Search results for: Grey Wolf optimizer
116 The Contribution Study of Multi-component Thermal Fluid Enhancement in Offshore Medium and Deep Heavy Oilfields
Authors: Tao Lin, Hongzhi Song, Zhongtao Yuan, Shanshan Lin, Chunyue Tong
Abstract:
Offshore heavy oil in the production of thick oil fields, old wells of low production and low efficiency are mainly caused by plugging, heavy oil, insufficient stratigraphic energy, etc., the use of heat - gas - chemical and other composite production enhancement role, can be better to achieve the purpose of unblocking and increase the efficiency of the production. Through indoor physical simulation experiments, comprehensive grey correlation analysis, combined with theoretical methods to analyze the composite production enhancement effect of heat-gas-chemical and other factors was in the order of heat>gas>chemical agent; and quantitative analysis of the data shows that the contribution of heat is the highest in the range of 68.5%-82.8%, the gas role in the range of 9.3%-11.3%, and the contribution of the chemical agent in the range of 6.0%-22.2%. Combined with indoor physical simulation experiments and reservoir engineering calculations, it shows that the production capacity is restored and increased by about 50%, and numerical simulation calculations show that the cumulative increase in production by using thermal-gas-chemical decongestion process measures can be up to 40%. Through the optimization of this kind of compound production enhancement technology, it can meet the requirements of original production string operation, and this technology has the advantages of short, flat and fast operation and has good application prospects.Keywords: MCTF, old heavy oil wells, low production and low efficiency, immobile tubular column, composite production increase
Procedia PDF Downloads 10115 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios
Authors: S. Sakthivel
Abstract:
Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer
Procedia PDF Downloads 143114 Representations of Wolves (Canis lupus) in Feature Films: The Detailed Analysis of the Text and Picture in the Chosen Movies
Authors: Barbara Klimek
Abstract:
Wolves are one of the most misrepresented species in literature and the media. They’re often portrayed as vicious, man-eating beasts whose main life goal is to hunt and kill people. Many movie directors use wolves as their main characters in different types of films, especially horror, thriller and science fiction movies to create gore and fear. This, in turn, results in people being afraid of wolves and wanting to destroy them. Such cultural creations caused wolves being stalked, abused and killed by people and in many areas they were completely destroyed. This paper analyzes the representations of wolves in the chosen films in the four main portrayed aspects: 1. the overall picture – true versus false, positive versus negative, based on stereotypes or realistic, displaying wolf behavior typical of the species or fake 2. subjectivity – how humans treat and talk about the animals – as subjects or as objects 3. animal welfare – how humans treat wolves and nature, are the human – animal relations positive and appropriate or negative and abusive 4. empathy – are human characters shown to co-feel the suffering with the wolves, do they display signs of empathy towards the animals, do the animals empathize with humans? The detailed analysis of the text and pictures presented in the chosen films concludes that wolves are especially misrepresented in the movies. Their behavior is shown as fake and negative, based on stereotypes and myths, the human – animal relations are shown mainly as negative where people fear the animals and hunt them and wolves stalk, follow, attack and kill humans. It shows that people do not understand the needs of these animals and are unable to show empathy towards them. The article will discuss the above-mentioned study results in detail and will present many examples. Animal representations in cultural creations, including film have a great impact on how people treat particular species of animals. The media shape people’s attitudes, what in turn results in people either respecting and protecting the animals or fearing, disliking and destroying the particular species.Keywords: film, movies, representations, wolves
Procedia PDF Downloads 216113 Assessment of Population Trends of Birds at Taunsa Barrage Wildlife Sanctuary, Pakistan
Authors: Fehmeada Bibi, Shafqat Nawaz Qaisrani, Masood Akhtar, Zulfiqar Ali
Abstract:
Population trends learning is an important tool for conservation programs in rare as well as in common species of birds. A study was conducted to assess annual decline in species of birds and to identify the causes of this decline at Taunsa Barrage wildlife Sanctuary, Punjab, Pakistan. Data were collected by direct census method during wintering and breeding periods (2001 to 2002 and 2008 to 2011). The results indicated an increasing trend in 157, whereas a decreasing trend in 14 species of birds. Among the species with declining trend, there was a 92% decrease in White-backed Vulture (Gyps bengalensis), 60% in Greater Painted Snipe (Rostratula benghalensis), 57% in Garganey (Anas querquedula), Pallas’s Fish Eagle and Long-legged Buzzard (Buteo rufinus) 50% each, 41% in Grey Heron (Ardea cinerea), 39% in Little Cormorant (Phalacrocorax niger), 37% in Gadwall (Anas strepera), 33% in Marsh Harrier (Circus aeruginosus), 30% in Black Drongo (Dicrurus macrocercus) and 26% in Red-crested Pochard (Netta rufina) population. Habitat exploitation, hunting and grazing were found the main causes of this decline. In conclusion, conservation and management of the study area is foremost to interests of declining bird population. It is suggested, therefore, to take immediate steps for the protection of the sanctuary to conserve the declining population of birds.Keywords: population trends, wildlife sanctuary, bird, habitat exploitation
Procedia PDF Downloads 276112 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 112111 Securitizing Terrorism: A Critical Appraisal of Pakistan’s Counter-Terrorism Approach
Authors: Bilal Zubair
Abstract:
In a constantly challenging internal security environment, Pakistan is making ways to improvise and respond to the new variations in the pervasive phenomenon of terrorism. The state’s endeavors towards securitizing terrorism as an existential threat are both extensive and intensive which have systematically incorporated both military and non-military means. Since 2007, the military has been conducting intermittent operations and by 2014 has successfully neutralized the terrorist ability to target vital security installations and security personal. The terrorists have responded by targeting communities which are soft targets and extremely vulnerable to organized assaults. Within this context, the study aims to explain the emerging trends of terrorism in Pakistan, which multi-layered and complex developments are having far-reaching implications for state and society. With a view to explore the underlining reasons, present trends and ensuing ramifications of the emerging trends in terrorism, this study would examine the following: First, the historical processes and development of Terrorism in Pakistan; secondly the processes of securitization which include political consensus, legal frameworks and military operations against the terrorist groups; thirdly , the socio-cultural dimensions and geopolitical influences on the transforming nature of sectarian terrorism. The study will also highlight the grey areas and weak links in the ongoing securitization process. Finally, the study will thoroughly explore the societal insecurity which is manifested in internal displacements, identity crisis and weakening the socio-political fabric of the state.Keywords: counter-terrorism, terrorism, sectarianism, securitizing
Procedia PDF Downloads 299110 The Boy Who Cried Wolf-North Korea Nuclear Test and Its Implication to the Regional Stability
Authors: Mark Wenyi Lai
Abstract:
The very lethal weapon of nuclear warhead had threatened the survival of the world for half of the 20th century. When most of the countries have already denounced and stopped the development, one country is eager to produce and use them. Since 2006, Pyongyang has launched six times of nuclear tests. The most recent one in September 2017 signaled North Korea’s military capability to project the mass destruction through ICBM (Intercontinental Ballistic Missile) over Seoul, Tokyo, Guam, Hawaii, Alaska or probably the West Coast of the United States with the explosive energy ten times of the atom bombing of Hiroshima in 1945. This research paper adopted time-series content analysis focusing on the related countries responses to North Korea’s tests in 2006, 2009, 2013, and 2016. The preliminary hypotheses are first, North Korea determined to protect the regime by having triad nuclear capability. Negotiations are mere means to this end. Second, South Korea is paralyzed by its ineffective domestic politics and unable to develop its independent strategy toward the North. Third, Japan was using the external threat to campaign for its rearmament plan and brought instability in foreign relations. Fourth, China found herself in the strange position of defending the loyal buffer state meanwhile witnessing the fourth and dangerous neighboring country gaining the card