Search results for: band pass filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2193

Search results for: band pass filter

153 Motivation of Doctors and its Impact on the Quality of Working Life

Authors: E. V. Fakhrutdinova, K. R. Maksimova, P. B. Chursin

Abstract:

At the present stage of the society progress the health care is an integral part of both the economic system and social, while in the second case the medicine is a major component of a number of basic and necessary social programs. Since the foundation of the health system are highly qualified health professionals, it is logical proposition that increase of doctor`s professionalism improves the effectiveness of the system as a whole. Professionalism of the doctor is a collection of many components, essential role played by such personal-psychological factors as honesty, willingness and desire to help people, and motivation. A number of researchers consider motivation as an expression of basic human needs that have passed through the “filter” which is a worldview and values learned in the process of socialization by the individual, to commit certain actions designed to achieve the expected result. From this point of view a number of researchers propose the following classification of highly skilled employee’s needs: 1. the need for confirmation the competence (setting goals that meet the professionalism and receipt of positive emotions in their decision), 2. The need for independence (the ability to make their own choices in contentious situations arising in the process carry out specialist functions), 3. The need for ownership (in the case of health care workers, to the profession and accordingly, high in the eyes of the public status of the doctor). Nevertheless, it is important to understand that in a market economy a significant motivator for physicians (both legal and natural persons) is to maximize its own profits. In the case of health professionals duality motivational structure creates an additional contrast, as in the public mind the image of the ideal physician; usually a altruistically minded person thinking is not primarily about their own benefit, and to assist others. In this context, the question of the real motivation of health workers deserves special attention. The survey conducted by the American researcher Harrison Terni for the magazine "Med Tech" in 2010 revealed the opinion of more than 200 medical students starting courses, and the primary motivation in a profession choice is "desire to help people", only 15% said that they want become a doctor, "to earn a lot". From the point of view of most of the classical theories of motivation this trend can be called positive, as intangible incentives are more effective. However, it is likely that over time the opinion of the respondents may change in the direction of mercantile motives. Thus, it is logical to assume that well-designed system of motivation of doctor`s labor should be based on motivational foundations laid during training in higher education.

Keywords: motivation, quality of working life, health system, personal-psychological factors, motivational structure

Procedia PDF Downloads 346
152 Temperature Dependence of Photoluminescence Intensity of Europium Dinuclear Complex

Authors: Kwedi L. M. Nsah, Hisao Uchiki

Abstract:

Quantum computation is a new and exciting field making use of quantum mechanical phenomena. In classical computers, information is represented as bits, with values either 0 or 1, but a quantum computer uses quantum bits in an arbitrary superposition of 0 and 1, enabling it to reach beyond the limits predicted by classical information theory. lanthanide ion quantum computer is an organic crystal, having a lanthanide ion. Europium is a favored lanthanide, since it exhibits nuclear spin coherence times, and Eu(III) is photo-stable and has two stable isotopes. In a europium organic crystal, the key factor is the mutual dipole-dipole interaction between two europium atoms. Crystals of the complex were formed by making a 2 :1 reaction of Eu(fod)3 and bpm. The transparent white crystals formed showed brilliant red luminescence with a 405 nm laser. The photoluminescence spectroscopy was observed both at room and cryogenic temperatures (300-14 K). The luminescence spectrum of [Eu(fod)3(μ-bpm) Eu(fod)3] showed characteristic of Eu(III) emission transitions in the range 570–630 nm, due to the deactivation of 5D0 emissive state to 7Fj. For the application of dinuclear Eu3+ complex to q-bit device, attention was focused on 5D0 -7F0 transition, around 580 nm. The presence of 5D0 -7F0 transition at room temperature revealed that at least one europium symmetry had no inversion center. Since the line was unsplit by the crystal field effect, any multiplicity observed was due to a multiplicity of Eu3+ sites. For q-bit element, more narrow line width of 5D0 → 7F0 PL band in Eu3+ ion was preferable. Cryogenic temperatures (300 K – 14 K) was applicable to reduce inhomogeneous broadening and distinguish between ions. A CCD image sensor was used for low temperature Photoluminescence measurement, and a far better resolved luminescent spectrum was gotten by cooling the complex at 14 K. A red shift by 15 cm-1 in the 5D0 - 7F0 peak position was observed upon cooling, the line shifted towards lower wavenumber. An emission spectrum at the 5D0 - 7F0 transition region was obtained to verify the line width. At this temperature, a peak with magnitude three times that at room temperature was observed. The temperature change of the 5D0 state of Eu(fod)3(μ-bpm)Eu(fod)3 showed a strong dependence in the vicinity of 60 K to 100 K. Thermal quenching was observed at higher temperatures than 100 K, at which point it began to decrease slowly with increasing temperature. The temperature quenching effect of Eu3+ with increase temperature was caused by energy migration. 100 K was the appropriate temperature for the observation of the 5D0 - 7F0 emission peak. Europium dinuclear complex bridged by bpm was successfully prepared and monitored at cryogenic temperatures. At 100 K the Eu3+-dope complex has a good thermal stability and this temperature is appropriate for the observation of the 5D0 - 7F0 emission peak. Sintering the sample above 600o C could also be a method to consider but the Eu3+ ion can be reduced to Eu2+, reasons why cryogenic temperature measurement is preferably over other methods.

