produced superior accuracy results in truth detection: 71%, deception detection: 70% compared to a direct investigation method truth detection: 52%; deception detection: 49%. Conclusion: The study recommended if practitioners use a cognitive deception detection technique, they will correctly classify more individuals than when they use a direct investigation method.

Keywords: the cognitive lie detection approach, deception, criminal investigation, mental health

Procedia PDF Downloads 67