into nuclear club. Fifth, the United States had admitted that North Korea’s going nuclear is unstoppable. Therefore, to keep the regional stability in the East Asia, the US relied on the new balance of power formed by everyone versus Pyongyang. But, countries in East Asia actually have problems getting along with each other. Sixth, Russia distanced herself from the North Kore row but benefitted by advancing its strategic importance in the Far East. Tracing back the history of nuclear states, this research paper concluded that North Korea will head on becoming a more confident country. The regional stability will restore once related countries deal with the new fact and treat Pyongyang regime with a new strategy. The gradual opening and economic reform are on the way for the North Korea in the near future.Keywords: nuclear test, North Korea, six party talk, US foreign policy
Procedia PDF Downloads 282109 Pathological Observations of Intestinal Coccidiosis in Camel (Camelus dromedarius)
Authors: Abhilasha Dadhich, Manisha Mathur, Sanjay Kumar, Hemant Dadhich
Abstract:
The camel (Camelus dromedarius) is an important animal component of the fragile desert eco-system of India. Apart from others, impaired milk and meat production decrease in performance and even death are some of the major consequences of parasitic disease like coccidiosis in camel. Coccidiosis which is an acute invasion and destruction of intestinal mucosa by protozoa of the genera Eimeria or isospora spp. Post-Mortem examinations of 5 carcasses of dromedary of different age groups aged from 2 to 5 years were conducted. The history indicated that the camels were suffering from diarrhoea, dysentery, pyrexia, inappetence, weight loss, and emaciation. Post mortem examinations showed macroscopic and microscopic alterations in the small intestine, particularly in jejunum and ileum regions. The mucosae were congested, and haemorrhagic on which there were numerous whitish-grey nodular foci were observed. The affected intestinal tissue specimens were preserved in 10% formal saline and processed mechanically for paraffin embedding by acetone and benzene technique. The sections were stained with haematoxylin and eosin method of staining for histopathological examinations. Histologically, typical lesions such as congestion and haemorrhages were present. The intestinal villi were oedematous; mucosa degenerated and desquamated, along with infiltration of eosinophils and macrophages. Crypts of lieberkuhn were obliterated due to presence of schizonts in lamina propria. Older camels served as the source of spread of coccidial infection and were also predisposed to secondary infections.Keywords: camel, coccidiosis, Eimeria, histopathology
Procedia PDF Downloads 192108 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study
Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf
Abstract:
Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.Keywords: bioeconomy, decarbonisation, energy footprint, microalgae
Procedia PDF Downloads 139107 Factors Controlling Durability of Some Egyptian Non-Stylolitic Marbleized Limestone to Salt Weathering
Authors: H. El Shayab, G. M. Kamh, N. G. Abdel Ghafour, M. L. Abdel Latif
Abstract:
Nowadays, marbleized limestone becomes one of the most important sources of the mineral wealth in Egypt as they have beautiful colors (white, grey, rose, yellow and creamy, etc.) make it very suitable for decoration purposes. Non-styolitic marbleized limestone which not contains styolitic surfaces. The current study aims to study different factors controlling durability of non-styolitic marbleized limestone against salt crystallization weathering. The achievement aim of the research was required nine representative samples were collected from the studied areas. Three samples from each of the studied areas. The studied samples was characterized by various instrumental methods before salt weathering, to determine its mineralogical composition, chemical composition and pore physical properties respectively. The obtained results revealed that both of Duwi and Delga studied samples nearly have the same average ∆M% 1.63 and 1.51 respectively and consequently A.I. stage of deformation. On the other hand, average ∆M% of Wata studied samples is 0.29 i.e. lower than two other studied areas. Wata studied samples are more durable against salt crystallization test than Duwi and Delga. The difference in salt crystallization durability may be resulted from one of the following factors: Microscopic textural effect as both of micrite and skeletal percent are in directly proportional to durability of stones to salt weathering. Dolomite mineral present as a secondary are in indirectly proportional to durability of stones to salt weathering. Increase in MgO% also associated with decrease the durability of studied samples against salt crystallization test. Finally, all factors affecting positively against salt crystallization test presents in Wadi Wata studied samples rather than others two areas.Keywords: marbleized limestone, salt weathering, Wata, salt weathering
