Search results for: solar salt
157 Smart Automated Furrow Irrigation: A Preliminary Evaluation
Authors: Jasim Uddin, Rod Smith, Malcolm Gillies
Abstract:
Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs.Keywords: furrow irrigation, smart automation, infiltration, SISCO, real-time irrigation, adoptive control
Procedia PDF Downloads 452156 Wound Healing Process Studied on DC Non-Homogeneous Electric Fields
Authors: Marisa Rio, Sharanya Bola, Richard H. W. Funk, Gerald Gerlach
Abstract:
Cell migration, wound healing and regeneration are some of the physiological phenomena in which electric fields (EFs) have proven to have an important function. Physiologically, cells experience electrical signals in the form of transmembrane potentials, ion fluxes through protein channels as well as electric fields at their surface. As soon as a wound is created, the disruption of the epithelial layers generates an electric field of ca. 40-200 mV/mm, directing cell migration towards the wound site, starting the healing process. In vitro electrotaxis, experiments have shown cells respond to DC EFs polarizing and migrating towards one of the poles (cathode or anode). A standard electrotaxis experiment consists of an electrotaxis chamber where cells are cultured, a DC power source and agar salt bridges that help delaying toxic products from the electrodes to attain the cell surface. The electric field strengths used in such an experiment are uniform and homogeneous. In contrast, the endogenous electric field strength around a wound tend to be multi-field and non-homogeneous. In this study, we present a custom device that enables electrotaxis experiments in non-homogeneous DC electric fields. Its main feature involves the replacement of conventional metallic electrodes, separated from the electrotaxis channel by agarose gel bridges, through electrolyte-filled microchannels. The connection to the DC source is made by Ag/AgCl electrodes, incased in agarose gel and placed at the end of each microfluidic channel. An SU-8 membrane closes the fluidic channels and simultaneously serves as the single connection from each of them to the central electrotaxis chamber. The electric field distribution and current density were numerically simulated with the steady-state electric conduction module from ANSYS 16.0. Simulation data confirms the application of nonhomogeneous EF of physiological strength. To validate the biocompatibility of the device cellular viability of the photoreceptor-derived 661W cell line was accessed. The cells have not shown any signs of apoptosis, damage or detachment during stimulation. Furthermore, immunofluorescence staining, namely by vinculin and actin labelling, allowed the assessment of adhesion efficiency and orientation of the cytoskeleton, respectively. Cellular motility in the presence and absence of applied DC EFs was verified. The movement of individual cells was tracked for the duration of the experiments, confirming the EF-induced, cathodal-directed motility of the studied cell line. The in vitro monolayer wound assay, or “scratch assay” is a standard protocol to quantitatively access cell migration in vitro. It encompasses the growth of a confluent cell monolayer followed by the mechanic creation of a scratch, representing a wound. Hence, wound dynamics was monitored over time and compared for control and applied the electric field to quantify cellular population motility.Keywords: DC non-homogeneous electric fields, electrotaxis, microfluidic biochip, wound healing
Procedia PDF Downloads 270155 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process
Authors: Marek Vondra, Petr Bobák
Abstract:
Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation
Procedia PDF Downloads 387154 Modelling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter
Authors: Evren Isen
Abstract:
In grid-connected renewable energy systems, input power is controlled by AC/DC converter or/and DC/DC converter depending on output voltage of input source. The power is injected to DC-link, and DC-link voltage is regulated by inverter controlling the grid current. Inverter performance is considerable in grid-connected renewable energy systems to meet the utility standards. In this paper, modelling and simulation of hysteresis current controlled single-phase grid-connected inverter that is utilized in renewable energy systems, such as wind and solar systems, are presented. 2 kW single-phase grid-connected inverter is simulated in Simulink and modeled in Matlab-m-file. The grid current synchronization is obtained by phase locked loop (PLL) technique in dq synchronous rotating frame. Although dq-PLL can be easily implemented in three-phase systems, there is difficulty to generate β component of grid voltage in single-phase system because single-phase grid voltage exists. Inverse-Park PLL with low-pass filter is used to generate β component for grid angle determination. As grid current is controlled by constant bandwidth hysteresis current control (HCC) technique, average switching frequency and variation of switching frequency in a fundamental period are considered. 3.56% total harmonic distortion value of grid current is achieved with 0.5 A bandwidth. Average value of switching frequency and total harmonic distortion curves for different hysteresis bandwidth are obtained from model in m-file. Average switching frequency is 25.6 kHz while switching frequency varies between 14 kHz-38 kHz in a fundamental period. The average and maximum frequency difference should be considered for selection of solid state switching device, and designing driver circuit. Steady-state and dynamic response performances of the inverter depending on the input power are presented with waveforms. The control algorithm regulates the DC-link voltage by adjusting the output power.Keywords: grid-connected inverter, hysteresis current control, inverter modelling, single-phase inverter
