Search results for: distributed artificial intelligence
2543 Study of Composite Beam under the Effect of Shear Deformation
Authors: Hamid Hamli Benzahar
Abstract:
The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.Keywords: composite beam, shear deformation, moments, finites elements
Procedia PDF Downloads 742542 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4152541 Knowledge Based Software Model for the Management and Treatment of Malaria Patients: A Case of Kalisizo General Hospital
Authors: Mbonigaba Swale
Abstract:
Malaria is an infection or disease caused by parasites (Plasmodium Falciparum — causes severe Malaria, plasmodium Vivax, Plasmodium Ovale, and Plasmodium Malariae), transmitted by bites of infected anopheles (female) mosquitoes to humans. These vectors comprise of two types in Africa, particularly in Uganda, i.e. anopheles fenestus and Anopheles gambaie (‘example Anopheles arabiensis,,); feeds on man inside the house mainly at dusk, mid-night and dawn and rests indoors and makes them effective transmitters (vectors) of the disease. People in both urban and rural areas have consistently become prone to repetitive attacks of malaria, causing a lot of deaths and significantly increasing the poverty levels of the rural poor. Malaria is a national problem; it causes a lot of maternal pre-natal and antenatal disorders, anemia in pregnant mothers, low birth weights for the newly born, convulsions and epilepsy among the infants. Cumulatively, it kills about one million children every year in sub-Saharan Africa. It has been estimated to account for 25-35% of all outpatient visits, 20-45% of acute hospital admissions and 15-35% of hospital deaths. Uganda is the leading victim country, for which Rakai and Masaka districts are the most affected. So, it is not clear whether these abhorrent situations and episodes of recurrences and failure to cure from the disease are a result of poor diagnosis, prescription and dosing, treatment habits and compliance of the patients to the drugs or the ethical domain of the stake holders in relation to the main stream methodology of malaria management. The research is aimed at offering an alternative approach to manage and deal absolutely with problem by using a knowledge based software model of Artificial Intelligence (Al) that is capable of performing common-sense and cognitive reasoning so as to take decisions like the human brain would do to provide instantaneous expert solutions so as to avoid speculative simulation of the problem during differential diagnosis in the most accurate and literal inferential aspect. This system will assist physicians in many kinds of medical diagnosis, prescribing treatments and doses, and in monitoring patient responses, basing on the body weight and age group of the patient, it will be able to provide instantaneous and timely information options, alternative ways and approaches to influence decision making during case analysis. The computerized system approach, a new model in Uganda termed as “Software Aided Treatment” (SAT) will try to change the moral and ethical approach and influence conduct so as to improve the skills, experience and values (social and ethical) in the administration and management of the disease and drugs (combination therapy and generics) by both the patient and the health worker.Keywords: knowledge based software, management, treatment, diagnosis
Procedia PDF Downloads 542540 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3012539 Synthesis and Characterization of Non-Aqueous Electrodeposited ZnSe Thin Film
Authors: S. R. Kumar, Shashikant Rajpal
Abstract:
A nanocrystalline thin film of ZnSe was successfully electrodeposited on copper substrate using a non-aqueous solution and subsequently annealed in air at 400°C. XRD analysis indicates the polycrystalline deposit of (111) plane in both the cases. The sharpness of the peak increases due to annealing of the film and average grain size increases to 20 nm to 27nm. SEM photograph indicate that grains are uniform and densely distributed over the surface. Due to annealing the average grain size increased by 20%. The EDS spectroscopy shows the ratio of Zn & Se is 1.1 in case of annealed film. AFM analysis indicates the average roughness of the film reduces from 181nm to 165nm due to annealing of the film. The bandgap also decreases from 2.71eV to 2.62eV.Keywords: electrodeposition, non-aqueous medium, SEM, XRD
Procedia PDF Downloads 4842538 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds
Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu
Abstract:
Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL
Procedia PDF Downloads 1752537 Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories
Authors: Michael Sonne Kristensen, Frank Loesche, James Foster, Elif Ozcan, Judy Edworthy
Abstract:
Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment.Keywords: auditory spatiotemporal trajectory, medical alarms, social cognition, video-ethography
Procedia PDF Downloads 1892536 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups
Authors: John Hardy
Abstract:
Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism
Procedia PDF Downloads 2892535 The Role of Industrial Design in Fashion
Authors: Rojean Ghafariasar, Leili Nosrati
Abstract:
The article introduces the categories and characteristics of cross-design, respectively, between industry and industry designers, artists, brands and brands, science, technology, and fashion. It focuses on the combination of technology and fashion cross-design methods, corresponding case studies on the combination of new technology fabrics, fashion design, smart devices, and also 3D printing technology, emphasizing the integration and application value of technology and fashion. The document also introduces design elements into fashion design through scientific and technological intelligence, promoting fashion innovation as well as research and development of new materials and functions, and incubates an ecosystem for the fashion industry through science and technology.Keywords: fashion, design, industrial design, crossover design
Procedia PDF Downloads 902534 [Keynote Speech]: Facilitating Familial Support of Saudi Arabians Living with HIV/AIDS
Authors: Noor Attar
Abstract:
The paper provides an overview of the current situation of HIV/AIDS patients in the Kingdom of Saudi Arabia (KSA) and a literature review of the concepts of stigma communication, communication of social support. These concepts provide the basis for the proposed methods, which will include conducting a textual analysis of materials that are currently distributed to family members of persons living with HIV/AIDS (PLWHIV/A) in KSA and creating an educational brochure. The brochure will aim to help families of PLWHIV/A in KSA (1) understand how stigma shapes the experience of PLWHIV/A, (2) realize the role of positive communication as a helpful social support, and (3) develop the ability to provide positive social support for their loved ones. Procedia PDF Downloads 3112533 Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications
Authors: Syed W. Hasan, Zhiqun Tian
Abstract:
Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy.Keywords: Ag nanoparticles, Conductive fibers, Graphene, Wet spinning
Procedia PDF Downloads 1412532 Facilitating the Learning Environment as a Servant Leader: Empowering Self-Directed Student Learning
Authors: Thomas James Bell III
Abstract:
Pedagogy is thought of as one's philosophy, theory, or teaching method. This study examines the science of learning, considering the forced reconsideration of effective pedagogy brought on by the aftermath of the 2020 coronavirus pandemic. With the aid of various technologies, online education holds challenges and promises to enhance the learning environment if implemented to facilitate student learning. Behaviorism centers around the belief that the instructor is the sage on the classroom stage using repetition techniques as the primary learning instrument. This approach to pedagogy ascribes complete control of the learning environment and works best for students to learn by allowing students to answer questions with immediate feedback. Such structured learning reinforcement tends to guide students' learning without considering learners' independence and individual reasoning. And such activities may inadvertently stifle the student's ability to develop critical thinking and self-expression skills. Fundamentally liberationism pedagogy dismisses the concept that education is merely about students learning things and more about the way students learn. Alternatively, the liberationist approach democratizes the classroom by redefining the role of the teacher and student. The teacher is no longer viewed as the sage on the stage but as a guide on the side. Instead, this approach views students as creators of knowledge and not empty vessels to be filled with knowledge. Moreover, students are well suited to decide how best to learn and which areas improvements are needed. This study will explore the classroom instructor as a servant leader in the twenty-first century, which allows students to integrate technology that encapsulates more individual learning styles. The researcher will examine the Professional Scrum Master (PSM I) exam pass rate results of 124 students in six sections of an Agile scrum course. The students will be separated into two groups; the first group will follow a structured instructor-led course outlined by a course syllabus. The second group will consist of several small teams (ten or fewer) of self-led and self-empowered students. The teams will conduct several event meetings that include sprint planning meetings, daily scrums, sprint reviews, and retrospective meetings throughout the semester will the instructor facilitating the teams' activities as needed. The methodology for this study will use the compare means t-test to compare the mean of an exam pass rate in one group to the mean of the second group. A one-tailed test (i.e., less than or greater than) will be used with the null hypothesis, for the difference between the groups in the population will be set to zero. The major findings will expand the pedagogical approach that suggests pedagogy primarily exist in support of teacher-led learning, which has formed the pillars of traditional classroom teaching. But in light of the fourth industrial revolution, there is a fusion of learning platforms across the digital, physical, and biological worlds with disruptive technological advancements in areas such as the Internet of Things (IoT), artificial intelligence (AI), 3D printing, robotics, and others.Keywords: pedagogy, behaviorism, liberationism, flipping the classroom, servant leader instructor, agile scrum in education
Procedia PDF Downloads 1422531 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System
Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao
Abstract:
Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket
Procedia PDF Downloads 2032530 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 1262529 Using MALDI-TOF MS to Detect Environmental Microplastics (Polyethylene, Polyethylene Terephthalate, and Polystyrene) within a Simulated Tissue Sample
Authors: Kara J. Coffman-Rea, Karen E. Samonds
Abstract:
Microplastic pollution is an urgent global threat to our planet and human health. Microplastic particles have been detected within our food, water, and atmosphere, and found within the human stool, placenta, and lung tissue. However, most spectrometric microplastic detection methods require chemical digestion which can alter or destroy microplastic particles and makes it impossible to acquire information about their in-situ distribution. MALDI TOF MS (Matrix-assisted laser desorption ionization-time of flight mass spectrometry) is an analytical method using a soft ionization technique that can be used for polymer analysis. This method provides a valuable opportunity to both acquire information regarding the in-situ distribution of microplastics and also minimizes the destructive element of chemical digestion. In addition, MALDI TOF MS allows for expanded analysis of the microplastics including detection of specific additives that may be present within them. MALDI TOF MS is particularly sensitive to sample preparation and has not yet been used to analyze environmental microplastics within their specific location (e.g., biological tissues, sediment, water). In this study, microplastics were created using polyethylene gloves, polystyrene micro-foam, and polyethylene terephthalate cable sleeving. Plastics were frozen using liquid nitrogen and ground to obtain small fragments. An artificial tissue was created using a cellulose sponge as scaffolding coated with a MaxGel Extracellular Matrix to simulate human lung tissue. Optimal preparation techniques (e.g., matrix, cationization reagent, solvent, mixing ratio, laser intensity) were first established for each specific polymer type. The artificial tissue sample was subsequently spiked with microplastics, and specific polymers were detected using MALDI-TOF-MS. This study presents a novel method for the detection of environmental polyethylene, polyethylene terephthalate, and polystyrene microplastics within a complex sample. Results of this study provide an effective method that can be used in future microplastics research and can aid in determining the potential threats to environmental and human health that they pose.Keywords: environmental plastic pollution, MALDI-TOF MS, microplastics, polymer identification
Procedia PDF Downloads 2552528 Anaplasmosis among Camels in Iran and Observation of Abnormalities in Infected Blood Films
Authors: Khosro Ghazvinian, Touba Khodaiean
Abstract:
Anaplasma organisms are obligatory intracellular bacteria belonging to the order Rickettsiales, family Anaplasmataceae. This disease is distributed around the globe and infected ticks are the most important vectors in anaplasmosis transmission. There is a little information about anaplasmosis in camels. This research investigated the blood films of 35 (20 male, 15 female) camels randomly selected from a flock of 150 camels. Samples were stained with Giemsa and Anaplasma sp. organisms were observed in six out of 35 (17.14 %) blood films. There were also some changes in Diff-Quick and morphology of leukocytes. No significant difference between male and female camels was observed (P>0.05). According to the results anaplasmosis is presented among camels in Iran.Keywords: anaplasma, anaplasmosis, camel, Iran
Procedia PDF Downloads 2452527 Influence of Security Attributes in Component-Based Software Development
Authors: Somayeh Zeinali
Abstract:
A component is generally defined as a piece of executable software with a published interface. Component-based software engineering (CBSE) has become recognized as a new sub-discipline of software engineering. In the component-based software development, components cannot be completely secure and thus easily become vulnerable. Some researchers have investigated this issue and proposed approaches to detect component intrusions or protect distributed components. Software security also refers to the process of creating software that is considered secure.The terms “dependability”, “trustworthiness”, and “survivability” are used interchangeably to describe the properties of software security.Keywords: component-based software development, component-based software engineering , software security attributes, dependability, component
Procedia PDF Downloads 5542526 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network
Procedia PDF Downloads 2242525 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance
Authors: Yi Jen Wang, Yu Ju Chen
Abstract:
Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing
Procedia PDF Downloads 1742524 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process
Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria
Abstract:
Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms
Procedia PDF Downloads 1072523 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050
Authors: Farzaneh Sasanpour, Saeed Amini Varaki
Abstract:
Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran
Procedia PDF Downloads 662522 In-situ Raman Spectroscopy of Flexible Graphene Oxide Films Containing Pt Nanoparticles in The Presense of Atomic Hydrogen
Authors: Ali Moafi, Kourosh Kalantarzadeh, Richard Kaner, Parviz Parvin, Ebrahim Asl Soleimani, Dougal McCulloch
Abstract:
In-situ Raman spectroscopy of flexible graphene-oxide films examined upon exposure to hydrogen gas, air, and synthetic air. The changes in D and G peaks are attributed to defects responding to atomic hydrogen spilled over from the catalytic behavior of Pt nanoparticles distributed all over the film. High-resolution transmission electron microscopy images (HRTEM) as well as electron energy loss spectroscopy (EELS) were carried out to define the density of the samples.Keywords: in situ Raman Spectroscopy, EELS, TEM, graphene oxide, graphene, atomic hydrogen