Keywords: Eu(fod)₃, europium dinuclear complex, europium ion, quantum bit, quantum computer, 2, 2-bipyrimidine

Procedia PDF Downloads 169
151 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay

Abstract:

Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 175
150 A Comparison of Proxemics and Postural Head Movements during Pop Music versus Matched Music Videos

Authors: Harry J. Witchel, James Ackah, Carlos P. Santos, Nachiappan Chockalingam, Carina E. I. Westling

Abstract:

Introduction: Proxemics is the study of how people perceive and use space. It is commonly proposed that when people like or engage with a person/object, they will move slightly closer to it, often quite subtly and subconsciously. Music videos are known to add entertainment value to a pop song. Our hypothesis was that by adding appropriately matched video to a pop song, it would lead to a net approach of the head to the monitor screen compared to simply listening to an audio-only version of the song. Methods: We presented to 27 participants (ages 21.00 ± 2.89, 15 female) seated in front of 47.5 x 27 cm monitor two musical stimuli in a counterbalanced order; all stimuli were based on music videos by the band OK Go: Here It Goes Again (HIGA, boredom ratings (0-100) = 15.00 ± 4.76, mean ± SEM, standard-error-of-the-mean) and Do What You Want (DWYW, boredom ratings = 23.93 ± 5.98), which did not differ in boredom elicited (P = 0.21, rank-sum test). Each participant experienced each song only once, and one song (counterbalanced) as audio-only versus the other song as a music video. The movement was measured by video-tracking using Kinovea 0.8, based on recording from a lateral aspect; before beginning, each participant had a reflective motion tracking marker placed on the outer canthus of the left eye. Analysis of the Kinovea X-Y coordinate output in comma-separated-variables format was performed in Matlab, as were non-parametric statistical tests. Results: We found that the audio-only stimuli (combined for both HIGA and DWYW, mean ± SEM, 35.71 ± 5.36) were significantly more boring than the music video versions (19.46 ± 3.83, P = 0.0066 Wilcoxon Signed Rank Test (WSRT), Cohen's d = 0.658, N = 28). We also found that participants' heads moved around twice as much during the audio-only versions (speed = 0.590 ± 0.095 mm/sec) compared to the video versions (0.301 ± 0.063 mm/sec, P = 0.00077, WSRT). However, the participants' mean head-to-screen distances were not detectably smaller (i.e. head closer to the screen) during the music videos (74.4 ± 1.8 cm) compared to the audio-only stimuli (73.9 ± 1.8 cm, P = 0.37, WSRT). If anything, during the audio-only condition, they were slightly closer. Interestingly, the ranges of the head-to-screen distances were smaller during the music video (8.6 ± 1.4 cm) compared to the audio-only (12.9 ± 1.7 cm, P = 0.0057, WSRT), the standard deviations were also smaller (P = 0.0027, WSRT), and their heads were held 7 mm higher (video 116.1 ± 0.8 vs. audio-only 116.8 ± 0.8 cm above floor, P = 0.049, WSRT). Discussion: As predicted, sitting and listening to experimenter-selected pop music was more boring than when the music was accompanied by a matched, professionally-made video. However, we did not find that the proxemics of the situation led to approaching the screen. Instead, adding video led to efforts to control the head to a more central and upright viewing position and to suppress head fidgeting.