Procedia PDF Downloads 479153 The Study of Mirror Self-Recognition in Wildlife
Authors: Azwan Hamdan, Mohd Qayyum Ab Latip, Hasliza Abu Hassim, Tengku Rinalfi Putra Tengku Azizan, Hafandi Ahmad
Abstract:
Animal cognition provides some evidence for self-recognition, which is described as the ability to recognize oneself as an individual separate from the environment and other individuals. The mirror self-recognition (MSR) or mark test is a behavioral technique to determine whether an animal have the ability of self-recognition or self-awareness in front of the mirror. It also describes the capability for an animal to be aware of and make judgments about its new environment. Thus, the objectives of this study are to measure and to compare the ability of wild and captive wildlife in mirror self-recognition. Wild animals from the Royal Belum Rainforest Malaysia were identified based on the animal trails and salt lick grounds. Acrylic mirrors with wood frame (200 x 250cm) were located near to animal trails. Camera traps (Bushnell, UK) with motion-detection infrared sensor are placed near the animal trails or hiding spot. For captive wildlife, animals such as Malayan sun bear (Helarctos malayanus) and chimpanzee (Pan troglodytes) were selected from Zoo Negara Malaysia. The captive animals were also marked using odorless and non-toxic white paint on its forehead. An acrylic mirror with wood frame (200 x 250cm) and a video camera were placed near the cage. The behavioral data were analyzed using ethogram and classified through four stages of MSR; social responses, physical inspection, repetitive mirror-testing behavior and realization of seeing themselves. Results showed that wild animals such as barking deer (Muntiacus muntjak) and long-tailed macaque (Macaca fascicularis) increased their physical inspection (e.g inspecting the reflected image) and repetitive mirror-testing behavior (e.g rhythmic head and leg movement). This would suggest that the ability to use a mirror is most likely related to learning process and cognitive evolution in wild animals. However, the sun bear’s behaviors were inconsistent and did not clearly undergo four stages of MSR. This result suggests that when keeping Malayan sun bear in captivity, it may promote communication and familiarity between conspecific. Interestingly, chimp has positive social response (e.g manipulating lips) and physical inspection (e.g using hand to inspect part of the face) when they facing a mirror. However, both animals did not show any sign towards the mark due to lost of interest in the mark and realization that the mark is inconsequential. Overall, the results suggest that the capacity for MSR is the beginning of a developmental process of self-awareness and mental state attribution. In addition, our findings show that self-recognition may be based on different complex neurological and level of encephalization in animals. Thus, research on self-recognition in animals will have profound implications in understanding the cognitive ability of an animal as an effort to help animals, such as enhanced management, design of captive individuals’ enclosures and exhibits, and in programs to re-establish populations of endangered or threatened species.Keywords: mirror self-recognition (MSR), self-recognition, self-awareness, wildlife
Procedia PDF Downloads 273152 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions
Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud
Abstract:
When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort
Procedia PDF Downloads 295151 Rethinking The Residential Paradigm: Regenerative Design and the Contemporary Housing Industry
Authors: Gabriela Lucas Sanchez
Abstract:
