Search results for: design process
24621 The Studies of the Impact of Biomimicry and Sustainability on Urban Design
Authors: Nourhane Mohamed El Haridi, Mostafa El Arabi, Zeyad El Sayad
Abstract:
Biomimicry is defined, by Benyus the natural sciences writer, as imitating or taking inspiration from nature’s forms and processes to solve human problems. Biomimicry is the conscious emulation of life’s genius. As the design community realizes the tremendous impact human constructions have on the world, environmental designers look to new approaches like biomimicry to advance sustainable design. Building leading the declaration made by biomimicry scientists that a full imitation of nature engages form, ecosystem, and process; this paper uses a logic approach to interpret human and environmental wholeness. Designers would benefit from both integrating social theory with environmental thinking and from combining their substantive skills with techniques for getting sustainable biomimic urban design. Integrating biomimicryʹs “Life’s Principles” into a built environment process model will make biomimicry more accessible and thus more widely accepted throughout the industry, and the sustainability of all species will benefit. The Biomimicry Guild hypothesizes the incorporation of these principles, called Lifeʹs Principles, increase the likelihood of sustainability for a respective design, and make it more likely that the design will have a greater impact on sustainability for future generations of all species as mentioned by Benyus in her book. This thesis utilizes Life’s Principles as a foundation for a design process model intended for application on built environment projects at various scales. This paper takes a look at the importance of the integration of biomimicry in urban design to get more sustainable cities and better life, by analyzing the principles of both sustainability and biomimicry, and applying these ideas on futuristic or existing cities to make a biomimic sustainable city more healthier and more conductive to life, and get a better biomimic urban design. A group of experts, architects, biologists, scientists, economists and ecologists should work together to face all the financial and designing difficulties, to have better solutions and good innovative ideas for biomimic sustainable urban design, it is not the only solution, but it is one of the best studies for a better future.Keywords: biomimicry, built environment, sustainability, urban design
Procedia PDF Downloads 52224620 Vibration Analysis and Optimization Design of Ultrasonic Horn
Authors: Kuen Ming Shu, Ren Kai Ho
Abstract:
Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration
Procedia PDF Downloads 11524619 The Tramway in French Cities: Complication of Public Spaces and Complexity of the Design Process
Authors: Elisa Maître
Abstract:
The redeployment of tram networks in French cities has considerably modified public spaces and the way citizens use them. Above and beyond the image that trams have of contributing to the sustainable urban development, the question of safety for users in these spaces has not been studied much. This study is based on an analysis of use of public spaces laid out for trams, from the standpoint of legibility and safety concerns. The study also examines to what extent the complexity of the design process, with many interactions between numerous and varied players in this process has a role in the genesis of these problems. This work is mainly based on the analysis of links between the uses of these re-designed public spaces (through observations, interviews of users and accident studies) and the analysis of the design conditions and processes of the projects studied (mainly based on interviews with the actors of these projects). Practical analyses were based three points of view: that of the planner, that of the user (based on observations and interviews) and that of the road safety expert. The cities of Montpellier, Marseille and Nice are the three fields of study on which the demonstration of this thesis is based. On part, the results of this study allow showing that the insertion of tram poses some problems complication of public areas of French cities. These complications related to the restructuring of public spaces for the tram, create difficulties of use and safety concerns. On the other hand, interviews depth analyses, fully transcribed, have led us to develop particular dysfunction scenarios in the design process. These elements lead to question the way the legibility and safety of these new forms of public spaces are taken into account. Then, an in-depth analysis of the design processes of public spaces with trams systems would also be a way of better understanding the choices made, the compromises accepted, and the conflicts and constraints at work, weighing on the layout of these spaces. The results presented concerning the impact that spaces laid out for trams have on the difficulty of use, suggest different possibilities for improving the way in which safety for all users is taken into account in designing public spaces.Keywords: public spaces, road layout, users, design process of urban projects
Procedia PDF Downloads 22924618 Influence of Decolourisation Condition on the Physicochemical Properties of Shea (Vitellaria paradoxa Gaertner F) Butter
Authors: Ahmed Mohammed Mohagir, Ahmat-Charfadine Mahamat, Nde Divine Bup, Richard Kamga, César Kapseu
Abstract:
In this investigation, kinetics studies of adsorption of colour material of shea butter showed a peak at the wavelength 440 nm and the equilibrium time was found to be 30 min. Response surface methodology applying Doehlert experimental design was used to investigate decolourisation parameters of crude shea butter. The decolourisation process was significantly influenced by three independent parameters: contact time, decolourisation temperature and adsorbent dose. The responses of the process were oil loss, acid value, peroxide value and colour index. Response surface plots were successfully made to visualise the effect of the independent parameters on the responses of the process.Keywords: decolourisation, doehlert experimental design, physicochemical characterisation, RSM, shea butter
