Search results for: molecular oxygen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3403

Search results for: molecular oxygen

3223 Molecular Dynamics Simulation of Beta-Glucosidase of Streptomyces

Authors: Adam Abate, Elham Rasti, Philip Romero

Abstract:

Beta-glucosidase is the key enzyme component present in cellulase and completes the final step during cellulose hydrolysis by converting the cellobiose to glucose. The regulatory properties of beta-glucosidases are most commonly found for the retaining and inverting enzymes. Hydrolysis of a glycoside typically occurs with general acid and general base assistance from two amino acid side chains, normally glutamic or aspartic acids. In order to obtain more detailed information on the dynamic events origination from the interaction with enzyme active site, we carried out molecular dynamics simulations of beta-glycosidase in protonated state (Glu-H178) and deprotonated state (Glu178). The theoretical models generated from our molecular dynamics simulations complement and advance the structural information currently available, leading to a more detailed understanding of Beta-glycosidase structure and function. This article presents the important role of Asn307 in enzyme activity of beta-glucosidase

Keywords: Beta-glucosidase, GROMACS, molecular dynamics simulation, structural parameters

Procedia PDF Downloads 380
3222 Molecular Dynamics Simulation on Nanoelectromechanical Graphene Nanoflake Shuttle Device

Authors: Eunae Lee, Oh-Kuen Kwon, Ki-Sub Kim, Jeong Won Kang

Abstract:

We investigated the dynamic properties of graphene-nanoribbon (GNR) memory encapsulating graphene-nanoflake (GNF) shuttle in the potential to be applicable as a non-volatile random access memory via molecular dynamics simulations. This work explicitly demonstrates that the GNR encapsulating the GNF shuttle can be applied to nonvolatile memory. The potential well was originated by the increase of the attractive vdW energy between the GNRs when the GNF approached the edges of the GNRs. So the bistable positions were located near the edges of the GNRs. Such a nanoelectromechanical non-volatile memory based on graphene is also applicable to the development of switches, sensors, and quantum computing.

Keywords: graphene nanoribbon, graphene nanoflake, shuttle memory, molecular dynamics

Procedia PDF Downloads 439
3221 The Role of Rapid Maxillary Expansion in Managing Obstructive Sleep Apnea in Children: A Literature Review

Authors: Suleman Maliha, Suleman Sidra

Abstract:

Obstructive sleep apnea (OSA) is a sleep disorder that can result in behavioral and psychomotor impairments in children. The classical treatment modalities for OSA have been continuous positive airway pressure and adenotonsillectomy. However, orthodontic intervention through rapid maxillary expansion (RME) has also been commonly used to manage skeletal transverse maxillary discrepancies. Aim and objectives: The aim of this study is to determine the efficacy of rapid maxillary expansion in paediatric patients with obstructive sleep apnea by assessing pre and post-treatment mean apnea-hypopnea index (AHI) and oxygen saturations. Methodology: Literature was identified through a rigorous search of the Embase, Pubmed, and CINAHL databases. Articles published from 2012 onwards were selected. The inclusion criteria consisted of patients aged 18 years and under with no systemic disease, adenotonsillar surgery, or hypertrophy who are undergoing RME with AHI measurements before and after treatment. In total, six suitable papers were identified. Results: Three studies assessed patients pre and post-RME at 12 months. The first study consisted of 15 patients with an average age of 7.5 years. Following treatment, they found that RME resulted in both higher oxygen saturations (+ 5.3%) and improved AHI (- 4.2 events). The second study assessed 11 patients aged 5–8 years and also noted improvements, with mean AHI reduction from 6.1 to 2.4 and oxygen saturations increasing from 93.1% to 96.8%. The third study reviewed 14 patients aged 6–9 years and similarly found an AHI reduction from 5.7 to 4.4 and an oxygen saturation increase from 89.8% to 95.5%. All modifications noted in these studies were statistically significant. A long-term study reviewed 23 patients aged 6–12 years post-RME treatment on an annual basis for 12 years. They found that the mean AHI reduced from 12.2 to 0.4, with improved oxygen saturations from 78.9% to 95.1%. Another study assessed 19 patients aged 9-12 years at two months into RME and four months post-treatment. Improvements were also noted at both stages, with an overall reduction of the mean AHI from 16.3 to 0.8 and an overall increase in oxygen saturations from 77.9% to 95.4%. The final study assessed 26 children aged 7-11 years on completion of individual treatment and found an AHI reduction from 6.9 to 5.3. However, the oxygen saturation remained stagnant at 96.0%, but this was not clinically significant. Conclusion: Overall, the current evidence suggests that RME is a promising treatment option for paediatric patients with OSA. It can provide efficient and conservative treatment; however, early diagnosis is crucial. As there are various factors that could be contributing to OSA, it is important that each case is treated on its individual merits. Going forward, there is a need for more randomized control trials with larger cohorts being studied. Research into the long-term effects of RME and potential relapse amongst cases would also be useful.