The contemporary housing industry is dominated by tract houses, which prioritize uniformity and cost-efficiency over environmental and ecological considerations. However, as the world faces the growing challenges of climate change and resource depletion, there is an urgent need to rethink the residential paradigm. This essay explores how regenerative practices can be integrated into standard residential designs to create a shift that reduces the environmental impact of housing and actively contributes to ecological health. Passive sustainable practices, such as passive solar design, natural ventilation, and the use of energy-efficient materials, aim to maximize resource use efficiency, minimize waste, and create healthy living environments. Regenerative practices, on the other hand, go beyond sustainability to work in harmony with natural systems, actively restoring and enriching the environment. Integrating these two approaches can redefine the residential paradigm, creating homes that reduce harm and positively impact the local ecosystem. The essay begins by exploring the principles and benefits of passive sustainable practices, discussing how they can reduce energy consumption and improve indoor environmental quality in standardized housing. Passive sustainability minimizes energy consumption through strategic design choices, such as optimizing building orientation, utilizing natural ventilation, and incorporating high-performance insulation and glazing. However, while sustainability efforts have been important steps in the right direction, a more holistic, regenerative approach is needed to address the root causes of environmental degradation. Regenerative development and design seek to go beyond simply reducing negative impacts, instead aiming to create built environments that actively contribute to restoring and enhancing natural systems. This shift in perspective is critical, as it recognizes the interdependence between human settlements and the natural world and the potential for buildings to serve as catalysts for positive change.Keywords: passive sustainability, regenerative architecture, residential architecture, community
Procedia PDF Downloads 35150 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels
Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray
Abstract:
There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold
Procedia PDF Downloads 204149 Renewable Energy and Environment: Design of a Decision Aided Tool for Sustainable Development
Authors: Mustapha Ouardouz, Mina Amharref, Abdessamed Bernoussi
Abstract:
The future energy, for limited energy resources countries, goes through renewable energies (solar, wind etc.). The renewable energies constitute a major component of the energy strategy to cover a substantial part of the growing needs and contribute to environmental protection by replacing fossil fuels. Indeed, sustainable development involves the promotion of renewable energy and the preservation of the environment by the use of clean energy technologies to limit emissions of greenhouse gases and reducing the pressure exerted on the forest cover. So the impact studies, of the energy use on the environment and farm-related risks are necessary. For that, a global approach integrating all the various sectors involved in such project seems to be the best approach. In this paper we present an approach based on the multi criteria analysis and the realization of one pilot to achieve the development of an innovative geo-intelligent environmental platform. An implementation of this platform will collect, process, analyze and manage environmental data in connection with the nature of used energy in the studied region. As an application we consider a region in the north of Morocco characterized by intense agricultural and industrials activities and using diverse renewable energy. The strategic goals of this platform are; the decision support for better governance, improving the responsiveness of public and private companies connected by providing them in real time with reliable data, modeling and simulation possibilities of energy scenarios, the identification of socio-technical solutions to introduce renewable energies and estimate technical and implantable potential by socio-economic analyzes and the assessment of infrastructure for the region and the communities, the preservation and enhancement of natural resources for better citizenship governance through democratization of access to environmental information, the tool will also perform simulations integrating environmental impacts of natural disasters, particularly those linked to climate change. Indeed extreme cases such as floods, droughts and storms will be no longer rare and therefore should be integrated into such projects.Keywords: renewable energies, decision aided tool, environment, simulation
Procedia PDF Downloads 459148 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties
Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich
Abstract:
Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis
Procedia PDF Downloads 107147 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB
Procedia PDF Downloads 144146 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display
Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay
Abstract:
Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission
Procedia PDF Downloads 501145 Phenotype of Cutaneous Squamous Cell Carcinoma in a Brazilian City with a Tropical Climate
Authors: Julia V. F. Cortes, Maria E. V. Amarante, Carolina L. Cerdeira, Roberta B. V. Silva
Abstract:
Nonmelanoma skin cancer is more commonly diagnosed than all other malignancies combined. In that group, cutaneous squamous cell carcinoma stands out for having the highest probability of metastasis and recurrence after treatment, in addition to being the second most prevalent form of skin cancer. Its main risk factors include exposure to carcinogens, such as ultraviolet radiation related to sunlight exposure, smoking, alcohol consumption, and human papillomavirus (HPV) infection. Considering the increased risk of skin cancer in the Brazilian population, caused by the high incidence of solar radiation, and the importance of identifying risk phenotypes for the accomplishment of public health actions, an epidemiological study was conducted in a city with a tropical climate located in southeastern Brazil, aiming to identify the target population and assist in primary and secondary prevention. This study describes the profile of patients with cutaneous squamous cell cancer, correlating the variables, sex, age, and differentiation. The study used as primary data source the results of anatomopathological exams delivered from January 2015 to December 2019 for patients registered at one pathology service, which analyzes the results of biopsies, Thus, 66 patients with cutaneous squamous cell carcinoma were analyzed. The most affected age group was 60 years or older (78.79%), emphasizing that moderately differentiated (79.49%) and well-differentiated forms (66.67%) are prevalent in this age group, resulting in a difference of 12.82 percentage points between them. In addition, the predominant sex was male (58%), and it was found that half of the women and 65.79% of men had a moderately differentiated type, whereas the well-differentiated type was slightly more frequent in women. It is worth noting that the moderately differentiated subtype has a 59.20% prevalence among all cases. Thus, it was concluded that the most affected age group was 60 years or older and that men were more affected. As for the subtype, the moderately differentiated one, which is recognized for presenting the second-highest risk for metastasis, was prevalent in this study, affecting 6.6% more men and predominating in the elderly.Keywords: cutaneous squamous cell carcinoma, epidemiology, skin cancer, spinal cell cancer
Procedia PDF Downloads 117144 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts
Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu
Abstract:
Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria
Procedia PDF Downloads 74143 Carbon Nanotubes Functionalization via Ullmann-Type Reactions Yielding C-C, C-O and C-N Bonds
Authors: Anna Kolanowska, Anna Kuziel, Sławomir Boncel
Abstract:
Carbon nanotubes (CNTs) represent a combination of lightness and nanoscopic size with high tensile strength, excellent thermal and electrical conductivity. By now, CNTs have been used as a support in heterogeneous catalysis (CuCl anchored to pre-functionalized CNTs) in the Ullmann-type coupling with aryl halides toward formation of C-N and C-O bonds. The results indicated that the stability of the catalyst was much improved and the elaborated catalytic system was efficient and recyclable. However, CNTs have not been considered as the substrate itself in the Ullmann-type reactions. But if successful, this functionalization would open new areas of CNT chemistry leading to enhanced in-solvent/matrix nanotube individualization. The copper-catalyzed Ullmann-type reaction is an attractive method for the formation of carbon-heteroatom and carbon-carbon bonds in organic synthesis. This condensation reaction is usually conducted at temperature as high as 200 oC, often in the presence of stoichiometric amounts of copper reagent and with activated aryl halides. However, a small amount of organic additive (e.g. diamines, amino acids, diols, 1,10-phenanthroline) can be applied in order to increase the solubility and stability of copper catalyst, and at the same time to allow performing the reaction under mild conditions. The copper (pre-)catalyst is prepared by in situ mixing of copper salt and the appropriate chelator. Our research is focused on the application of Ullmann-type reaction for the covalent functionalization of CNTs. Firstly, CNTs were chlorinated by using iodine trichloride (ICl3) in carbon tetrachloride (CCl4). This method involves formation of several chemical species (ICl, Cl2 and I2Cl6), but the most reactive is the dimer. The fact (that the dimer is the main individual in CCl4) is the reason for high reactivity and possibly high functionalization levels of CNTs. This method, indeed, yielded a notable amount of chlorine onto the MWCNT surface. The next step was the reaction of CNT-Cl with three substrates: aniline, iodobenzene and phenol for the formation C-N, C-C and C-O bonds, respectively, in the presence of 1,10-phenanthroline and cesium carbonate (Cs2CO3) as a base. As the CNT substrates, two multi-wall CNT (MWCNT) types were used: commercially available Nanocyl NC7000™ (9.6 nm diameter, 1.5 µm length, 90% purity) and thicker MWCNTs (in-house) synthesized in our laboratory using catalytic chemical vapour deposition (c-CVD). In-house CNTs had diameter ranging between 60-70 nm and length up to 300 µm. Since classical Ullmann reaction was found as suffering from poor yields, we have investigated the effect of various solvents (toluene, acetonitrile, dimethyl sulfoxide and N,N-dimethylformamide) on the coupling of substrates. Owing to the fact that the aryl halides show the reactivity order of I>Br>Cl>F, we have also investigated the effect of iodine presence on CNT surface on reaction yield. In this case, in first step we have used iodine monochloride instead of iodine trichloride. Finally, we have used the optimized reaction conditions with p-bromophenol and 1,2,4-trihydroxybenzene for the control of CNT dispersion.Keywords: carbon nanotubes, coupling reaction, functionalization, Ullmann reaction