Procedia PDF Downloads 41424617 Colors and Interiority - A Study on the Relationship of Colors and Interior Spaces
Authors: Mahwish Ghulam Rasool
Abstract:
The design of a space is a complex process that involves multiple stages, from conceptualization, identifying design problems to understanding the context, materiality, and functionality of the space. Out of all the design elements, color is one of the most dominant and expressive factors that affect the spatial dynamics of the interior space. Color affects aesthetic comfort in space and has a lasting impact on human perception and psychology. Using color as a tool for creating spatial experiences is a new paradigm. Color semantics in spaces are not only used for surface treatment or aesthetics, but it also has more powerful functional characteristics. As interior spaces are evolving and becoming experiential with each decade, designers are looking for new processes to enhance the spatial and experiential quality of interior spaces. The relationship between color and interior typologies is a relatively new paradigm. This paper discusses the role of colors in interior spaces from various perspectives, exploring their impact on the formation of interior typologies and the use of colors in space design. The paper analyzes interior typologies worldwide, from residential to commercial interior spaces, where color semantics plays a prominent role in the design. The paper also emphasizes the design process and the creation of design language, unveiling the possibilities of applying colors in interior spaces that can be in harmony with the building context, space functionality, or in opposition to the existing building envelope or environment. The paper aims to contribute to the field of interior design education and practices. By using experimental and various research methodologies for investigation, it aims to fill the gap in the literature regarding color semantics and the relationship between interior typologies.Keywords: color psychology, color semantics, interior environments, interior typologies
Procedia PDF Downloads 8624616 An Investigation into the Use of an Atomistic, Hermeneutic, Holistic Approach in Education Relating to the Architectural Design Process
Authors: N. Pritchard
Abstract:
Within architectural education, students arrive fore-armed with; their life-experience; knowledge gained from subject-based learning; their brains and more specifically their imaginations. The learning-by-doing that they embark on in studio-based/project-based learning calls for supervision that allows the student to proactively undertake research and experimentation with design solution possibilities. The degree to which this supervision includes direction is subject to debate and differing opinion. It can be argued that if the student is to learn-by-doing, then design decision making within the design process needs to be instigated and owned by the student so that they have the ability to personally reflect on and evaluate those decisions. Within this premise lies the problem that the student's endeavours can become unstructured and unfocused as they work their way into a new and complex activity. A resultant weakness can be that the design activity is compartmented and not holistic or comprehensive, and therefore, the student's reflections are consequently impoverished in terms of providing a positive, informative feedback loop. The construct proffered in this paper is that a supportive 'armature' or 'Heuristic-Framework' can be developed that facilitates a holistic approach and reflective learning. The normal explorations of architectural design comprise: Analysing the site and context, reviewing building precedents, assimilating the briefing information. However, the student can still be compromised by 'not knowing what they need to know'. The long-serving triad 'Firmness, Commodity and Delight' provides a broad-brush framework of considerations to explore and integrate into good design. If this were further atomised in subdivision formed from the disparate aspects of architectural design that need to be considered within the design process, then the student could sieve through the facts more methodically and reflectively in terms of considering their interrelationship conflict and alliances. The words facts and sieve hold the acronym of the aspects that form the Heuristic-Framework: Function, Aesthetics, Context, Tectonics, Spatial, Servicing, Infrastructure, Environmental, Value and Ecological issues. The Heuristic could be used as a Hermeneutic Model with each aspect of design being focused on and considered in abstraction and then considered in its relation to other aspect and the design proposal as a whole. Importantly, the heuristic could be used as a method for gathering information and enhancing the design brief. The more poetic, mysterious, intuitive, unconscious processes should still be able to occur for the student. The Heuristic-Framework should not be seen as comprehensive prescriptive formulaic or inhibiting to the wide exploration of possibilities and solutions within the architectural design process.Keywords: atomistic, hermeneutic, holistic, approach architectural design studio education
Procedia PDF Downloads 25924615 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 25524614 A Full Factorial Analysis of Microhardness Variation in Bead Welds Deposited by the Process Cold Wire Gas Metal Arc Welding (CW-GMAW)
Authors: R. A. Ribeiro, P. D. Angelo Assunção, E. M. Braga
Abstract:
The microhardness in weld beads is a function of the microstructure obtained in the welding process, and this by its time is dependent of the input variables established at the outset of the process. In this study the influence of angle between the plate and the cold wire, the position in which the cold wire is introduced and the rate in which this introduction is made are assessed as input parameters in CW-GMAW process. This paper looks to show that ordinary changes in the frame of CW-GMAW can improve microhardness, which is expected to vary as the input parameters change. To properly correlate the changes in the input parameters to consequent changes in microhardness of the weld bead, a full factorial design was employed. In fact, changes in the operational parameters improved the overall microhardness of the weld bead, which in turns can be an indication of improvement in the resistance to abrasive wear, constituting a cheap way to augment the abrasion wear resistance of welds used for cladding.Keywords: abrasion, CW-GMAW, full factorial design, microhardness
Procedia PDF Downloads 54624613 Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method
Authors: Kefaifi Aissa, Sahraoui Tahar, Kheloufi Abdelkrim, Anas Sabiha, Hannane Farouk
Abstract:
The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement.Keywords: acid leaching, design of experiments method(DOE), purity silica, silica etching
Procedia PDF Downloads 28524612 Virtual Reality Tilt Brush for Creativity: An Experimental Study among Architecture Students
Authors: Christena Stephen, Biju Kunnumpurath
Abstract:
This study intends to comprehend the effect of the Tilt Brush (TB) Virtual Reality 3D Painting application on creativity among final year architecture students. The research was done over the course of 30 hours and evaluated the performance of a group of 20 university students. Using a Structured Observation Form (SOF), the researcher assessed the research's progress. Four recently graduated artists, educators, and researchers used a Rubric to assess student designs. During the training, the study group was instructed in the fundamentals of virtual Reality, design principles, and TB. The design process, which began with the construction of a 3D design, progressed with the addition of texture, color, and script to items and culminated in the creation of a finished project. The group in the design process is rated as "Good" by the researcher based on feedback from SOF. The creativity evaluation rubric used by the experts rates their work as "Accomplished." According to the researcher's assessment, the group received a "Good" rating. Based on these findings, it can be said that including virtual reality 3D painting in the curriculum for art and design classes will help students improve their imagination and creativity as well as their 21st-century skills in education.Keywords: creativity, virtual reality, 3D painting, tilt brush, education
Procedia PDF Downloads 8724611 Optimization of Hemp Fiber Reinforced Concrete for Various Environmental Conditions
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. Hemp fibers were obtained from the manufacturer and hand-processed to ensure uniformity in width and length. The fibers were added to the concrete as both wet and dry mixes to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375, indicating a variation in the mixing process. While completing the dry mix, the addition of plain hemp fibers caused them to intertwine, creating lumps and inconsistency. However, during the wet mixing process, combining water and hemp fibers before incorporation allows the fibers to uniformly disperse within the mix; hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes; however, more research surrounding its characteristics needs to be conducted.Keywords: hemp fibers, hemp reinforced concrete, wet & dry, freeze thaw testing, compressive strength
Procedia PDF Downloads 19724610 Open Distance Learning and Curriculum Transformation: Linkages, Alignment, and Innovation
Authors: Devanandan Govender
Abstract:
Curriculum design and development in higher education is a complex and challenging process. Amongst others, the extent to which higher education curriculum responds to a country's imperatives, industry requirements, and societal demands are some important considerations. Added to this is the whole notion of sustainable development, climate change and in the South African context the issue of ‘Africanising the curriculum’ is also significant. In this paper, the author describes and analyses the various challenges related to curriculum transformation, design and development within an ODL context and how we at Unisa engage and address curriculum transformation in mainstream curriculum design and development both at course design level and programme/ qualification level.Keywords: curriculum transformation, curriculum creep, curriculum drift, curriculum mapping
Procedia PDF Downloads 37424609 Prefabricated Integral Design of Building Services
Authors: Mina Mortazavi
Abstract:
The common approach in the construction industry for restraint requirements in existing structures or new constructions is to have Non-Structural Components (NSCs) assembled and installed on-site by different MEP subcontractors. This leads to a lack of coordination and higher costs, construction time, and complications due to inaccurate building information modelling (BIM) systems. Introducing NSCs to a consistent BIM system from the beginning of the design process and considering their seismic loads in the analysis and design process can improve coordination and reduce costs and time. One solution is to use prefabricated mounts with attached MEPs delivered as an integral module. This eliminates the majority of coordination complications and reduces design and installation costs and time. An advanced approach is to have as many NSCs as possible installed in the same prefabricated module, which gives the structural engineer the opportunity to consider the involved component weights and locations in the analysis and design of the prefabricated support. This efficient approach eliminates coordination and access issues, leading to enhanced quality control. This research will focus on the existing literature on modular sub-assemblies that are integrated with architectural and structural components. Modular MEP systems take advantage of the precision provided by BIM tools to meet exact requirements and achieve a buildable design every time. Modular installations that include MEP systems provide efficient solutions for the installation of MEP services or components.Keywords: building services, modularisation, prefabrication, integral building design
