Search results for: Alexander Manu
135 A Content Analysis of ‘Junk Food’ Content in Children’s TV Programs: A Comparison of UK Broadcast TV and Video-On-Demand Services
Authors: Alexander B. Barker, Megan Parkin, Shreesh Sinha, Emma Wilson, Rachael L. Murray
Abstract:
Objectives: Exposure to HFSS imagery is associated with consumption of foods high in fat, sugar, or salt (HFSS), and subsequently obesity, among young people. We report and compare the results of two content analyses, one of two popular terrestrial children’s television channels in the UK and the other of a selection of children’s programs available on video-on-demand (VOD) streaming sites. Design: Content analysis of three days’ worth of programs (including advertisements) on two popular children’s television channels broadcast on UK television (CBeebies and Milkshake) as well as a sample of 40 highest-rated children’s programs available on the VOD platforms, Netflix and Amazon Prime, using 1-minute interval coding. Setting: United Kingdom, Participants: None. Results: HFSS content was seen in 181 broadcasts (36%) and in 417 intervals (13%) on terrestrial television, ‘Milkshake’ had a significantly higher proportion of programs/adverts which contained HFSS content than ‘CBeebies’. In VOD platforms, HFSS content was seen in 82 episodes (72% of the total number of episodes), across 459 intervals (19% of the total number of intervals), with no significant difference in the proportion of programs containing HFSS content between Netflix and Amazon Prime. Conclusions: This study demonstrates that HFSS content is common in both popular UK children’s television channels and children's programs on VOD services. Since previous research has shown that HFSS content in the media has an effect on HFSS consumption, children’s television programs broadcast either on TV or VOD services are likely having an effect on HFSS consumption in children and legislative opportunities to prevent this exposure are being missed.Keywords: public health, epidemiology, obesity, content analysis
Procedia PDF Downloads 188134 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 66133 Modified Clusterwise Regression for Pavement Management
Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella
Abstract:
Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.Keywords: clusterwise regression, pavement management system, performance model, optimization
Procedia PDF Downloads 252132 More Precise: Patient-Reported Outcomes after Stroke
Authors: Amber Elyse Corrigan, Alexander Smith, Anna Pennington, Ben Carter, Jonathan Hewitt
Abstract:
Background and Purpose: Morbidity secondary to stroke is highly heterogeneous, but it is important to both patients and clinicians in post-stroke management and adjustment to life after stroke. The consideration of post-stroke morbidity clinically and from the patient perspective has been poorly measured. The patient-reported outcome measures (PROs) in morbidity assessment help improve this knowledge gap. The primary aim of this study was to consider the association between PRO outcomes and stroke predictors. Methods: A multicenter prospective cohort study assessed 549 stroke patients at 19 hospital sites across England and Wales during 2019. Following a stroke event, demographic, clinical, and PRO measures were collected. Prevalence of morbidity within PRO measures was calculated with associated 95% confidence intervals. Predictors of domain outcome were calculated using a multilevel generalized linear model. Associated P -values and 95% confidence intervals are reported. Results: Data were collected from 549 participants, 317 men (57.7%) and 232 women (42.3%) with ages ranging from 25 to 97 (mean 72.7). PRO morbidity was high post-stroke; 93.2% of the cohort report post-stroke PRO morbidity. Previous stroke, diabetes, and gender are associated with worse patient-reported outcomes across both the physical and cognitive domains. Conclusions: This large-scale multicenter cohort study illustrates the high proportion of morbidity in PRO measures. Further, we demonstrate key predictors of adverse outcomes (Diabetes, previous stroke, and gender) congruence with clinical predictors. The PRO has been demonstrated to be an informative and useful stroke when considering patient-reported outcomes and has wider implications for considerations of PROs in clinical management. Future longitudinal follow-up with PROs is needed to consider association of long-term morbidity.Keywords: morbidity, patient-reported outcome, PRO, stroke
Procedia PDF Downloads 131131 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms
Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann
Abstract:
Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI
Procedia PDF Downloads 182130 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing
Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill
Abstract:
In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.Keywords: idea ontology, innovation management, semantic search, open information extraction
Procedia PDF Downloads 189129 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data
Procedia PDF Downloads 335128 Photocaged Carbohydrates: Versatile Tools for Biotechnological Applications
Authors: Claus Bier, Dennis Binder, Alexander Gruenberger, Dagmar Drobietz, Dietrich Kohlheyer, Anita Loeschcke, Karl Erich Jaeger, Thomas Drepper, Joerg Pietruszka
Abstract:
Light absorbing chromophoric systems are important optogenetic tools for biotechnical and biophysical investigations. Processes such as fluorescence or photolysis can be triggered by light-absorption of chromophores. These play a central role in life science. Photocaged compounds belong to such chromophoric systems. The photo-labile protecting groups enable them to release biologically active substances with high temporal and spatial resolution. The properties of photocaged compounds are specified by the characteristics of the caging group as well as the characteristics of the linked effector molecule. In our research, we work with different types of photo-labile protecting groups and various effector molecules giving us possible access to a large library of caged compounds. As a function of the caged effector molecule, a nearly limitless number of biological systems can be directed. Our main interest focusses on photocaging carbohydrates (e.g. arabinose) and their derivatives as effector molecules. Based on these resulting photocaged compounds a precisely controlled photoinduced gene expression will give us access to studies of numerous biotechnological and synthetic biological applications. It could be shown, that the regulation of gene expression via light is possible with photocaged carbohydrates achieving a higher-order control over this processes. With the one-step cleavable photocaged carbohydrate, a homogeneous expression was achieved in comparison to free carbohydrates.Keywords: bacterial gene expression, biotechnology, caged compounds, carbohydrates, optogenetics, photo-removable protecting group
Procedia PDF Downloads 227127 Music of a Film City: Interwar Europe in Los Angeles, 1930s
Authors: Alexander Rosenblatt
Abstract:
The musical culture of the city of Los Angeles, as it is seen today, developed not without the influence of outstanding musicians who came from Europe during the period between the world wars. The combination of European modernist ideas with American musical culture, which differed in many ways from European musical culture, led to unique results. During the 1920s and even more so in the 1930s, members of the Austrian-German artistic intelligentsia, particularly those of Jewish origin who felt insecure in their homeland, began to look for a safer place. The United States has become such a place for many, and many of them chose the second largest metropolis—Los Angeles. The most notable figure in this group was the modernist composer Arnold Schoenberg. Other famous musicians were conductors Otto Klemperer and Bruno Walter. The study focused on how these people acclimated to a city whose culture and business revolved around film production; what place the conductors Klemperer and Walter occupied in the city, state, and country; how Schoenberg, whose musical style was little understood by the American public, was able to realize himself; what path he took when he was accepted to two universities as a professor of counterpoint and composition; and whether he revised his own views on the development of Western music. Another aspect was the study of how the composer’s memory was preserved in the universities where he taught. The study is based primarily on materials found in four libraries of two universities located in Los Angeles, UCLA and USC, during my tenure as a visiting scholar at USC Thornton School of Music (August 2023), to be completed during my upcoming visit there in August-September 2024, as well as on interviews with people active in efforts to keep Schoenberg’s memory alive on the USC Campus.Keywords: los angeles, filmmaking, immigrant musicians, arnold schoenberg, otto klemperer, bruno walter
Procedia PDF Downloads 28126 Biological Studies of N-O Donor 4-Acypyrazolone Heterocycle and Its Pd/Pt Complexes of Therapeutic Importance
Authors: Omoruyi Gold Idemudia, Alexander P. Sadimenko
Abstract:
The synthesis of N-heterocycles with novel properties, having broad spectrum biological activities that may become alternative medicinal drugs, have been attracting a lot of research attention due to the emergence of medicinal drug’s limitations such as disease resistance and their toxicity effects among others. Acylpyrazolones have been employed as pharmaceuticals as well as analytical reagent and their application as coordination complexes with transition metal ions have been well established. By way of a condensation reaction with amines acylpyrazolone ketones form a more chelating and superior group of compounds known as azomethines. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one was reacted with phenylhydrazine to get a new phenylhydrazone which was further reacted with aqueous solutions of palladium and platinum salts, in an effort towards the discovery of transition metal based synthetic drugs. The compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one phenylhydrazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group based on x-ray crystallography. The bidentate ON ligand formed a square planar geometry on coordinating with metal ions based on FTIR, electronic and NMR spectra as well as magnetic moments. Reported compounds showed antibacterial activities against the nominated bacterial isolates using the disc diffusion technique at 20 mg/ml in triplicates. The metal complexes exhibited a better antibacterial activity with platinum complex having an MIC value of 0.63 mg/ml. Similarly, ligand and complexes also showed antioxidant scavenging properties against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 0.5mg/ml relative to ascorbic acid (standard drug).Keywords: acylpyrazolone, antibacterial studies, metal complexes, phenylhydrazone, spectroscopy
Procedia PDF Downloads 254125 A Review on Benzo(a)pyrene Emission Factors from Biomass Combustion
Authors: Franziska Klauser, Manuel Schwabl, Alexander Weissinger, Christoph Schmidl, Walter Haslinger, Anne Kasper-Giebl
Abstract:
Benzo(a)pyrene (BaP) is the most widely investigated representative of Polycyclic Aromatic Hydrocarbons (PAH) as well as one of the most toxic compounds in this group. Since 2013 in the European Union a limit value for BaP concentration in the ambient air is applied, which was set to a yearly average value of 1 ng m-3. Several reports show that in some regions, even where industry and traffic are of minor impact this threshold is regularly exceeded. This is taken as proof that biomass combustion for heating purposes contributes significantly to BaP pollution. Several investigations have been already carried out on the BaP emission behavior of biomass combustion furnaces, mostly focusing on a certain aspect like the influences from wood type, of operation type or of technology type. However, a superior view on emission patterns of BaP from biomass combustion and the aggregation of determined values also from recent studies is not presented so far. The combination of determined values allows a better understanding of the BaP emission behavior from biomass combustion. In this work the review conclusions are driven from the combination of outcomes from different publication. In two examples it was shown that technical progress leads to 10 to 100 fold lower BaP emission from modern furnaces compared to old technologies of equivalent type. It was also indicated that the operation with pellets or wood chips exhibits clearly lower BaP emission factors compared to operation with log wood. Although, the BaP emission level from automatic furnaces is strongly impacted by the kind of operation. This work delivers an overview on BaP emission factors from different biomass combustion appliances, from different operation modes and from the combustion of different fuel and wood types. The main impact factors are depicted, and suggestions for low BaP emission biomass combustion are derived. As one result possible investigation fields concerning BaP emissions from biomass combustion that seem to be most important to be clarified are suggested.Keywords: benzo(a)pyrene, biomass, combustion, emission, pollution
Procedia PDF Downloads 358124 Association of Vascular Endothelial Growth Factor Gene +405 C>G and -460 T>C Polymorphism with Type 2 Diabetic Foot Ulcer Patient in Cipto Mangunkusumo National Hospital Jakarta
Authors: Dedy Pratama, Akhmadu Muradi, Hilman Ibrahim, Raden Suhartono, Alexander Jayadi Utama, Patrianef Darwis, S. Dwi Anita, Luluk Yunaini, Kemas Dahlan
Abstract:
Introduction: Vascular endothelial growth factor (VEGF) gene shows association with various angiogenesis conditions including Diabetic Foot Ulcer (DFU) disease. In this study, we performed this study to examine VEGF gene polymorphism associated with DFU. Methods: Case-control study of polymorphism of VEGF gene +405 C>G and -460 T>C, of diabetes mellitus (DM) type 2 with Diabetic Foot Ulcer (DFU) in Cipto Mangunkusumo National Hospital (RSCM) Jakarta from June to December 2016. Results: There were 203 patients, 102 patients with DFU and 101 patients without DFU. Forty-nine point 8 percent of total samples is male and 50,2% female with mean age 56,06 years. Distribution of the wild-type genotype VEGF +405 C>G wild type CC was found in 6,9% of respondents, the number of mutant heterozygote CG was 69,5% and mutant homozygote GG was 19,7%. Cumulatively, there were 6,9% wild-type and 85,2% mutant and 3,9% of total blood samples could not be detected on PCR-RFLP. Distribution of VEGF allele +405 C>G C alleles were 43% and G alleles were 57%. Distribution of genotype from VEGF gene -460 T>C is wild type TT 42,9%, mutant heterozygote TC 37,9% and mutant homozygote CC 13,3%. Cumulatively, there were 42,9% wild-type and 51% mutant type. Distribution of VEGF -460 T>C were 62% T allele and 38% C allele. Conclusion: In this study we found the distribution of alleles from VEGF +405 C>G is C 43% and G 57% and from VEGF -460 T>C; T 62% and C 38%. We propose that G allele in VEGF +405 C>G can act as a protective allele and on the other hands T allele in VEGF -460 T>C could be acted as a risk factor for DFU in diabetic patients.Keywords: diabetic foot ulcer, diabetes mellitus, polymorphism, VEGF
Procedia PDF Downloads 297123 Virtue, Truth, Freedom, And The History Of Philosophy
Authors: Ashley DelCorno
Abstract:
GEM Anscombe’s 1958 essay Modern Moral Philosophy and the tradition of virtue ethics that followed has given rise to the restoration (or, more plainly, the resurrection) of Aristotle as something of an authority figure. Alisdair MacIntyre and Martha Nussbaum are proponents, for example, not just of Aristotle’s relevancy but also of his apparent implicit authority. That said, it’s not clear that the schema imagined by virtue ethicists accurately describes moral life or that it does not inadvertently work to impoverish genuine decision-making. If the label ‘virtue’ is categorically denied to some groups (while arbitrarily afforded to others), it can only turn on itself, thus rendering ridiculous its own premise. Likewise, as an inescapable feature of virtue ethics, Aristotelean binaries like ‘virtue/vice’ and ‘voluntary/involuntary’ offer up false dichotomies that may seriously compromise an agent’s ability to conceptualize choices that are truly free and rooted in meaningful criteria. Here, this topic is analyzed through a feminist lens predicated on the known paradoxes of patriarchy. The work of feminist theorists Jacqui Alexander, Katharine Angel, Simone de Beauvoir, bell hooks, Audre Lorde, Imani Perry, and Amia Srinivasan serves as important guideposts, and the argument here is built from a key tenet of black feminist thought regarding scarcity and possibility. Above all, it’s clear that though the philosophical tradition of virtue ethics presents itself as recovering the place of agency in ethics, its premises possess crippling limitations toward the achievement of this goal. These include, most notably, virtue ethics’ binding analysis of history, as well as its axiomatic attachment to obligatory clauses, problematic reading-in of Aristotle and arbitrary commitment to predetermined and competitively patriarchal ideas of what counts as a virtue.Keywords: feminist history, the limits of utopic imagination, curatorial creation, truth, virtue, freedom
Procedia PDF Downloads 83122 Digital Environment as a Factor of the City's Competitiveness in Attracting Tourists: The Case of Yekaterinburg
Authors: Alexander S. Burnasov, Anatoly V. Stepanov, Maria Y. Ilyushkina
Abstract:
In the conditions of transition to the digital economy, the digital environment of the city becomes one of the key factors of its tourism attractiveness. Modern digital environment makes travelling more accessible, improves the quality of travel services and the attractiveness of many tourist destinations. The digitalization of the industry allows to use resources more efficiently, to simplify business processes, to minimize risks, and to improve travel safety. The city promotion as a tourist destination in the foreign market becomes decisive in the digital environment. Information technologies are extremely important for the functioning of not only any tourist enterprise but also the city as a whole. In addition to solving traditional problems, it is also possible to implement some innovations from the tourism industry, such as the availability of city