Procedia PDF Downloads 168142 Effect of Using PCMs and Transparency Rations on Energy Efficiency and Thermal Performance of Buildings in Hot Climatic Regions. A Simulation-Based Evaluation
Authors: Eda K. Murathan, Gulten Manioglu
Abstract:
In the building design process, reducing heating and cooling energy consumption according to the climatic region conditions of the building are important issues to be considered in order to provide thermal comfort conditions in the indoor environment. Applying a phase-change material (PCM) on the surface of a building envelope is the new approach for controlling heat transfer through the building envelope during the year. The transparency ratios of the window are also the determinants of the amount of solar radiation gain in the space, thus thermal comfort and energy expenditure. In this study, a simulation-based evaluation was carried out by using Energyplus to determine the effect of coupling PCM and transparency ratio when integrated into the building envelope. A three-storey building, a 30m x 30m sized floor area and 10m x 10m sized courtyard are taken as an example of the courtyard building model, which is frequently seen in the traditional architecture of hot climatic regions. 8 zones (10m x10m sized) with 2 exterior façades oriented in different directions on each floor were obtained. The percentage of transparent components on the PCM applied surface was increased at every step (%30, %40, %50). For every zone differently oriented, annual heating, cooling energy consumptions, and thermal comfort based on the Fanger method were calculated. All calculations are made for the zones of the intermediate floor of the building. The study was carried out for Diyarbakır provinces representing the hot-dry climate region and Antalya representing the hot-humid climate region. The increase in the transparency ratio has led to a decrease in heating energy consumption but an increase in cooling energy consumption for both provinces. When PCM is applied to all developed options, It was observed that heating and cooling energy consumption decreased in both Antalya (6.06%-19.78% and %1-%3.74) and Diyarbakır (2.79%-3.43% and 2.32%-4.64%) respectively. When the considered building is evaluated under passive conditions for the 21st of July, which represents the hottest day of the year, it is seen that the user feels comfortable between 11 pm-10 am with the effect of night ventilation for both provinces.Keywords: building envelope, heating and cooling energy consumptions, phase change material, transparency ratio
Procedia PDF Downloads 176141 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions
Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison
Abstract:
Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.Keywords: exergy, hydrates, optimization, phase change material, thermodynamics
Procedia PDF Downloads 131140 Positive Interactions among Plants in Pinegroves over Quarzitic Sands
Authors: Enrique González Pendás, Vidal Pérez Hernández, Jorge Ferro Díaz, Nelson Careaga Pendás
Abstract:
The investigation is carried out on the Protected Area of San Ubaldo, toward the interior of an open pinegrove with palm trees in a dry plainness of quar zitic sands, belonging to the Floristic Managed Reservation San Ubaldo-Sabanalamar, Guane, Pinar del Río, Cuba. This area is characterized by drastic seasonal variations, high temperatures and water evaporation, strong solar radiation, with sandy soils of almost pure quartz, which are very acid and poor in nutrients. The objective of the present work is to determine evidence of facilitation and its relationship with the structure and composition of plant communities in these peculiar ecosystems. For this study six lineal parallel transepts of 100 m are traced, in those, a general recording of the flora is carried out. To establish which plants act as nurses, is taken into account a height over 1 meter, canopy over 1.5 meter and the occurrence of several species under it. Covering was recorded using the line intercept method; the medium values of species richness for the taxa under nurses is compared with those that are located in open spaces among them. Then, it is determined which plants are better recruiter of other species (better nurses). An experiment is made to measure and compare some parameters in pine seedlings under the canopy of the Byrsonima crassifolia (L.) Kunth. and in open spaces, also the number of individuals is counted by species to calculate the frequency and total abundance in the study area. As a result, it is offered an up-to-date floristic list, a phylogenetic tree of the plant community showing a high phylodiversity, it is proven that the medium values of species richness and abundance of species under the nurses, is significantly superior to those occurring in open spaces. Furthermore, by means of phylogenetic trees it is shown that the species which cohabit under the nurses are not phylogenetically related. The former results are cited evidences of facilitation among plants, as well as it is one more time shown the importance of the nurse effect in preserving plant diversity on extreme environments.Keywords: facilitation, nurse plants, positive interactions, quarzitic sands