Keywords: boredom, engagement, music videos, posture, proxemics

Procedia PDF Downloads 155
149 The Return of the Rejected Kings: A Comparative Study of Governance and Procedures of Standards Development Organizations under the Theory of Private Ordering

Authors: Olia Kanevskaia

Abstract:

Standardization has been in the limelight of numerous academic studies. Typically described as ‘any set of technical specifications that either provides or is intended to provide a common design for a product or process’, standards do not only set quality benchmarks for products and services, but also spur competition and innovation, resulting in advantages for manufacturers and consumers. Their contribution to globalization and technology advancement is especially crucial in the Information and Communication Technology (ICT) and telecommunications sector, which is also characterized by a weaker state-regulation and expert-based rule-making. Most of the standards developed in that area are interoperability standards, which allow technological devices to establish ‘invisible communications’ and to ensure their compatibility and proper functioning. This type of standard supports a large share of our daily activities, ranging from traffic coordination by traffic lights to the connection to Wi-Fi networks, transmission of data via Bluetooth or USB and building the network architecture for the Internet of Things (IoT). A large share of ICT standards is developed in the specialized voluntary platforms, commonly referred to as Standards Development Organizations (SDOs), which gather experts from various industry sectors, private enterprises, governmental agencies and academia. The institutional architecture of these bodies can vary from semi-public bodies, such as European Telecommunications Standards Institute (ETSI), to industry-driven consortia, such as the Internet Engineering Task Force (IETF). The past decades witnessed a significant shift of standard setting to those institutions: while operating independently from the states regulation, they offer a rather informal setting, which enables fast-paced standardization and places technical supremacy and flexibility of standards above other considerations. Although technical norms and specifications developed by such nongovernmental platforms are not binding, they appear to create significant regulatory impact. In the United States (US), private voluntary standards can be used by regulators to achieve their policy objectives; in the European Union (EU), compliance with harmonized standards developed by voluntary European Standards Organizations (ESOs) can grant a product a free-movement pass. Moreover, standards can de facto manage the functioning of the market when other regulative alternatives are not available. Hence, by establishing (potentially) mandatory norms, SDOs assume regulatory functions commonly exercised by States and shape their own legal order. The purpose of this paper is threefold: First, it attempts to shed some light on SDOs’ institutional architecture, focusing on private, industry-driven platforms and comparing their regulatory frameworks with those of formal organizations. Drawing upon the relevant scholarship, the paper then discusses the extent to which the formulation of technological standards within SDOs constitutes a private legal order, operating in the shadow of governmental regulation. Ultimately, this contribution seeks to advise whether a state-intervention in industry-driven standard setting is desirable, and whether the increasing regulatory importance of SDOs should be addressed in legislation on standardization.