services in international systems of booking tickets and booking rooms in hotels, the possibility of early booking of theater and museum tickets, the possibility of non-cash payment by cards of international payment systems, Internet access in the urban environment for travelers. The availability of the city's digital services makes it possible to reduce ordering costs, contributes to the optimal selection of tourist products that meet the requirements of the tourist, provides increased transparency of transactions. The users can compare prices, features, services, and reviews of the travel service. The ability to share impressions with friends thousands of miles away directly affects the image of the city. It is possible to promote the image of the city in the digital environment not only through world-scale events (such as World Cup 2018, international summits, etc.) but also through the creation and management of services in the digital environment aimed at supporting tourism services, which will help to improve the positioning of the city in the global tourism market.Keywords: competitiveness, digital environment, travelling, Yekaterinburg
Procedia PDF Downloads 138121 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles
Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek
Abstract:
Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces
Procedia PDF Downloads 212120 Assessment of the Electrical, Mechanical, and Thermal Nociceptive Thresholds for Stimulation and Pain Measurements at the Bovine Hind Limb
Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage
Abstract:
Background: Three nociceptive thresholds of thermal, electrical, and mechanical thresholds commonly use to evaluate the local anesthesia in many species, for instance, cow, horse, cat, dog, rabbit, and so on. Due to the lack of investigations to evaluate and/or validate such those nociceptive thresholds, our plan was the comparison of two-foot local anesthesia methods of Intravenous Regional Anesthesia (IVRA) and our modified four-point Nerve Block Anesthesia (NBA). Materials and Methods: Eight healthy nonpregnant nondairy Holstein Frisian cows in a cross-over study design were selected for this study. All cows divided into two different groups to receive two local anesthesia techniques of IVRA and our modified four-point NBA. Three thermal, electrical, and mechanical force and pinpricks were applied to evaluate the quality of local anesthesia methods before and after local anesthesia application. Results: The statistical evaluation demonstrated that our four-point NBA has a qualification to select as a standard foot local anesthesia. However, the recorded results of our study revealed no significant difference between two groups of local anesthesia techniques of IVRA and modified four-point NBA related to quality and duration of anesthesia stimulated by electrical, mechanical and thermal nociceptive stimuli. Conclusion and discussion: All three nociceptive threshold stimuli of electrical, mechanical and heat nociceptive thresholds can be applied to measure and evaluate the efficacy of foot local anesthesia of dairy cows. However, our study revealed no superiority of those three nociceptive methods to evaluate the duration and quality of bovine foot local anesthesia methods. Veterinarians to investigate the duration and quality of their selected anesthesia method can use any of those heat, mechanical, and electrical methods.Keywords: mechanical, thermal, electrical threshold, IVRA, NBA, hind limb, dairy cow
Procedia PDF Downloads 246119 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction
Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky
Abstract:
The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel
Procedia PDF Downloads 396118 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach
Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov
Abstract:
Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology
Procedia PDF Downloads 114117 Gc-ms Data Integrated Chemometrics for the Authentication of Vegetable Oil Brands in Minna, Niger State, Nigeria
Authors: Rasaq Bolakale Salau, Maimuna Muhammad Abubakar, Jonathan Yisa, Muhammad Tauheed Bisiriyu, Jimoh Oladejo Tijani, Alexander Ifeanyi Ajai
Abstract:
Vegetables oils are widely consumed in Nigeria. This has led to competitive manufacture of various oil brands. This leads increasing tendencies for fraud, labelling misinformation and other unwholesome practices. A total of thirty samples including raw and corresponding branded samples of vegetable oils were collected. The Oils were extracted from raw ground nut, soya bean and oil palm fruits. The GC-MS data was subjected to chemometric techniques of PCA and HCA. The SOLO 8.7 version of the standalone chemometrics software developed by Eigenvector research incorporated and powered by PLS Toolbox was used. The GCMS fingerprint gave basis for discrimination as it reveals four predominant but unevenly distributed fatty acids: Hexadecanoic acid methyl ester (10.27- 45.21% PA), 9,12-octadecadienoic acid methyl ester (10.9 - 45.94% PA), 9-octadecenoic acid methyl ester (18.75 - 45.65%PA), and Eicosanoic acid methyl ester (1.19% - 6.29%PA). In PCA modelling, two PCs are retained at cumulative variance captured at 73.15%. The score plots indicated that palm oil brands are most aligned with raw palm oil. PCA loading plot reveals the signature retention times between 4.0 and 6.0 needed for quality assurance and authentication of the oils samples. They are of aromatic hydrocarbons, alcohols and aldehydes functional groups. HCA dendrogram which was modeled using Euclidian distance through Wards method, indicated co-equivalent samples. HCA revealed the pair of raw palm oil brand and palm oil brand in the closest neighbourhood (± 1.62 % A difference) based on variance weighted distance. It showed Palm olein brand to be most authentic. In conclusion, based on the GCMS data with chemometrics, the authenticity of the branded samples is ranked as: Palm oil > Soya oil > groundnut oil.Keywords: vegetable oil, authenticity, chemometrics, PCA, HCA, GC-MS
Procedia PDF Downloads 35116 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades
Authors: Abdullah Alnutayfat, Alexander Sutin
Abstract:
One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation
Procedia PDF Downloads 85115 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application
Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham
Abstract:
E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management
Procedia PDF Downloads 103114 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications
Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer
Abstract:
Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors
Procedia PDF Downloads 86113 A Systematic Review of the Methodological and Reporting Quality of Case Series in Surgery
Authors: Riaz A. Agha, Alexander J. Fowler, Seon-Young Lee, Buket Gundogan, Katharine Whitehurst, Harkiran K. Sagoo, Kyung Jin Lee Jeong, Douglas G. Altman, Dennis P. Orgill
Abstract:
Introduction: Case Series are an important and common study type. Currently, no guideline exists for reporting case series and there is evidence of key data being missed from such reports. We propose to develop a reporting guideline for case series using a methodologically robust technique. The first step in this process is a systematic review of literature relevant to the reporting deficiencies of case series. Methods: A systematic review of methodological and reporting quality in surgical case series was performed. The electronic search strategy was developed by an information specialist and included MEDLINE, EMBASE, Cochrane Methods Register, Science Citation index and Conference Proceedings Citation index, from the start of indexing until 5th November 2014. Independent screening, eligibility assessments and data extraction was performed. Included articles were analyzed for five areas of deficiency: failure to use standardized definitions missing or selective data transparency or incomplete reporting whether alternate study designs were considered. Results: The database searching identified 2,205 records. Through the process of screening and eligibility assessments, 92 articles met inclusion criteria. Frequency of methodological and reporting issues identified was a failure to use standardized definitions (57%), missing or selective data (66%), transparency, or incomplete reporting (70%), whether alternate study designs were considered (11%) and other issues (52%). Conclusion: The methodological and reporting quality of surgical case series needs improvement. Our data shows that clear evidence-based guidelines for the conduct and reporting of a case series may be useful to those planning or conducting them.Keywords: case series, reporting quality, surgery, systematic review
Procedia PDF Downloads 359112 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes
Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali
Abstract:
Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.Keywords: biochar, biomass, cassava wastes, corn cob, pyrolysis
Procedia PDF Downloads 299111 By Removing High-Performance Aerobic Scope Phenotypes, Capture Fisheries May Reduce the Resilience of Fished Populations to Thermal Variability and Compromise Their Persistence into the Anthropocene.