Procedia PDF Downloads 341139 Association Between Renewable Energy and Community Forest User Group: A Case of Siranchowk Rural Municipality, Nepal
Authors: Prem Bahadur Giri, MathineeYucharoen
Abstract:
Community forest user groups (CFUGs) have been the core stone of forest management efforts in Nepal. Due to the lack of a smooth transition into the local governance structure in 2017, policy instruments have not been effectively cascaded to the local level, creating ambiguity and inconsistency in forest governance. Descriptive mixed-method research was performed with community users and stakeholders of the Tarpakha community forest, Siranchowk Rural Municipality, to understand the role of the political economy in CFUG management. The household survey was conducted among 100 households (who also are existing members of the Tarpakha CFUG) to understand and document their energy consumption preferences and practices. Likewise, ten key informant interviews and five focus group discussions with the municipality and forest management officials were also conducted to have a wider overview of the factors and political, socio-economic, and religious contexts behind the utilization of renewable energy for sustainable development. Findings from our study suggest that only 3% of households use biogas as their main source of energy. The rest of the households mention liquid petroleum gas (LPG), electricity, and firewood as major sources of energy for domestic purposes. Community members highlighted the difficulty in accessing firewood due to strict regulations from the CFUG, lack of cattle and manpower to rear cattle to produce cow dung (for biogas), and lack of technical expertise at the community level for the operation and maintenance of solar energy, among others as challenges of the resource. Likewise, key informants have mentioned policy loopholes at both the federal and local levels, especially with regard to the promotion of alternative or renewable energy, as there are no clear mandates and provisions to regulate the renewable energy industry. The study recommends doing an in-depth study on the feasibility of renewable energy sources, especially in the context of CFUGs, where biodiversity conservation aspects need to be equally taken into consideration while thinking of the promotion and expansion of renewable energy sources.Keywords: community forest, renewable energy, sustainable development, Nepal
Procedia PDF Downloads 14138 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters
Authors: Jyoti Sahu, Vinay A. Juvekar
Abstract:
Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature
Procedia PDF Downloads 392137 Prevalence and Molecular Characterization of Extended-Spectrum–β Lactamase and Carbapenemase-Producing Enterobacterales from Tunisian Seafood
Authors: Mehdi Soula, Yosra Mani, Estelle Saras, Antoine Drapeau, Raoudha Grami, Mahjoub Aouni, Jean-Yves Madec, Marisa Haenni, Wejdene Mansour
Abstract:
Multi-resistance to antibiotics in gram-negative bacilli and particularly in enterobacteriaceae, has become frequent in hospitals in Tunisia. However, data on antibiotic resistant bacteria in aquatic products are scarce. The aims of this study are to estimate the proportion of ESBL- and carbapenemase-producing Enterobacterales in seafood (clams and fish) in Tunisia and to molecularly characterize the collected isolates. Two types of seafood were sampled in unrelated markets in four different regions in Tunisia (641 pieces of farmed fish and 1075 mediterranean clams divided into 215 pools, and each pool contained 5 pieces). Once purchased, all samples were incubated in tubes containing peptone salt broth for 24 to 48h at 37°C. After incubation, overnight cultures were isolated on selective MacConkey agar plates supplemented with either imipenem or cefotaxime, identified using API20E test strips (bioMérieux, Marcy-l’Étoile, France) and confirmed by Maldi-TOF MS. Antimicrobial susceptibility was determined by the disk diffusion method on Mueller-Hinton agar plates and results were interpreted according to CA-SFM 2021. ESBL-producing Enterobacterales were detected using the Double Disc Synergy Test (DDST). Carbapenem-resistance was detected using an ertapenem disk and was respectively confirmed using the ROSCO KPC/MBL and OXA-48 Confirm Kit (ROSCO Diagnostica, Taastrup, Denmark). DNA was extracted using a NucleoSpin Microbial DNA extraction kit (Macherey-Nagel, Hoerdt, France), according to the manufacturer’s instructions. Resistance genes were determined using the CGE online tools. The replicon content and plasmid formula were identified from the WGS data using PlasmidFinder 2.0.1 and pMLST 2.0. From farmed fishes, nine ESBL-producing strains (9/641, 1.4%) were isolated, which were identified as