Procedia PDF Downloads 4472521 Development and Range Testing of a LoRaWAN System in an Urban Environment
Authors: N. R. Harris, J. Curry
Abstract:
This paper describes the construction and operation of an experimental LoRaWAN network surrounding the University of Southampton in the United Kingdom. Following successful installation, an experimental node design is built and characterised, with particular emphasis on radio range. Several configurations are investigated, including different data rates, and varying heights of node. It is concluded that although range can be great (over 8 km in this case), environmental topology is critical. However, shorter range implementations, up to about 2 km in an urban environment, are relatively insensitive although care is still needed. The example node and the relatively simple base station reported demonstrate that LoraWan can be a very low cost and practical solution to Internet of Things type applications for distributed monitoring systems with sensors spread over distances of several km.Keywords: long-range, wireless, sensor, network
Procedia PDF Downloads 1352520 Meitu and the Case of the AI Art Movement
Authors: Taliah Foudah, Sana Masri, Jana Al Ghamdi, Rimaz Alzaaqi
Abstract:
This research project explores the creative works of the app Metui, which allows consumers to edit their photos and use the new and popular AI feature, which turns any photo into a cartoon-like animated image with beautified enhancements. Studying this AI app demonstrates the significance of the ability in which AI can develop intricate designs which verily replicate the human mind. Our goal was to investigate the Metui app by asking our audience certain questions about its functionality and their personal feelings about its credibility as well as their beliefs as to how this app will add to the future of the AI generation, both positively and negatively. Their responses were further explored by analyzing the questions and responses thoroughly and calculating the results through pie charts. Overall, it was concluded that the Metui app is a powerful step forward for AI by replicating the intelligence of humans and its creativity to either benefit society or do the opposite.Keywords: AI Art, Meitu, application, photo editing
Procedia PDF Downloads 672519 The Value of Job Security across Various Welfare Policies
Authors: Eithan Hourie, Miki Malul, Raphael Bar-El
Abstract:
To investigate the relationship between various welfare policies and the value of job security, we conducted a study with 201 people regarding their assessments of the value of job security with respect to three elements: income stability, assurance of continuity of employment, and security in the job. The experiment simulated different welfare policy scenarios, such as the amount and duration of unemployment benefits, workfare, and basic income. The participants evaluated the value of job security in various situations. We found that the value of job security is approximately 22% of the starting salary, which is distributed as follows: 13% reflects income security, 8.7% reflects job security, and about 0.3% is for being able to keep their current employment in the future. To the best of our knowledge, this article is one of the pioneers in trying to quantify the value of job security in different market scenarios and at varying levels of welfare policy. Our conclusions may help decision-makers when deciding on a welfare policy.Keywords: job security value, employment protection legislation, status quo bias, expanding welfare policy
Procedia PDF Downloads 1032518 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1932517 A Study of Farming Earthworms Commercial with Organic Waste
Authors: Phrutsaya Piyanusorn
Abstract:
This study aimed to study the artificial barriers and potential restrictions. Aspects of farming, marketing and cost oriented commercial farming earthworms with organic waste. To promote the use of waste recycling and reduce the amount of organic waste that must be disposed. And to create added value this research focuses on qualitative and quantitative research. By earthworm farms surveyed collected insights to analyse the strengths, weaknesses, including problems, conditions and limitations. To get more updates, which covers the cost of marketing and farm management.Keywords: farmin earthworms, commercial, organic waste, marketing management
Procedia PDF Downloads 3282516 Mobile Smart Application Proposal for Predicting Calories in Food
Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso
Abstract:
Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.Keywords: volume estimation, calorie estimation, artificial vision, food nutrition
Procedia PDF Downloads 982515 In Silico Study of Alpha glucosidase Inhibitors by Flavonoids
Authors: Boukli Hacene Faiza, Soufi Wassila, Ghalem Said
Abstract:
The oral antidiabetics drugs such as alpha glucosidase inhibitors present undesirable effects like acarbose. Flavonoids are class of molecules widely distributed in plants, for this reason we are interested in our work to study the inhibition in silico of alpha glucosidase by natural ligands ( flavonoids analogues) using molecular modeling methods using MOE (Molecular Operating Environment) software to predict their interaction with this enzyme with score energy, ADME /T tests and druglikeness properties experiments. Two flavonoids Beicalein and Apigenin have high binding affinity with alpha glucosidase with lower IC50 supposed potent inhibitors.Keywords: alpha glucosidase, flavonoides analogues, drug research, molecular modeling
Procedia PDF Downloads 1052514 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 242