Procedia PDF Downloads 328106 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost
Procedia PDF Downloads 88105 History of Textiles and Fashion: Gender Symbolism in the Context of Colour
Authors: Damayanthie Eluwawalage
Abstract:
Historically, the color-coded attire demarcated differences, for example, differences in social position and differences in gender, etc. Distinctive colors are worn by different classes in medieval England. By the twentieth-century Western society, certain colors were firmly associated with the specific gender; as pink for girls, and blue for boys. The color-coded gender phenomenon was a novelty at the turn of the twentieth-century and became widely practiced after World War II. Prior to that era, there were no distinctions or differences in the dress of younger children, in relation to their gender. In the nineteenth century, pink suits were highly acceptable for gentlemen’s attire. Frenchmen in the eighteenth-century wore colors with an infinite range of hues like pink, plum, white, cream, blue, yellow, puce and sea green. Nineteenth-century European male austerity, primarily caused by the usage of sombre colors such as black, white and grey, has been described as an element for dignity, control and morality. In the nineteenth century, there were many color-associated distinctions, as certain colors were reserved for the unmarried, the single or the aged. Two luminous colors in one dress was ‘vulgar’ and yellow was generally regarded as unladylike. Yellow was the color utilised for most correctional attire. Orange was prohibited for the unmarried. Fashionable dressing in the nineteenth century was more gender-differentiated than in previous centuries. Masculine austerity, emphasized a shift in class relations. As a result of that shift, male attire became more uniform, homogeneous and integrated (amongst the classes), than its traditional hierarchal approach.Keywords: textiles, fashion, gender symbolism, color
Procedia PDF Downloads 493104 Petro-Mineralogical Studies of Phosphorite Deposit of Sallopat Block of Banswara District, Rajasthan, India
Authors: K. F. Khan, Samsuddin Khan
Abstract:
The Paleoproterozoic phosphorite deposit of Sallopat block of Banswara district of Rajasthan belongs to kalinjara formation of lunavada group of Aravalli Super Group. The phosphorites are found to occur as massive, brecciated, laminated and stromatolitic associated with calcareous quartzite, interbedded dolomite and multi coloured chert. The phosphorites are showing alternate brown and grey coloured concentric rims which are composed of phosphate, calcite and quartz minerals. Petro-mineralogical studies of phosphorite samples using petrological microscope, XRD, FEG- SEM and EDX reveal that apatite-(CaF) and apatite-(CaOH) are phosphate minerals which are intermixed with minor amount of carbonate materials. Sporadic findings of the uniform tiny granules of partially anisotropic apatite-(CaF) along with dolomite, calcite, quartz, muscovite, zeolite and other gangue minerals have been observed with the replacement of phosphate material by quartz and carbonate. The presence of microbial filaments of organic matter and alternate concentric rims of stromatolitic structure may suggest that the deposition of the phosphate took place in shallow marine oxidizing environmental conditions leading to the formation of phosphorite layers as primary biogenic precipitates by bacterial or algal activities. Different forms and texture of phosphate minerals may be due to environmental vicissitudes at the time of deposition followed by some replacement processes and biogenic activities.Keywords: apatite, petro-mineralogy, phosphorites, sallopat, stromatolites
Procedia PDF Downloads 353103 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 418102 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 34101 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 127100 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand
Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff
Abstract:
Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste
Procedia PDF Downloads 14099 Culture of Primary Cortical Neurons on Hydrophobic Nanofibers Induces the Formation of Organoid-Like Structures
Authors: Nick Weir, Robert Stevens, Alan Hargreaves, Martin McGinnity, Chris Tinsley
Abstract:
Hydrophobic materials have previously demonstrated the ability to elevate cell-cell interactions and promote the formation of neural networks whilst aligned nanofibers demonstrate the ability to induce extensive neurite outgrowth in an aligned manner. Hydrophobic materials typically elicit an immune response upon implantation and thus materials used for implantation are typically hydrophilic. Poly-L-lactic acid (PLLA) is a hydrophobic, non-immunogenic, FDA approved material that can be electrospun to form aligned nanofibers. Primary rat cortical neurons cultured for 10 days on aligned PLLA nanofibers formed 3D cell clusters, approximately 800 microns in diameter. Neurites that extended from these clusters were highly aligned due to the alignment of the nanofibers they were cultured upon and fasciculation was also evident. Plasma treatment of the PLLA nanofibers prior to seeding of cells significantly reduced the hydrophobicity and abolished the cluster formation and neurite fasciculation, whilst reducing the extent and directionality of neurite outgrowth; it is proposed that hydrophobicity induces the changes to cellular behaviors. Aligned PLLA nanofibers induced the formation of a structure that mimics the grey-white matter compartmentalization that is observed in vivo and thus represents a step forward in generating organoids or biomaterial-based implants. Upon implantation into the brain, the biomaterial architectures described here may provide a useful platform for both brain repair and brain remodeling initiatives.Keywords: hydrophobicity, nanofibers, neurite fasciculation, neurite outgrowth, PLLA
Procedia PDF Downloads 16198 Development and Implementation of E-Disease Surveillance Systems for Public Health Southern Africa: A Critical Review
Authors: Taurai T. Chikotie, Bruce W. Watson
Abstract:
The manifestation of ‘new’ infectious diseases and the re-emergence of ‘old’ infectious diseases now present global problems and Southern Africa has not been spared from such calamity. Although having an organized public health system, countries in this region have failed to leverage on the proliferation in use of Information and Communication Technologies to promote effective disease surveillance. Objective: The objective of this study was to critically review and analyse the crucial variables to consider in the development and implementation of electronic disease surveillance systems in public health within the context of Southern Africa. Methodology: A critical review of literature published in English using, Google Scholar, EBSCOHOST, Science Direct, databases from the Centre for Disease Control (CDC and articles from the World Health Organisation (WHO) was undertaken. Manual reference and grey literature searches were also conducted. Results: Little has been done towards harnessing the potential of information technologies towards disease surveillance and this has been due to several challenges that include, lack of funding, lack of health informatics experts, poor supporting infrastructure, an unstable socio-political and socio-economic ecosystem in the region and archaic policies towards integration of information technologies in public health governance. Conclusion: The Southern African region stands to achieve better health outcomes if they adopt the use of e-disease surveillance systems in public health. However, the dynamics and complexities of the socio-economic, socio-political and technical variables would need addressing to ensure the successful development and implementation of e-disease surveillance systems in the region.Keywords: critical review, disease surveillance, public health informatics, Southern Africa
Procedia PDF Downloads 28497 An Evolutionary Approach for QAOA for Max-Cut
Authors: Francesca Schiavello
Abstract:
This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization
Procedia PDF Downloads 6096 Mitochondrial DNA Copy Number in Egyptian Patients with Hepatitis C Virus Related Hepatocellular Carcinoma
Authors: Doaa Hashad, Amany Elyamany, Perihan Salem
Abstract:
Introduction: Hepatitis C virus infection (HCV) constitutes a serious dilemma that has an impact on the health of millions of Egyptians. Hepatitis C virus related hepatocellular carcinoma (HCV-HCC) is a crucial consequence of HCV that represents the third cause of cancer-related deaths worldwide. Aim of the study: assess the use of mitochondrial DNA (mtDNA) content as a non-invasive molecular biomarker in hepatitis c virus related hepatocellular carcinoma (HCV-HCC). Methods: A total of 135 participants were enrolled in the study. Volunteers were assigned to one of three groups equally; a group of HCV related cirrhosis (HCV-cirrhosis), a group of HCV-HCC and a control group of age- and sex- matched healthy volunteers with no evidence of liver disease. mtDNA was determined using a quantitative real-time PCR technique. Results: mtDNA content was lowest in HCV-HCC cases. No statistically significant difference was observed between the group of HCV-cirrhosis and the control group as regards mtDNA level. HCC patients with multi-centric hepatic lesions had significantly lower mtDNA content. On using receiver operating characteristic curve analysis, a cutoff of 34 was assigned for mtDNA content to distinguish between HCV-HCC and HCV-cirrhosis patients who are not yet complicated by malignancy. Lower mtDNA was associated with greater HCC risk on using healthy controls, HCV-cirrhosis, or combining both groups as a reference group. Conclusions: mtDNA content might constitute a non-invasive molecular biomarker that reflects tumor burden in HCV-HCC cases and could be used as a predictor of HCC risk in patients of HCV-cirrhosis. In addition, the non significant difference of mtDNA level between HCV-cirrhosis patients and healthy controls could eliminate the grey zone created by the use of AFP in some cirrhotic patients.Keywords: DNA copy number, HCC, HCV, mitochondrial
Procedia PDF Downloads 32695 A Qualitative Inquiry of Institutional Responsiveness in Public Land Development in the Urban Areas in Sri Lanka
Authors: Priyanwada I. Singhapathirana
Abstract:
The public land ownership is a common phenomenon in many countries in the world however, the development approaches and the institutional structures are greatly diverse. The existing scholarship around public land development has been greatly limited to Europe and advanced Asian economies. Inferences of such studies seem to be inadequate and inappropriate to comprehend the peculiarities of public land development in developing Asian economies. The absence of critical inquiry on the public land ownership and the long-established institutional structures which govern the development has restrained these countries from institutional innovations. In this context, this research investigates the issues related to public land development and the institutional responses in Sri Lanka. This study introduces the concept of ‘Institutional Responsiveness’ in Public land development, which is conceptualized as the ability of the institutions to respond to the spatial, market and fiscal stimulus. The inquiry was carried out through in-depth interviews with five key informants from apex public agencies in order to explore the responsiveness of land institutions form decision-makers' perspectives. Further, the analysis of grey literature and recent media reports are used to supplement the analysis. As per the findings, long term abandonment of public lands and high transaction costs are some of the key issues in relation to public land development. The inability of the institutions to respond to the market and fiscal stimulus has left many potential public lands underutilized. As a result, the public sector itself and urban citizens have not been able to relish the benefits of the public lands in cities. Spatial analysis at the local scale is suggested for future studies in order to capture the multiple dimensions of the responsiveness of institutions to the development stimulus.Keywords: institutions, public land, responsiveness, under-utilization
Procedia PDF Downloads 12894 Policy and System Research for Health of Ageing Population
Authors: Sehrish Ather
Abstract:
Introduction: To improve organizational achievements through the production of new knowledge, health policy and system research is the basic requirement. An aging population is always the source of the increased burden of chronic diseases, disabilities, mental illnesses, and other co-morbidities; therefore the provision of quality health care services to every group of the population should be achieved by making strong policy and system research for the betterment of health care system. Unfortunately, the whole world is lacking policies and system research for providing health care to their elderly population. Materials and Methods: A literature review of published studies on aging diseases was done, ranging from the year 2011-2018. Geriatric, population, health policy, system, and research were the key terms used for the search. Databases searched were Google Scholar, PubMed, Science Direct, Ovid, and Research Gate. Grey literature was searched from various websites, including IHME, Library of the University of Lahore, World Health Organization (Ageing and Life Course), and Personal communication with Neuro-physicians. After careful reviewing published and un-published information, it was decided to carry on with commentary. Results and discussion: Most of