Amyloid-β Fibrils Remodeling by an Organic Molecule: Insight from All-Atomic Molecular Dynamics Simulations

Authors : Nikhil Agrawal, Adam A. Skelton

Abstract : Alzheimer's disease (AD) is one of the most common forms of dementia, which is caused by misfolding and aggregation of amyloid beta (A β) peptides into amyloid- β fibrils (A β fibrils). To disrupt the remodeling of A β fibrils, a number of candidate molecules have been proposed. To study the molecular mechanisms of A β fibrils remodeling we performed a series of all-atom molecular dynamics simulations, a total time of 3 μ s, in explicit solvent. Several previously undiscovered candidate molecule-A β fibrils binding modes are unraveled; one of which shows the direct conformational change of the A β fibril by understanding the physicochemical factors responsible for binding and subsequent remodeling of A β fibrils by the candidate molecule, open avenues into structure-based drug design for AD can be opened.

Keywords : alzheimer's disease, amyloid, MD simulations, misfolded protein

Conference Title : ICBMB 2016 : International Conference on Bioinformatics and Molecular Biology

Conference Location : Paris, France

Conference Dates : June 20-21, 2016