Keywords: private order, standardization, standard-setting organizations, transnational law

Procedia PDF Downloads 155
148 Mapping the Urban Catalytic Trajectory for 'Convention and Exhibition' Projects: A Case of India International Convention and Expo Centre, New Delhi

Authors: Bhavana Gulaty, Arshia Chaudhri

Abstract:

Great civic projects contribute integrally to a city, and every city undergoes a recurring cycle of urban transformations and regeneration by their insertion. The M.I.C.E. (Meetings, Incentives, Convention and Exhibitions) industry is the forbearer of one category of such catalytic civic projects. Through a specific focus on M.I.C.E. destinations, this paper illustrates the multifarious dimensions that urban catalysts impact the city on S.P.U.R. (Seed. Profile. Urbane. Reflections), the theoretical framework of this paper aims to unearth these dimensions in the realm of the COEX (Convention & Exhibition) biosphere. The ‘COEX Biosphere’ is the filter of such catalysts being ecosystems unto themselves. Like a ripple in water, the impact of these strategic interventions focusing on art, culture, trade, and promotion expands right from the trigger; the immediate context to the region and subsequently impacts the global scale. These ripples are known to bring about significant economic, social, and political and network changes. The COEX inventory in the Asian context has one such prominent addition; the proposed India International Convention and Exhibition Centre (IICC) at New Delhi. It is envisioned to be the largest facility in Asia currently and would position India on the global M.I.C.E map. With the first phase of the project scheduled to open for use in the end of 2019, this flagship project of the Government of India is projected to cater to a peak daily footfall of 3,20,000 visitors and estimated to generate 5,00,000 jobs. While the economic benefits are yet to manifest in real time and ‘Good design is good business’ holds true, for the urban transformation to be meaningful, the benefits have to go beyond just a balance sheet for the city’s exchequer. This aspect has been found relatively unexplored in research on these developments. The methodology for investigation will comprise of two steps. The first will be establishing an inventory of the global success stories and associated benefits of COEX projects over the past decade. The rationale for capping the timeframe is the significant paradigm shift that has been observed in their recent conceptualization; for instance ‘Innovation Districts’ conceptualised in the city of Albuquerque that converges into the global economy. The second step would entail a comparative benchmarking of the projected transformations by IICC through a toolkit of parameters. This is posited to yield a matrix that can form the test bed for mapping the catalytic trajectory for projects in the pipeline globally. As a ready reckoner, it purports to be a catalyst to substantiate decision making in the planning stage itself for future projects in similar contexts.

Keywords: catalysts, COEX, M.I.C.E., urban transformations

Procedia PDF Downloads 147
147 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 216
146 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing

Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn

Abstract:

Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.

Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency

Procedia PDF Downloads 101
145 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 38
144 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 52
143 Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones

Authors: Sabolč Pap, Srđana Kolaković, Jelena Radonić, Ivana Mihajlović, Dragan Adamović, Mirjana Vojinović Miloradov, Maja Turk Sekulić

Abstract:

Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material.

Keywords: activated carbon, FTIR, H3PO4, lignocellulosic raw materials

Procedia PDF Downloads 239
142 Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands

Authors: Ayla Roberta Galaco, Juliana Fonseca De Lima, Osvaldo Antonio Serra

Abstract:

Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS.

Keywords: isostructural, lanthanoids, lanthanoids organic frameworks (LOFs), metal organic frameworks (MOFs), thermogravimetry, X-Ray diffraction

Procedia PDF Downloads 241
141 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 210
140 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 286
139 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 82
138 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 52
137 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment

Authors: Nabil Al-Zaqri

Abstract:

Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.

Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production

Procedia PDF Downloads 127
136 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 122
135 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production

Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers

Abstract:

Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.

Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography

Procedia PDF Downloads 160
134 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy

Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket

Abstract:

Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.

Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety

Procedia PDF Downloads 141
133 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 283
132 Integrating Non-Psychoactive Phytocannabinoids and Their Cyclodextrin Inclusion Complexes into the Treatment of Glioblastoma

Authors: Kyriaki Hatziagapiou, Konstantinos Bethanis, Olti Nikola, Elias Christoforides, Eleni Koniari, Eleni Kakouri, George Lambrou, Christina Kanaka-Gantenbein

Abstract:

Glioblastoma multiforme (GBM) remains a serious health challenge, as current therapeutic modalities continue to yield unsatisfactory results, with the average survival rarely exceeding 1-2 years. Natural compounds still provide some of the most promising approaches for discovering new drugs. The non-psychotropic cannabidiol (CBD) deriving from Cannabis sativa L. provides such promise. CBD is endowed with anticancer, antioxidant, and genoprotective properties as established in vitro and in in vivo experiments. CBD’s selectivity towards cancer cells and its safe profile suggest its usage in cancer therapies. However, the bioavailability of oral CBD is low due to poor aqueous solubility, erratic gastrointestinal absorption, and significant first-pass metabolism, hampering its therapeutic potential and resulting in a variable pharmacokinetic profile. In this context, CBD can take great advantage of nanomedicine-based formulation strategies. Cyclodextrins (CDs) are cyclic oligosaccharides used in the pharmaceutical industry to incorporate apolar molecules inside their hydrophobic cavity, increasing their stability, water solubility, and bioavailability or decreasing their side effects. CBD-inclusion complexes with CDs could be a good strategy to improve its properties, like solubility and stability to harness its full therapeutic potential. The current research aims to study the potential cytotoxic effect of CBD and CBD-CDs complexes CBD-RMβCD (randomly methylated β-cyclodextrin) and CBD-HPβCD (hydroxypropyl-b-CD) on the A172 glioblastoma cell line. CBD is diluted in 10% DMSO, and CBD/CDs solutions are prepared by mixing solid CBD, solid CDs, and dH2O. For the biological assays, A172 cells are incubated at a range of concentrations of CBD, CBD-RMβCD and CBD-HPβCD, RMβCD, and HPβCD (0,03125-4 mg/ml) at 24, 48, and 72 hours. Analysis of cell viability after incubation with the compounds is performed with Alamar Blue viability assay. CBD’s dilution to DMSO 10% was inadequate, as crystals are observed; thus cytotoxicity experiments are not assessed. CBD’s solubility is enhanced in the presence of both CDs. CBD/CDs exert significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72, and 96 hours versus cells not exposed); as their concentration and time of exposure increases, the reduction of resazurin to resofurin decreases, indicating a reduction in cell viability. The cytotoxic effect is more pronounced in cells exposed to CBD-HPβCD for all concentrations and time-points. RMβCD and HPβCD at the highest concentration of 4 mg/ml also exerted antitumor action per se since manifesting cell growth inhibition. The results of our study could afford the basis of research regarding the use of natural products and their inclusion complexes as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgments: The research is partly funded by ΙΚΥ (State Scholarships Foundation) – Post-doc Scholarships-Partnership Agreement 2014-2020.

Keywords: cannabidiol, cyclodextrins, glioblastoma, hydroxypropyl-b-Cyclodextrin, randomly-methylated-β-cyclodextrin

Procedia PDF Downloads 158
131 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 96
130 Ecosystem Approach in Aquaculture: From Experimental Recirculating Multi-Trophic Aquaculture to Operational System in Marsh Ponds

Authors: R. Simide, T. Miard

Abstract:

Integrated multi-trophic aquaculture (IMTA) is used to reduce waste from aquaculture and increase productivity by co-cultured species. In this study, we designed a recirculating multi-trophic aquaculture system which requires low energy consumption, low water renewal and easy-care. European seabass (Dicentrarchus labrax) were raised with co-cultured sea urchin (Paracentrotus lividus), deteritivorous polychaete fed on settled particulate matter, mussels (Mytilus galloprovincialis) used to extract suspended matters, macroalgae (Ulva sp.) used to uptake dissolved nutrients and gastropod (Phorcus turbinatus) used to clean the series of 4 tanks from fouling. Experiment was performed in triplicate during one month in autumn under an experimental greenhouse at the Institute Océanographique Paul Ricard (IOPR). Thanks to the absence of a physical filter, any pomp was needed to pressure water and the water flow was carried out by a single air-lift followed by gravity flow.Total suspended solids (TSS), biochemical oxygen demand (BOD5), turbidity, phytoplankton estimation and dissolved nutrients (ammonium NH₄, nitrite NO₂⁻, nitrate NO₃⁻ and phosphorus PO₄³⁻) were measured weekly while dissolved oxygen and pH were continuously recorded. Dissolved nutrients stay under the detectable threshold during the experiment. BOD5 decreased between fish and macroalgae tanks. TSS highly increased after 2 weeks and then decreased at the end of the experiment. Those results show that bioremediation can be well used for aquaculture system to keep optimum growing conditions. Fish were the only feeding species by an external product (commercial fish pellet) in the system. The others species (extractive species) were fed from waste streams from the tank above or from Ulva produced by the system for the sea urchin. In this way, between the fish aquaculture only and the addition of the extractive species, the biomass productivity increase by 5.7. In other words, the food conversion ratio dropped from 1.08 with fish only to 0.189 including all species. This experimental recirculating multi-trophic aquaculture system was efficient enough to reduce waste and increase productivity. In a second time, this technology has been reproduced at a commercial scale. The IOPR in collaboration with Les 4 Marais company run for 6 month a recirculating IMTA in 8000 m² of water allocate between 4 marsh ponds. A similar air-lift and gravity recirculating system was design and only one feeding species of shrimp (Palaemon sp.) was growth for 3 extractive species. Thanks to this joint work at the laboratory and commercial scales we will be able to challenge IMTA system and discuss about this sustainable aquaculture technology.

Keywords: bioremediation, integrated multi-trophic aquaculture (IMTA), laboratory and commercial scales, recirculating aquaculture, sustainable

Procedia PDF Downloads 144
129 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 273
128 RAD-Seq Data Reveals Evidence of Local Adaptation between Upstream and Downstream Populations of Australian Glass Shrimp

Authors: Sharmeen Rahman, Daniel Schmidt, Jane Hughes

Abstract:

Paratya australiensis Kemp (Decapoda: Atyidae) is a widely distributed indigenous freshwater shrimp, highly abundant in eastern Australia. This species has been considered as a model stream organism to study genetics, dispersal, biology, behaviour and evolution in Atyids. Paratya has a filter feeding and scavenging habit which plays a significant role in the formation of lotic community structure. It has been shown to reduce periphyton and sediment from hard substrates of coastal streams and hence acts as a strongly-interacting ecosystem macroconsumer. Besides, Paratya is one of the major food sources for stream dwelling fishes. Paratya australiensis is a cryptic species complex consisting of 9 highly divergent mitochondrial DNA lineages. Among them, one lineage has been observed to favour upstream sites at higher altitudes, with cooler water temperatures. This study aims to identify local adaptation in upstream and downstream populations of this lineage in three streams in the Conondale Range, North-eastern Brisbane, Queensland, Australia. Two populations (up and down stream) from each stream have been chosen to test for local adaptation, and a parallel pattern of adaptation is expected across all streams. Six populations each consisting of 24 individuals were sequenced using the Restriction Site Associated DNA-seq (RAD-seq) technique. Genetic markers (SNPs) were developed using double digest RAD sequencing (ddRAD-seq). These were used for de novo assembly of Paratya genome. De novo assembly was done using the STACKs program and produced 56, 344 loci for 47 individuals from one stream. Among these individuals, 39 individuals shared 5819 loci, and these markers are being used to test for local adaptation using Fst outlier tests (Arlequin) and Bayesian analysis (BayeScan) between up and downstream populations. Fst outlier test detected 27 loci likely to be under selection and the Bayesian analysis also detected 27 loci as under selection. Among these 27 loci, 3 loci showed evidence of selection at a significance level using BayeScan program. On the other hand, up and downstream populations are strongly diverged at neutral loci with a Fst =0.37. Similar analysis will be done with all six populations to determine if there is a parallel pattern of adaptation across all streams. Furthermore, multi-locus among population covariance analysis will be done to identify potential markers under selection as well as to compare single locus versus multi-locus approaches for detecting local adaptation. Adaptive genes identified in this study can be used for future studies to design primers and test for adaptation in related crustacean species.