the published studies have highlighted the need to advocate the funders of health policy and stakeholders of healthcare system research, and it was detected as a major issue, research on policy and healthcare system to provide health care to 'geriatric population' was found as highly neglected area. Conclusion: It is concluded that physicians are more involved with the policy and system research regarding any type of diseases, but scientists and researchers of basic and social science are less likely to be involved in methods used for health policy and system research due to lack of funding and resources. Therefore ageing diseases should be considered as a priority, and comprehensive policy and system research should be initiated for diseases of the geriatric population.Keywords: geriatric population, health care system, health policy, system research
Procedia PDF Downloads 10993 Greywater Reuse for Sunflower Irrigation Previously Radiated with Helium-Neon Laser: Evaluation of Growth, Flowering, and Chemical Constituents
Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien Ibrahim Abdel-Shafy
Abstract:
This study was carried out at the pilot plant area in the National Research Centre during the two successive seasons, 2020 and 2022. The aim is to investigate the response of vegetative growth and chemical constituents of sunflowers plants irrigated by two types of wastewater, namely: black wastewater W1 (Bathroom) and grey wastewater W1, under irradiation conditions of helium-neon (He-Ne) laser. The examined data indicated that irrigation of W1 significantly increased the growth and flowering parameters (plant height, leaves number, leaves area, leaves fresh and dry weight, flower diameter, flower stem length, flower stem thickness, number of days to flower, and total chlorophyll). Treated sunflower plants with 0 to 10 min. recorded an increase in the fresh weight and dry weight of leaves. However, the superiority of increasing vase life and delaying flowers were recorded by prolonging exposure time by up to 10 min. Regarding the effect of interaction treatments, the data indicated that the highest values on almost growth parameters were obtained from plants treated with W1+0 laser followed by W2+10 min. laser, compared with all interaction treatments. As for flowering parameters, the interactions between W2+2 min. time exposure, W1+0 time, w1+10 min., and w1+2 min. exposures recorded the highest values on flower diameter, flower stem length, flower stem thickness, vase life, and delaying flowering.Keywords: greywater, sunflower plant, water reuse, vegetative growth, laser radiation
Procedia PDF Downloads 8492 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 16091 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria
Authors: Sunday Oladele, Joseph Oluwagbeja Simeon
Abstract:
Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile
Procedia PDF Downloads 9490 Precambrian/Neoproterozoic Sediments of the Sirt Basin, Libya: New Palynological Evidence
Authors: Ali D. El-mehdawi, Ibrahim E. Elkanouni
Abstract:
Thick pre-Upper Cretaceous sandstones, sandstones intercalated with red/black shale or quarzitic sandstones, traditionally known to range in age from Cambrian to Early Cretaceous, mostly overlie the subsurface basement rocks of the Sirt Basin of Libya. These sediments known as Nubian, Sarir, Amal or Cambro-Ordovician sandstones. They are usually barren of any age datable palynomorphs and microfossils and represent the main hydrocarbon reservoirs in the basin. As a part of an ongoing regional project concerned with revision and updating of the stratigraphic nomenclature of the Sirt Basin and adjacent areas, sixteen core and ditch cutting samples from four wells penetrating the known Cambro-Ordovician sediments in the central and eastern parts of the basin were examined palynologicaly to investigate its age and the depositional paleoenvironment. The samples proved to be barren or yielded rare palynomorph assemblage, which dominated by dark grey to black small and large-sized sphaeromorph acritarchs assemblage of leiosphaerid types. The dominated species are Kildinosphaera chagrinata, K. cf. chagrinata, Kildinella ripheica, Kilinella timanica, Leiosphaeridia asperata and Leiosphaeridia spp. These leiosphaerides assemblage are comparable to those have been reported from the Late Precambrian, late Riphean age in Cyrenaica Platform, NE Libya, and would indicated shallow marine depositional environment. The age assignment suggests that this interval most probably equates to Mourizide, Bir Bayai and Wadi alHayt formations known in the Murzuq, Kufrah and Cyrenaica areas, respectively. This study proves the presence of Precambrian sediments in Jaghbub high and Amal Platform in the eastern part of Sirt Basin and probably in Maradah Trough and Aj Jahamah/Zoltun Platform northwestern part of the Sirt Basin.Keywords: palynology, leiosphaerides, precambrian, sirt basin, libya