Authors: Lauren A. Bailey, Amber R. Childs, Nicola C. James, Murray I. Duncan, Alexander Winkler, Warren M. Potts
Abstract:
For the persistence of fished populations in the Anthropocene, it is critical to predict how fished populations will respond to the coupled threats of exploitation and climate change for adaptive management. The resilience of fished populations will depend on their capacity for physiological plasticity and acclimatization in response to environmental shifts. However, there is evidence for the selection of physiological traits by capture fisheries. Hence, fish populations may have a limited scope for the rapid expansion of their tolerance ranges or physiological adaptation under fishing pressures. To determine the physiological vulnerability of fished populations in the Anthropocene, the metabolic performance was compared between a fished and spatially protected Chrysoblephus laticeps population in response to thermal variability. Individual aerobic scope phenotypes were quantified using intermittent flow respirometry by comparing changes in energy expenditure of each individual at ecologically relevant temperatures, mimicking variability experienced as a result of upwelling and downwelling events. The proportion of high and low-performance individuals were compared between the fished and spatially protected population. The fished population had limited aerobic scope phenotype diversity and fewer high-performance phenotypes, resulting in a significantly lower aerobic scope curve across low (10 °C) and high (24 °C) thermal treatments. The performance of fished populations may be compromised with predicted future increases in cold upwelling events. This requires the conservation of the physiologically fittest individuals in spatially protected areas, which can recruit into nearby fished areas, as a climate resilience tool.Keywords: climate change, fish physiology, metabolic shifts, over-fishing, respirometry
Procedia PDF Downloads 129110 A Strategy for Reducing Dynamic Disorder in Small Molecule Organic Semiconductors by Suppressing Large Amplitude Thermal Motions
Authors: Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Stephen G. Yeates, John E. Anthony, Henning Sirringhaus
Abstract:
Large-amplitude intermolecular vibrations in combination with complex shaped transfer integrals generate a thermally fluctuating energetic landscape. The resulting dynamic disorder and its intrinsic presence in organic semiconductors is one of the most fundamental differences to their inorganic counterparts. Dynamic disorder is believed to govern many of the unique electrical and optical properties of organic systems. However, the low energy nature of these vibrations makes it difficult to access them experimentally and because of this we still lack clear molecular design rules to control and reduce dynamic disorder. Applying a novel technique based on electron diffraction we encountered strong intermolecular, thermal vibrations in every single organic material we studied (14 up to date), indicating that a large degree of dynamic disorder is a universal phenomenon in organic crystals. In this paper a new molecular design strategy will be presented to avoid dynamic disorder. We found that small molecules that have their side chains attached to the long axis of their conjugated core have been found to be less likely to suffer from dynamic disorder effects. In particular, we demonstrate that 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene (C8-BTBT) and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene (C10DNTT) exhibit strongly reduced thermal vibrations in comparison to other molecules and relate their outstanding performance to their lower dynamic disorder. We rationalize the low degree of dynamic disorder in C8-BTBT and C10-DNTT with a better encapsulation of the conjugated cores in the crystal structure which helps reduce large amplitude thermal motions. The work presented in this paper provides a general strategy for the design of new classes of very high mobility organic semiconductors with low dynamic disorder.Keywords: charge transport, C8-BTBT, C10-DNTT, dynamic disorder, organic semiconductors, thermal vibrations
Procedia PDF Downloads 399109 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing
Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin
Abstract:
Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care
Procedia PDF Downloads 122108 The Evaluation of Superiority of Foot Local Anesthesia Method in Dairy Cows
Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage
Abstract:
Background: Nowadays, bovine limb interventions, especially any claw surgeries, raises selection of the most qualified and appropriate local anesthesia technique applicable for any superficial or deep interventions of the limbs. Currently, two local anesthesia methods of Intravenous Regional Anesthesia (IVRA), as well as Nerve Blocks, have been routine to apply. However, the lack of studies investigating the quality and duration as well as quantity and onset of full (complete) local anesthesia, is noticeable. Therefore, the aim of our study was comparing the onset and quality of both IVRA and our modified NBA at the hind limb of dairy cows. For this abstract, only the onset of full local anesthesia would be consider. Materials and Methods: For that reason, we used six healthy non pregnant non lactating Holestein Frisian cows in a cross-over study design. Those cows divided into two groups to receive IVRA and our modified four-point NBA. For IVRA, 20 ml procaine without epinephrine was injected into the vein digitalis dorsalis communis III and for our modified four-point NBA, 10-15 ml procaine without epinephrine preneurally to the nerves, superficial and deep peroneal as well as lateral and medial branches of metatarsal nerves. For pain stimulation, electrical stimulator Grass S48 was applied. Results: The results of electrical stimuli revealed the faster onset of full local anesthesia (p < 0.05) by application of our modified NBA in comparison to IVRA about 10 minutes. Conclusion and discussion: Despite of available references showing faster onset of foot local anesthesia of IVRA, our study demonstrated that our modified four point NBA not only can be well known as a standard foot local anesthesia method applicable to desensitize the hind limb of dairy cows, but also, selection of this modified validated local anesthesia method can lead to have a faster start of complete desensitization of distal hind limb that is remarkable in any bovine limb interventions under time constraint.Keywords: IVRA, four point NBA, dairy cow, hind limb, full onset
Procedia PDF Downloads 151107 Experimental Study of an Isobaric Expansion Heat Engine with Hydraulic Power Output for Conversion of Low-Grade-Heat to Electricity
Authors: Maxim Glushenkov, Alexander Kronberg
Abstract:
Isobaric expansion (IE) process is an alternative to conventional gas/vapor expansion accompanied by a pressure decrease typical of all state-of-the-art heat engines. The elimination of the expansion stage accompanied by useful work means that the most critical and expensive parts of ORC systems (turbine, screw expander, etc.) are also eliminated. In many cases, IE heat engines can be more efficient than conventional expansion machines. In addition, IE machines have a very simple, reliable, and inexpensive design. They can also perform all the known operations of existing heat engines and provide usable energy in a very convenient hydraulic or pneumatic form. This paper reports measurement made with the engine operating as a heat-to-shaft-power or electricity converter and a comparison of the experimental results to a thermodynamic model. Experiments were carried out at heat source temperature in the range 30–85 °C and heat sink temperature around 20 °C; refrigerant R134a was used as the engine working fluid. The pressure difference generated by the engine varied from 2.5 bar at the heat source temperature 40 °C to 23 bar at the heat source temperature 85 °C. Using a differential piston, the generated pressure was quadrupled to pump hydraulic oil through a hydraulic motor that generates shaft power and is connected to an alternator. At the frequency of about 0.5 Hz, the engine operates with useful powers up to 1 kW and an oil pumping flowrate of 7 L/min. Depending on the temperature of the heat source, the obtained efficiency was 3.5 – 6 %. This efficiency looks very high, considering such a low temperature difference (10 – 65 °C) and low power (< 1 kW). The engine’s observed performance is in good agreement with the predictions of the model. The results are very promising, showing that the engine is a simple and low-cost alternative to ORC plants and other known energy conversion systems, especially at low temperatures (< 100 °C) and low power range (< 500 kW) where other known technologies are not economic. Thus low-grade solar, geothermal energy, biomass combustion, and waste heat with a temperature above 30 °C can be involved into various energy conversion processes.Keywords: isobaric expansion, low-grade heat, heat engine, renewable energy, waste heat recovery
Procedia PDF Downloads 226106 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis
Authors: Alexander A. Tokmakov
Abstract:
Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins
Procedia PDF Downloads 419