Keywords: Paratya australiensis, rainforest streams, selection, single nucleotide polymorphism (SNPs)

Procedia PDF Downloads 238
127 Detection of Some Drugs of Abuse from Fingerprints Using Liquid Chromatography-Mass Spectrometry

Authors: Ragaa T. Darwish, Maha A. Demellawy, Haidy M. Megahed, Doreen N. Younan, Wael S. Kholeif

Abstract:

The testing of drug abuse is authentic in order to affirm the misuse of drugs. Several analytical approaches have been developed for the detection of drugs of abuse in pharmaceutical and common biological samples, but few methodologies have been created to identify them from fingerprints. Liquid Chromatography-Mass Spectrometry (LC-MS) plays a major role in this field. The current study aimed at assessing the possibility of detection of some drugs of abuse (tramadol, clonazepam, and phenobarbital) from fingerprints using LC-MS in drug abusers. The aim was extended in order to assess the possibility of detection of the above-mentioned drugs in fingerprints of drug handlers till three days of handling the drugs. The study was conducted on randomly selected adult individuals who were either drug abusers seeking treatment at centers of drug dependence in Alexandria, Egypt or normal volunteers who were asked to handle the different studied drugs (drug handlers). An informed consent was obtained from all individuals. Participants were classified into 3 groups; control group that consisted of 50 normal individuals (neither abusing nor handling drugs), drug abuser group that consisted of 30 individuals who abused tramadol, clonazepam or phenobarbital (10 individuals for each drug) and drug handler group that consisted of 50 individuals who were touching either the powder of drugs of abuse: tramadol, clonazepam or phenobarbital (10 individuals for each drug) or the powder of the control substances which were of similar appearance (white powder) and that might be used in the adulteration of drugs of abuse: acetyl salicylic acid and acetaminophen (10 individuals for each drug). Samples were taken from the handler individuals for three consecutive days for the same individual. The diagnosis of drug abusers was based on the current Diagnostic and Statistical Manual of Mental disorders (DSM-V) and urine screening tests using immunoassay technique. Preliminary drug screening tests of urine samples were also done for drug handlers and the control groups to indicate the presence or absence of the studied drugs of abuse. Fingerprints of all participants were then taken on a filter paper previously soaked with methanol to be analyzed by LC-MS using SCIEX Triple Quad or QTRAP 5500 System. The concentration of drugs in each sample was calculated using the regression equations between concentration in ng/ml and peak area of each reference standard. All fingerprint samples from drug abusers showed positive results with LC-MS for the tested drugs, while all samples from the control individuals showed negative results. A significant difference was noted between the concentration of the drugs and the duration of abuse. Tramadol, clonazepam, and phenobarbital were also successfully detected from fingerprints of drug handlers till 3 days of handling the drugs. The mean concentration of the chosen drugs of abuse among the handlers group decreased when the days of samples intake increased.

Keywords: drugs of abuse, fingerprints, liquid chromatography–mass spectrometry, tramadol

Procedia PDF Downloads 105
126 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 160
125 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sub lfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of fi lters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-fi lter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying fi lter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The signi ficance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II fi lters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the fi lter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic fi lter, aspect ratios (AR) ranging from 1 to 16 in LES fi lters are evaluated. The findings highlight the DDM's pro ficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as fi lter anisotropy intensify , the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all fi lter-anisotropy scenarios. The fi ndings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 62
124 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel

Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino

Abstract:

Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.

Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation

Procedia PDF Downloads 460