Procedia PDF Downloads 8489 Re-Thinking Design/Build Curriculum in a Virtual World
Authors: Bruce Wrightsman
Abstract:
Traditionally, in architectural education, we develop studio projects with learning agendas that try to minimize conflict and reveal clear design objectives. Knowledge is gleaned only tacitly through confronting the reciprocity of site and form, space and light, structure and envelope. This institutional reality can limit student learning to the latent learning opportunities they will have to confront later in practice. One intent of academic design-build projects is to address the learning opportunities which one can discover in the messy grey areas of design. In this immersive experience, students confront the limitations of classroom learning and are exposed to challenges that demand collaborative practice. As a result, design-build has been widely adopted in an attempt to address perceived deficiencies in design education vis a vis the integration of building technology and construction. Hands-on learning is not a new topic, as espoused by John Dewey, who posits a debate between static and active learning in his book Democracy and Education. Dewey espouses the concept that individuals should become participants and not mere observers of what happens around them. Advocates of academic design-build programs suggest a direct link between Dewey’s speculation. These experiences provide irreplaceable life lessons: that real-world decisions have real-life consequences. The goal of the paper is not to confirm or refute the legitimacy and efficacy of online virtual learning. Rather, the paper aims to foster a deeper, honest discourse on the meaning of ‘making’ in architectural education and present projects that confronted the burdens of a global pandemic and developed unique teaching strategies that challenged design thinking as an observational and constructive effort to expand design student’s making skills and foster student agency.Keywords: design/build, making, remote teaching, architectural curriculum
Procedia PDF Downloads 8088 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 5887 Preparing and Scaling up Resiliency among Female Entrepreneurs in Mountain Environments
Authors: Shadreck Muchaku, Grey Magaiza, Jerit Dube
Abstract:
The high insolvency rate of female-led emerging enterprises in the Southern African mountain region reflects the various vulnerabilities that exist. Although this is the case, there is a limited understanding of how these vulnerabilities influence entrepreneurship failure. This paper focuses on female entrepreneurs because of their role in economic development. Emerging female entrepreneurs in this region often operate in uncertain environments, which makes it difficult for them to thrive. The form and nature of entrepreneurial opportunities rural women of the Afro Montane region engage in are largely unsustainable as a lot of women struggle with confidence, and they need help with understanding their skills. However, there is still a gap in the existing literature on women entrepreneurship resilience and vulnerability reduction in the Afromontane. Furthermore, a major problem is the lack of empirical studies on this matter and limited studies indicating a general profile of emerging female entrepreneurs in this region. This systematic literature review attempts to fill in the gap of knowledge on entrepreneurship resilience and vulnerability reduction of emerging female entrepreneurs in the Afromontane regions and other similar precarious environments. In this review, we focus much on highlighting the nexus between entrepreneurship resilience and vulnerability reduction of emerging female entrepreneurs in academic literature through a chronological dispersal of publications in developing countries. This review adopts an ATLAS ti.22 software-based thematic analysis to analyze results obtained from reviewed academic journal articles. As research on entrepreneurship resilience and vulnerability reduction is still developing in the Sothern African mountain region, the results of this review will contribute to the body of literature and provide recommendations and a foundation for future research. This systematic review paper provides valuable insights and methodological approaches to scholarship in a nascent area of emerging female entrepreneurs in the Afromontane.Keywords: entrepreneurship resiliency, vulnerability reduction, female entrepreneurs, mountain regions
Procedia PDF Downloads 143