Keywords: orthodontics, sleep apnea, maxillary expansion, review

Procedia PDF Downloads 62
3220 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 279
3219 Intelligent Technology for Real-Time Monitor and Data Analysis of the Aquaculture Toxic Water Concentration

Authors: Chin-Yuan Hsieh, Wei-Chun Lu, Yu-Hong Zeng

Abstract:

The situation of a group of fish die is frequently found due to the fish disease caused by the deterioration of aquaculture water quality. The toxic ammonia is produced by animals as a byproduct of protein. The system is designed by the smart sensor technology and developed by the mathematical model to monitor the water parameters 24 hours a day and predict the relationship among twelve water quality parameters for monitoring the water quality in aquaculture. All data measured are stored in cloud server. In productive ponds, the daytime pH may be high enough to be lethal to the fish. The sudden change of the aquaculture conditions often results in the increase of PH value of water, lack of oxygen dissolving content, water quality deterioration and yield reduction. From the real measurement, the system can send the message to user’s smartphone successfully on the bad conditions of water quality. From the data comparisons between measurement and model simulation in fish aquaculture site, the difference of parameters is less than 2% and the correlation coefficient is at least 98.34%. The solubility rate of oxygen decreases exponentially with the elevation of water temperature. The correlation coefficient is 98.98%.

Keywords: aquaculture, sensor, ammonia, dissolved oxygen

Procedia PDF Downloads 261
3218 Airborne Molecular Contamination in Clean Room Environment

Authors: T. Rajamäki

Abstract:

In clean room environment molecular contamination in very small concentrations can cause significant harm for the components and processes. This is commonly referred as airborne molecular contamination (AMC). There is a shortage of high sensitivity continuous measurement data for existence and behavior of several of these contaminants. Accordingly, in most cases correlation between concentration of harmful molecules and their effect on processes is not known. In addition, the formation and distribution of contaminating molecules are unclear. In this work sensitive optical techniques are applied in clean room facilities for investigation of concentrations, forming mechanisms and effects of contaminating molecules. Special emphasis is on reactive acid and base gases ammonia (NH3) and hydrogen fluoride (HF). They are the key chemicals in several operations taking place in clean room processes.

Keywords: AMC, clean room, concentration, reactive gas

Procedia PDF Downloads 264
3217 Effects of Sprint Training on Athletic Performance Related Physiological, Cardiovascular, and Neuromuscular Parameters

Authors: Asim Cengiz, Dede Basturk, Hakan Ozalp

Abstract:

Practicing recurring resistance workout such as may cause changes in human muscle. These changes may be because combination if several factors determining physical fitness. Thus, it is important to identify these changes. Several studies were reviewed to investigate these changes. As a result, the changes included positive modifications in amplified citrate synthase (CS) maximal activity, increased capacity for pyruvate oxidation, improvement on molecular signaling on human performance, amplified resting muscle glycogen and whole GLUT4 protein content, better health outcomes such as enhancement in cardiorespiratory fitness. Sprint training also have numerous long long-term changes inhuman body such as better enzyme action, changes in muscle fiber and oxidative ability. This is important because SV is the critical factor influencing maximal cardiac output and therefore oxygen delivery and maximal aerobic power.

Keywords: sprint, training, performance, exercise

Procedia PDF Downloads 289
3216 Molecular Characterization of Cysticercus tenuicolis of Slaughtered Livestock in Upper-Egypt Governorates

Authors: Mosaab A. Omara, Layla O. Elmajdoubb, Mohammad Saleh Al-Aboodyc, Ahmed ElSifyd, Ahmed O. Elkhtamd

Abstract:

The aim of this study is to present the molecular characterization of cysticercus tenuicolis of Taenia hydatigena from livestock isolates in Egypt, using the amplification of sequencing of the mt-CO1 gene. We introduce a detailed image of the Cysticercus tenuicolis infection in ruminant animals in Upper Egypt. Cysticercus tenuicolis inhabits such organs in ruminants as the omentum, viscera, and liver. In the present study, the infection rate of Cysticercus tenuicolis was found to be 16% and 19% in sheep and goat sample respectively. Firstly we report one larval stage of Taenia hydatigena detected in the camel liver in Egypt. Cysticercus tenuicolis infection manifested a higher prevalence in females than in males. Those above 2 years of age manifested a higher infection rate than younger animals. The preferred site for the infection was the omentum: a 70% preference in sheep and a 68% preference in goat samples. The molecular characterization using the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene of isolates from sheep, goats and camels corresponded to T. hydatigena. For this study, molecular characterizations of T. hydatigena were done for the first time in Egypt. Molecular tools are of great assistance in characterizing the Cysticercus tenuicolis parasite especially when the morphological character cannot be detected because the metacestodes are frequently confused with infection by the Hydatid cyst, especially when these occur in the visceral organs. In the present study, Cysticercus tenuicolis manifested high identity in the goat and sheep samples, while differences were found more frequently in the camel samples (10 pairbase). Clearly molecular diagnosis for Cysticercus tenuicolis infection significantly helps to differentiate it from such other metacestodes.

Keywords: cysticercus tenuicolis, its2, genetic, qena, molecular and taenia hydatigena

Procedia PDF Downloads 508
3215 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: ceramic membrane, edible oil, microfiltration, wastewater

Procedia PDF Downloads 278
3214 The Effect of Air Injection in Irrigation Water on Sugar Beet Yield

Authors: Yusuf Ersoy Yildirim, Ismail Tas, Ceren Gorgusen, Tugba Yeter, Aysegul Boyacioglu, K. Mehmet Tugrul, Murat Tugrul, Ayten Namli, H. Sabri Ozturk, M. Onur Akca

Abstract:

In recent years, a lot of research has been done for the sustainable use of scarce resources in the world. Especially, effective and sustainable use of water resources has been researched for many years. Sub-surface drip irrigation (SDI) is one of the most effective irrigation methods in which efficient and sustainable use of irrigation water can be achieved. When the literature is taken into consideration, it is often emphasized that, besides its numerous advantages, it also allows the application of irrigation water to the plant root zone along with air. It is stated in different studies that the air applied to the plant root zone with irrigation water has a positive effect on the root zone. Plants need sufficient oxygen for root respiration as well as for the metabolic functions of the roots. Decreased root respiration due to low oxygen content reduces transpiration, disrupts the flow of ions, and increases the ingress of salt reaching toxic levels, seriously affecting plant growth. Lack of oxygen (Hypoxia) can affect the survival of plants. The lack of oxygen in the soil is related to the exchange of gases in the soil with the gases in the atmosphere. Soil aeration is an important physical parameter of a soil. It is highly dynamic and is closely related to the amount of water in the soil and its bulk weight. Subsurface drip irrigation; It has higher water use efficiency compared to irrigation methods such as furrow irrigation and sprinkler irrigation. However, in heavy clay soils, subsurface drip irrigation creates continuous wetting fronts that predispose the rhizosphere region to hypoxia or anoxia. With subsurface drip irrigation, the oxygen is limited for root microbial respiration and root development, with the continuous spreading of water to a certain region of the root zone. In this study, the change in sugar beet yield caused by air application in the SDI system will be explained.

Keywords: sugar beet, subsurface drip irrigation, air application, irrigation efficiency

Procedia PDF Downloads 68
3213 Both Floristic Studies and Molecular Markers Are Necessary to Study of the Flora of a Region

Authors: Somayeh Akrami, Vali-Allah Mozaffarian, Habib Onsori

Abstract:

The studied region in this research, watershed Kuhkamar river, is about 112.66 square kilometers, it is located between 45º 48' 9" to 45º 2' 20" N and 38º 34' 15" to 38º 40' 28" E. The gained results of the studies on flora combinations, proved 287 plant species in 190 genera and 51 families. Asteracea with 49 and Lamiaceae with 27 plant species are the major plant families. Among collected species one interesting plant was found and determined as a new record Anemone narcissiflora L. for flora of Iran. This plant is known as a complex species that shows intraspecific speciation and is classified into about 12 subspecies and 10 varieties in world. To identify the infraspecies taxons of this species, in addition to morphological characteristics, the use of appropriate molecular markers for the better isolation of the individuals were needed.