Procedia PDF Downloads 7024608 Product Architecture and Production Process of Battery Modules from Prismatic Lithium-Ion-Battery Cells
Authors: Achim Kampker, Heiner Hans Heimes, Nemanja Sarovic, Jan-Philip Ganser, Saskia Wessel, Christoph Lienemann
Abstract:
The electrification of the power train is a fundamental technical transition in the automotive industry and poses a major challenge for established car companies. Providing the traction energy, requiring an ever greater amount of space within the car and having a high share of value-add the lithium-ion battery is a central component of the electric power train and a completely new component to car manufacturers at the same time. Being relatively new to the automotive industry, the current design of the product architecture and production process (including manufacturing and assembling processes) of lithium-ion battery modules do not allow for an easy and cost-efficient disassembly or product design change. Yet these two requirements will increase in importance with rising sales volumes of electric cars in the near future and need to be addressed for the electric car to be competitive with conventional power train systems. This paper focuses on the current product architecture and production process of common automotive battery modules from prismatic lithium-ion battery cells to derive impacts for a remanufacturing concept. The information necessary for this purpose were gathered by literature research, patent inquiries, industry expert interviews and first-hand experiences of the authors. On the basis of these results, the underlying causes for the design´s lack of remanufacturability and flexibility with regards to product design changes are examined. In all, this paper gives an extensive and detailed overview of the state of the art of the product architecture and production process of lithium-ion battery modules from prismatic battery cells, identifies its deficiencies and derives improvement measures.Keywords: battery module, prismatic lithium-ion battery cell, product architecture, production process, remanufacturing, flexibility
Procedia PDF Downloads 26724607 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization
Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler
Abstract:
In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE
Procedia PDF Downloads 7524606 Search for New Design Elements in Time-Honoured Shops in Tainan — On Curriculum Practice about Culture Creative Industry
Authors: Ya-Ling Huang, Ming-Chun Tsai, Fan Hsu, Kai-Ru Hsieh
Abstract:
This paper mainly discusses the research and practice process of a laboratory curriculum by leading students to perform field investigation into time-honoured shops that have existed for more than 50 years in the downtown area of Tainan, Taiwan, and then search again for design elements and completing the design. The participants are juniors from the Department of Visual Communication Design, Kun Shan University. The duration of research and practice is two months. Operators of these shops are invited to jointly appraise the final achievements. 9 works out of 27 are chosen for final exhibition and commercialization.Keywords: culture creative industry, visual communication design, curriculum experimental, visual arts
Procedia PDF Downloads 35324605 The Design and Development of Foot Massage Plate from Coconut Shell
Authors: Chananchida Yuktirat, Nichanant Sermsri
Abstract:
The objectives of this research were to design and develop foot massage plate from coconut shell. The research investigated on the satisfaction of the users on the developed foot massage plate on 4 aspects; usage, practical in use, safety, and materials & production process. The sample group included 64 people joining the service at Wat Paitan Health Center, Bangkok. The samples were randomly tried on the massage plate and evaluated according to the 4 aspects. The data were analyzed to find mean, percentage, and standard deviation. The result showed that the overall satisfaction was at good level (mean = 3.80). When considering in details, it was found that the subjects reported their highest satisfaction on the practical usage (mean = 4.16), followed by safety (mean = 3.82); then, materials and production process (mean = 3.78). The least satisfaction aspect was on function and usage (mean = 3.45) or moderate level.Keywords: coconut shell, design, foot massage, foot massage plate
Procedia PDF Downloads 23924604 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution
Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino
Abstract:
This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization
Procedia PDF Downloads 13624603 Design Channel Non Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC
Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa
Abstract:
This paper presents Carrier Sense Multiple Access (CSMA) communication model based on SoC design methodology. Such model can be used to support the modelling of the complex wireless communication systems, therefore use of such communication model is an important technique in the construction of high performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).Keywords: systemC, modelling, simulation, CSMA
Procedia PDF Downloads 42624602 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 52324601 Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation
Authors: Muhaned Zaidi, Ian Grout, Abu Khari bin A’ain
Abstract:
In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process.Keywords: op-amp, rail-to-rail output, Miller compensation, Negative Miller capacitance
Procedia PDF Downloads 33824600 Effect of Process Parameters on Mechanical Properties of Friction Stir Welded Aluminium Alloy Joints Using Factorial Design
Authors: Gurjinder Singh, Ankur Gill, Amardeep Singh Kang
Abstract:
In the present work an effort has been made to study the influence of the welding parameters on tensile strength of friction stir welding of aluminum. Three process parameters tool rotation speed, welding speed, and shoulder diameter were selected for the study. Two level factorial design of eight runs was selected for conducting the experiments. The mathematical model was developed from the data obtained. The significance of coefficients and adequacy of developed models were tested by ‘t’ test and ‘F’ test respectively. The effects of process parameters on mechanical properties have been represented in the form of graphs for better understanding.Keywords: friction stir welding, aluminium alloy, mathematical model, welding speed
Procedia PDF Downloads 43924599 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach
Authors: Ali Akbar Heydari
Abstract:
Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter
Procedia PDF Downloads 15424598 Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids
Authors: Rafael Oliveira Santos, Luciano Pessanha Moreira, Marcelo Costa Cardoso
Abstract:
Spacer grid assembly supporting the nuclear fuel rods is an important concern in the design of structural components of a Pressurized Water Reactor (PWR). The spacer grid is composed by springs and dimples which are formed from a strip sheet by means of blanking and stamping processes. In this paper, the blanking process and tooling parameters are evaluated by means of a 2D plane-strain finite element model in order to evaluate the punch load and quality of the sheared edges of Inconel 718 strips used for nuclear spacer grids. A 3D finite element model is also proposed to predict the tooling loads resulting from the stamping process of a preformed Inconel 718 strip and to analyse the residual stress effects upon the spring and dimple design geometries of a nuclear spacer grid.Keywords: blanking process, damage model, finite element modelling, inconel 718, spacer grids, stamping process
Procedia PDF Downloads 34324597 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (Rsm)
Authors: Salem Alsanusi, Loubna Bentaher
Abstract:
Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarse-aggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.Keywords: mix proportioning, response surface methodology, compressive strength, optimal design
Procedia PDF Downloads 26624596 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering
Authors: Z. Soleymani, M. Amirzadeh
Abstract:
Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.Keywords: customer voice, engineering parameters, gear pump, QFD
Procedia PDF Downloads 24824595 Enhancement of Visual Comfort Using Parametric Double Skin Façade
Authors: Ahmed A. Khamis, Sherif A. Ibrahim, Mahmoud El Khatieb, Mohamed A. Barakat
Abstract:
Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabricationKeywords: parametric design, double skin facades, digital fabrication, grasshopper, simplify 3D
Procedia PDF Downloads 11724594 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation
Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma
Abstract:
The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation
Procedia PDF Downloads 50624593 Design of the Fiber Lay-Up for the Composite Wind Turbine Blade in VARTM
Authors: Tzai-Shiung Li, Wen-Bin Young
Abstract:
The wind turbine blade sustains various kinds of loadings during the operating and parking state. Due to the increasing size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. In the fabrication process of the vacuum assisted resin transfer molding, the fiber content of the turbine blade depends on the vacuum pressure. In this study, a design of the fiber layup for the vacuum assisted resin transfer molding is conducted to achieve the efficient utilization the material strength. This design is for the wind turbine blade consisting of shell skins with or without the spar structure.Keywords: resin film infiltration, vacuum assisted resin transfer molding process, wind turbine blade, composite materials
Procedia PDF Downloads 38124592 Evolution of Fashion Design in the Era of High-Tech Culture
Authors: Galina Mihaleva, C. Koh
Abstract:
Fashion, like many other design fields, undergoes numerous evolutions throughout the ages. This paper aims to recognize and evaluate the significance of advance technology in fashion design and examine how it changes the role of modern fashion designers by modifying the creation process. It also touches on how modern culture is involved in such developments and how it affects fashion design in terms of conceptualizing and fabrication. The methodology used is through surveying the various examples of technological applications to fashion design and drawing parallels between what was achievable then and what is achievable now. By comparing case studies, existing fashion design examples and crafting method experimentations; we then spot patterns in which to predict the direction of future developments in the field. A breakdown on the elements of technology in fashion design helps us understand the driving force behind such a trend. The results from explorations in the paper have shown that there is an observed pattern of a distinct increase in interest and progress in the field of fashion technology, which leads to the birth of hybrid crafting methods. In conclusion, it is shown that as fashion technology continues to evolve, their role in clothing crafting becomes more prominent and grows far beyond the humble sewing machine.Keywords: fashion design, functional aesthetics, smart textiles, 3D printing
Procedia PDF Downloads 409