E. coli (n=6) and K. pneumoniae (n=3). Among the 215 pools of 5 clams analyzed, 18 ESBL-producing isolates were identified, including 14 E. coli and 4 K. pneumoniae. A low isolation rate of ESBL-producing Enterobacterales was detected 1.6% (18/1075) in clam pools. In fish, the ESBL phenotype was due to the presence of the blaCTX-M-15 gene in all nine isolates, but no carbapenemase gene was identified. In clams, the predominant ESBL phenotype was blaCTX-M-1 (n=6/18). blaCPE (NDM1, OXA48) was detected only in 3 isolates ‘K. pneumoniae isolates’. Replicon typing on the strains carring the ESBL and carbapenemase gene revelead that the major type plasmid carried ESBL were IncF (42.3%) [n=11/26]. In all, our results suggest that seafood can be a reservoir of multi-drug resistant bacteria, most probably of human origin but also by the selection pressure of antibiotic. Our findings raise concerns that seafood bought for consumption may serve as potential reservoirs of AMR genes and pose serious threat to public health.Keywords: BLSE, carbapenemase, enterobacterales, tunisian seafood
Procedia PDF Downloads 109136 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)
Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger
Abstract:
Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction
Procedia PDF Downloads 138135 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI
Procedia PDF Downloads 53134 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 266133 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity
Procedia PDF Downloads 181132 Lateral Capacity of Helical-Pile Groups Subjected to Bearing Combined Loads
Authors: Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Azizb, Mona Fawzy Aldaghma
Abstract:
Helical piles have earned considerable attention as an effective deep foundation alternative due to their rapid installation process and their dual purpose in compression and tension. These piles find common uses as foundations for structures like solar panels, wind turbines, offshore platforms, and some kinds of retaining walls. These structures usually transfer different combinations of loads to their helical-pile foundations in the form of axial and lateral loads. Extensive research has been conducted to investigate and understand the behavior of these piles under the influence of either axial or lateral loads. However, the impacts of loading patterns that may act on the helical piles as combinations of axial compression and lateral loads still need more efforts of research work. This paper presents the results of an experimental (Lab tests) and numerical (PLAXIS-3D) study performed on vertical helical-pile groups under the action of combined loads as axial compression (bearing loads), acting successively with lateral (horizontal) loads. The study aims to clarify the effects of key factors, like helix location and direction of lateral load, on the lateral capacity of helical-pile groups and, consequently, on group efficiency. Besides the variation of helix location and lateral load direction, three patterns of successive bearing combined loads were considered, in which the axial vertical compression load was either zero, V1 or V2, whereas the lateral horizontal loads were varied under each vertical compression load. The study concluded that the lateral capacity of the helical-pile group is significantly affected by helix location within the length of the pile shaft. The optimal lateral performance is achieved with helices at a depth ratio of H/L = 0.4. Furthermore, groups of rectangular plan distribution exhibit greater lateral capacity if subjected to lateral horizontal load in the direction of its long axis. Additionally, the research emphasizes that the presence of vertical compression loading can enhance the lateral capacity of the group. This enhancement depends on the value of the vertical compression load, lateral load direction, and helix location, which highlights the complex interaction effect of these factors on the efficiency of helical-pile groups.Keywords: helical piles, experimental, numerical, lateral loading, group efficiency
Procedia PDF Downloads 33131 Edible Active Antimicrobial Coatings onto Plastic-Based Laminates and Its Performance Assessment on the Shelf Life of Vacuum Packaged Beef Steaks
Authors: Andrey A. Tyuftin, David Clarke, Malco C. Cruz-Romero, Declan Bolton, Seamus Fanning, Shashi K. Pankaj, Carmen Bueno-Ferrer, Patrick J. Cullen, Joe P. Kerry
Abstract:
Prolonging of shelf-life is essential in order to address issues such as; supplier demands across continents, economical profit, customer satisfaction, and reduction of food wastage. Smart packaging solutions presented in the form of naturally occurred antimicrobially-active packaging may be a solution to these and other issues. Gelatin film forming solution with adding of natural sourced antimicrobials is a promising tool for the active smart packaging. The objective of this study was to coat conventional plastic hydrophobic packaging material with hydrophilic antimicrobial active beef gelatin coating and conduct shelf life trials on beef sub-primal cuts. Minimal inhibition concentration (MIC) of Caprylic acid sodium salt (SO) and commercially available Auranta FV (AFV) (bitter oranges extract with mixture of nutritive organic acids) were found of 1 and 1.5 % respectively against bacterial strains Bacillus cereus, Pseudomonas fluorescens, Escherichia coli, Staphylococcus aureus and aerobic and anaerobic beef microflora. Therefore SO or AFV were incorporated in beef gelatin film forming solution in concentration of two times of MIC which was coated on a conventional plastic LDPE/PA film on the inner cold plasma treated polyethylene surface. Beef samples were vacuum packed in this material and stored under chilling conditions, sampled at weekly intervals during 42 days shelf life study. No significant differences (p < 0.05) in the cook loss was observed among the different treatments compared to control samples until the day 29. Only for AFV coated beef sample it was 3% higher (37.3%) than the control (34.4 %) on the day 36. It was found antimicrobial films did not protect beef against discoloration. SO containing packages significantly (p < 0.05) reduced Total viable bacterial counts (TVC) compared to the control and AFV samples until the day 35. No significant reduction in TVC was observed between SO and AFV films on the day 42 but a significant difference was observed compared to control samples with a 1.40 log of bacteria reduction on the day 42. AFV films significantly (p < 0.05) reduced TVC compared to control samples from the day 14 until the day 42. Control samples reached the set value of 7 log CFU/g on day 27 of testing, AFV films did not reach this set limit until day 35 and SO films until day 42 of testing. The antimicrobial AFV and SO coated films significantly prolonged the shelf-life of beef steaks by 33 or 55% (on 7 and 14 days respectively) compared to control film samples. It is concluded antimicrobial coated films were successfully developed by coating the inner polyethylene layer of conventional LDPE/PA laminated films after plasma surface treatment. The results indicated that the use of antimicrobial active packaging coated with SO or AFV increased significantly (p < 0.05) the shelf life of the beef sub-primal. Overall, AFV or SO containing gelatin coatings have the potential of being used as effective antimicrobials for active packaging applications for muscle-based food products.Keywords: active packaging, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 303130 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst
Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš
Abstract:
Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory
Procedia PDF Downloads 113129 Thermodynamic Performance of a Low-Cost House Coated with Transparent Infrared Reflective Paint
Authors: Ochuko K. Overen, Edson L. Meyer
Abstract:
Uncontrolled heat transfer between the inner and outer space of low-cost housings through the thermal envelope result in indoor thermal discomfort. As a result, an excessive amount of energy is consumed for space heating and cooling. Thermo-optical properties are the ability of paints to reduce the rate of heat transfer through the thermal envelope. The aim of this study is to analyze the thermal performance of a low-cost house with its walls inner surface coated with transparent infrared reflective paint. The thermo-optical properties of the paint were analyzed using Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX), Fourier Transform Infra-Red (FTIR) and thermal photographic technique. Meteorological indoor and ambient parameters such as; air temperature, relative humidity, solar radiation, wind speed and direction of a low-cost house in Golf-course settlement, South Africa were monitored. The monitoring period covers both winter and summer period before and after coating. The thermal performance of the coated walls was evaluated using time lag and decrement factor. The SEM image shows that the coat is transparent to light. The presence of Al as Al2O and other elements were revealed by the EDX spectrum. Before coating, the average decrement factor of the walls in summer was found to be 0.773 with a corresponding time lag of 1.3 hours. In winter, the average decrement factor and corresponding time lag were 0.467 and 1.6 hours, respectively. After coating, the average decrement factor and corresponding time lag were 0.533 and 2.3 hour, respectively in summer. In winter, an average decrement factor of 1.120 and corresponding time lag of 3 hours was observed. The findings show that the performance of the coats is influenced by the seasons. With a 74% reduction in decrement factor and 1.4 time lag increase in winter, it implies that the coatings have more ability to retain heat within the inner space of the house than preventing heat flow into the house. In conclusion, the results have shown that transparent infrared reflective paint has the ability to reduce the propagation of heat flux through building walls. Hence, it can serve as a remedy to the poor thermal performance of low-cost housings in South Africa.Keywords: energy efficiency, decrement factor, low-cost housing, paints, rural development, thermal comfort, time lag
Procedia PDF Downloads 284128 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 131