Keywords: Anemone narcissiflora, floristic Study, kuhkamar, molecular marker

Procedia PDF Downloads 471
3212 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 162
3211 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 344
3210 Rational Design of Potent Compounds for Inhibiting Ca2+ -Dependent Calmodulin Kinase IIa, a Target of Alzheimer’s Disease

Authors: Son Nguyen, Thanh Van, Ly Le

Abstract:

Ca2+ - dependent calmodulin kinase IIa (CaMKIIa) has recently been found to associate with protein tau missorting and polymerization in Alzheimer’s Disease (AD). However, there has yet inhibitors targeting CaMKIIa to investigate the correlation between CaMKIIa activity and protein tau polymer formation. Combining virtual screening and our statistics in binding contribution scoring function (BCSF), we rationally identified potential compounds that bind to specific CaMKIIa active site and specificity-affinity distribution of the ligand within the active site. Using molecular dynamics simulation, we identified structural stability of CaMKIIa and potent inhibitors, and site-directed bonding, separating non-specific and specific molecular interaction features. Despite of variation in confirmation of simulation time, interactions of the potent inhibitors were found to be strongly associated with the unique chemical features extracted from molecular binding poses. In addition, competitive inhibitors within CaMKIIa showed an important molecular recognition pattern toward specific ligand features. Our approach combining virtual screening with BCSF may provide an universally applicable method for precise identification in the discovery of compounds.

Keywords: Alzheimer’s disease, Ca 2+ -dependent calmodulin kinase IIa, protein tau, molecular docking

Procedia PDF Downloads 257
3209 Acute Effect of Street Dance Exercise on Blood Pressure, Heart Rate, Oxygen Saturation and Physical Fitness in Sedentary Subjects: A Pilot Study

Authors: Taweesak Janyacharoen, Lalita Pradubgool, Lalita Wongsorn, Pitchayapa Janyacharoen

Abstract:

Street dance is a form of exercise that is classified as aerobic and is very suitable for teenagers. Street dance is a dance that can create new dance moves all the time. It often incorporates elements from gymnastics and is accompanied by fast-paced music that emphasizes excitement and energy. It is a combination of high-intensity and low-intensity activities. Few studies have looked at the effects of street dance on cardiovascular endurance, and previous studies have long-term effects. However, no research study in Thailand has studied acute effects before. This study was to investigate the acute effect of street dance exercise on blood pressure, heart rate, oxygen saturation and physical fitness in sedentary subjects. Subjects were divided into 2 groups: the control group (n=15) received health education and rest, and the experimental group (n=15) received street dance exercise. Both groups will measure their blood pressure (BP), mean arterial pressure (MAP), heart rate (HR), oxygen saturation (SpO₂) and six-minute walk test (6MWT) before and after completing the program. The results found that both groups had significantly different HR when comparing before and after the program (p<0.05). MAP, HR and SpO₂ had significantly different (p<0.05) when compared between groups. This study concluded that the acute effect of street dance exercise could be increased in HR while the SpO₂ decreased. In clinical, it was seen that the values that were changed are still within the range that is considered normal. Therefore, street dance exercises can be used as one choice of alternative exercise.

Keywords: street dance, exercise, blood pressure, heart rate, oxygen saturation

Procedia PDF Downloads 13
3208 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation

Authors: Fathi Soliman

Abstract:

With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.

Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction

Procedia PDF Downloads 174
3207 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro

Authors: Rafael Zhindon Almeida

Abstract:

Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.

Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models

Procedia PDF Downloads 74
3206 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst

Authors: Kamran Dastafkan, Chuan Zhao

Abstract:

Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.

Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction

Procedia PDF Downloads 113
3205 Experimental Study on the Molecular Spring Isolator

Authors: Muchun Yu, Xue Gao, Qian Chen

Abstract:

As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.

Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation

Procedia PDF Downloads 455
3204 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives

Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši

Abstract:

Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).

Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids

Procedia PDF Downloads 325
3203 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)

Authors: Mahmoud A. Abdulhamid

Abstract:

Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.

Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation

Procedia PDF Downloads 82
3202 Graphene-reinforced Metal-organic Framework Derived Cobalt Sulfide/Carbon Nanocomposites as Efficient Multifunctional Electrocatalysts

Authors: Yongde Xia, Laicong Deng, Zhuxian Yang

Abstract:

Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced cobalt sulfide/carbon nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of cobalt sulfide embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis-Mass spectroscopy, Scanning electronic microscopy, Transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It was found that cobalt sulfide nanoparticles were homogenously dispersed in the in-situ formed N, S co-doped porous carbon/Graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% current after continuously running for around 5 hours, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active cobalt sulfide and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.

Keywords: MOF derivative, graphene, electrocatalyst, oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction

Procedia PDF Downloads 36
3201 Reuse of Wastewater from the Treated Water Pre-treatment Plant for Agricultural Purposes

Authors: Aicha Assal, El Mostapha Lotfi

Abstract:

According to data from the Directorate General of Meteorology (DGM), the average amount of precipitation recorded nationwide between September 1, 2021, and January 31, 2022, is 38.8 millimeters. This is well below the climatological normal of 106.8 millimeters for the same period between 1981 and 2010. This situation is becoming increasingly worrying, particularly for farmers who are finding it difficult to irrigate their land and feed their livestock. Drought is greatly influenced by the effects of climate change, mainly caused by pollution and greenhouse gases (GHGs). The aim of this work is to contribute to the purification of wastewater (considered as polluting) in order to reuse it for irrigation in agricultural areas or for livestock watering. This will be achieved once physico-chemical treatment tests on these waters have been carried out and validated. The main parameters analyzed in this study, after carrying out discoloration tests on domestic wastewater, include COD (chemical oxygen demand), BOD5 (biochemical oxygen demand), pH, conductivity, dissolved oxygen, suspended solids (SS), phosphate, nitrate, nitrite and ammonium ions, faecal and total coliforms, as well as monitoring heavy metal concentrations. This work is also aimed at reclaiming the sludge produced by the decantation process, which will enable the waste to be transformed and reused as compost in agriculture and gardening.

Keywords: wastewater, irrigation, COD, COB, SS

Procedia PDF Downloads 56
3200 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification

Procedia PDF Downloads 266
3199 Inhibition of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium Tuberculosis Using High Throughput Virtual Screening and Molecular Dynamics Studies

Authors: Christy Rosaline, Rathankar Roa, Waheeta Hopper

Abstract:

Persistence of tuberculosis, emergence of multidrug-resistance and extensively drug-resistant forms of the disease, has increased the interest in developing new antitubercular drugs. Developing inhibitors for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis (MtbDAH7Ps), an enzyme involved in shikimate pathway, gives a selective target for antitubercular agents. MtbDAH7Ps was screened against ZINC database, and shortlisted compounds were subjected to induce fit docking. Prime/Molecular Mechanics Generalized Born Surface Area calculation was used to validate the binding energy of ligand-protein complex. Molecular Dynamics analysis for of the lead compounds–MtbDAH7Ps complexes showed that the backbone of MtbDAH7Ps in their complexes were stable. These results suggest that the shortlisted lead compounds ZINC04097114, ZINC15163225, ZINC16857013, ZINC06275603, and ZINC05331260 could be developed into novel drug leads to inhibit DAH7Ps in Mycobacterium tuberculosis.

Keywords: MtbDAH7Ps, Mycobacterium tuberculosis, HTVS, molecular dynamics

Procedia PDF Downloads 160
3198 Amyloid-β Fibrils Remodeling by an Organic Molecule: Insight from All-Atomic Molecular Dynamics Simulations

Authors: Nikhil Agrawal, Adam A. Skelton

Abstract:

Alzheimer’s disease (AD) is one of the most common forms of dementia, which is caused by misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid-β fibrils (Aβ fibrils). To disrupt the remodeling of Aβ fibrils, a number of candidate molecules have been proposed. To study the molecular mechanisms of Aβ fibrils remodeling we performed a series of all-atom molecular dynamics simulations, a total time of 3µs, in explicit solvent. Several previously undiscovered candidate molecule-Aβ fibrils binding modes are unraveled; one of which shows the direct conformational change of the Aβ fibril by understanding the physicochemical factors responsible for binding and subsequent remodeling of Aβ fibrils by the candidate molecule, open avenues into structure-based drug design for AD can be opened.

Keywords: alzheimer’s disease, amyloid, MD simulations, misfolded protein

Procedia PDF Downloads 329
3197 Advances in Sesame Molecular Breeding: A Comprehensive Review

Authors: Micheale Yifter Weldemichael

Abstract:

Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.

Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering

Procedia PDF Downloads 15
3196 Benefits of High Power Impulse Magnetron Sputtering (HiPIMS) Method for Preparation of Transparent Indium Gallium Zinc Oxide (IGZO) Thin Films

Authors: Pavel Baroch, Jiri Rezek, Michal Prochazka, Tomas Kozak, Jiri Houska

Abstract:

Transparent semiconducting amorphous IGZO films have attracted great attention due to their excellent electrical properties and possible utilization in thin film transistors or in photovoltaic applications as they show 20-50 times higher mobility than that of amorphous silicon. It is also known that the properties of IGZO films are highly sensitive to process parameters, especially to oxygen partial pressure. In this study we have focused on the comparison of properties of transparent semiconducting amorphous indium gallium zinc oxide (IGZO) thin films prepared by conventional sputtering methods and those prepared by high power impulse magnetron sputtering (HiPIMS) method. Furthermore we tried to optimize electrical and optical properties of the IGZO thin films and to investigate possibility to apply these coatings on thermally sensitive flexible substrates. We employed dc, pulsed dc, mid frequency sine wave and HiPIMS power supplies for magnetron deposition. Magnetrons were equipped with sintered ceramic InGaZnO targets. As oxygen vacancies are considered to be the main source of the carriers in IGZO films, it is expected that with the increase of oxygen partial pressure number of oxygen vacancies decreases which results in the increase of film resistivity. Therefore in all experiments we focused on the effect of oxygen partial pressure, discharge power and pulsed power mode on the electrical, optical and mechanical properties of IGZO thin films and also on the thermal load deposited to the substrate. As expected, we have observed a very fast transition between low- and high-resistivity films depending on oxygen partial pressure when deposition using conventional sputtering methods/power supplies have been utilized. Therefore we established and utilized HiPIMS sputtering system for enlargement of operation window for better control of IGZO thin film properties. It is shown that with this system we are able to effectively eliminate steep transition between low and high resistivity films exhibited by DC mode of sputtering and the electrical resistivity can be effectively controlled in the wide resistivity range of 10-² to 10⁵ Ω.cm. The highest mobility of charge carriers (up to 50 cm2/V.s) was obtained at very low oxygen partial pressures. Utilization of HiPIMS also led to significant decrease in thermal load deposited to the substrate which is beneficial for deposition on the thermally sensitive and flexible polymer substrates. Deposition rate as a function of discharge power and oxygen partial pressure was also systematically investigated and the results from optical, electrical and structure analysis will be discussed in detail. Most important result which we have obtained demonstrates almost linear control of IGZO thin films resistivity with increasing of oxygen partial pressure utilizing HiPIMS mode of sputtering and highly transparent films with low resistivity were prepared already at low pO2. It was also found that utilization of HiPIMS technique resulted in significant improvement of surface smoothness in reactive mode of sputtering (with increasing of oxygen partial pressure).

Keywords: charge carrier mobility, HiPIMS, IGZO, resistivity

Procedia PDF Downloads 281
3195 Capnography for Detection of Return of Spontaneous Circulation Pseudo-Pea

Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis

Abstract:

Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) is a reliable indicator of the return of spontaneous circulation (ROSC) in ventricular fibrillation and true-PEA but has not been studied p-PEA. Hypothesis: ET-CO2 can be used as an independent indicator of ROSC in p-PEA resuscitation. Methods: 30kg female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic Ao less than 40 mmHg. The statistical relationships between ET-CO2 and ROSC are reported. Results: ET-CO2 during resuscitation strongly correlated with ROSC (Figure 1). Mean ET-CO2 during p-PEA was 28.4 ± 8.4, while mean ET-CO2 in ROSC for 100% O2 cohort was 42.2 ± 12.6 (p < 0.0001), mean ET-CO2 in ROSC for 100% O2 + CPR was 33.0 ± 15.4 (p < 0.0001). Analysis of slope was limited to one minute of resuscitation data to capture local linearity; assessment began 10 seconds after resuscitation started to allow the ventilator to mix 100% O2. Pigs who would recover with 100% O2 had a slope of 0.023 ± 0.001, oxygen + CPR had a slope of 0.018 ± 0.002, and oxygen + CPR + epinephrine had a slope of 0.0050 ± 0.0009. Conclusions: During resuscitation from porcine hypoxic p-PEA, a rise in ET-CO2 is indicative of ROSC.

Keywords: ET-CO2, resuscitation, capnography, pseudo-PEA

Procedia PDF Downloads 178
3194 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement

Authors: Chien-Song Chyang

Abstract:

For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.

Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle

Procedia PDF Downloads 170