Search results for: web usage data
24360 Wireless Sensor Network for Forest Fire Detection and Localization
Authors: Tarek Dandashi
Abstract:
WSNs may provide a fast and reliable solution for the early detection of environment events like forest fires. This is crucial for alerting and calling for fire brigade intervention. Sensor nodes communicate sensor data to a host station, which enables a global analysis and the generation of a reliable decision on a potential fire and its location. A WSN with TinyOS and nesC for the capturing and transmission of a variety of sensor information with controlled source, data rates, duration, and the records/displaying activity traces is presented. We propose a similarity distance (SD) between the distribution of currently sensed data and that of a reference. At any given time, a fire causes diverging opinions in the reported data, which alters the usual data distribution. Basically, SD consists of a metric on the Cumulative Distribution Function (CDF). SD is designed to be invariant versus day-to-day changes of temperature, changes due to the surrounding environment, and normal changes in weather, which preserve the data locality. Evaluation shows that SD sensitivity is quadratic versus an increase in sensor node temperature for a group of sensors of different sizes and neighborhood. Simulation of fire spreading when ignition is placed at random locations with some wind speed shows that SD takes a few minutes to reliably detect fires and locate them. We also discuss the case of false negative and false positive and their impact on the decision reliability.Keywords: forest fire, WSN, wireless sensor network, algortihm
Procedia PDF Downloads 26224359 Influence of Particulate Fractions on Air Quality for Four Major Congested Cities of India over a Period of Four Years from 2006-2009
Authors: I. Mukherjee, J. Ghose, T. Chakraborty, S. Chaudhury, R. Majumder
Abstract:
India is the second most populated nation in the world. With the Indian population hitting the 1.26 billion mark in the year 2014, there has been an unprecedented rise in power and energy requirements throughout the nation. This mammoth demand for energy, both at the industrial as well as at the domestic household level, as well as the increase in the usage of automobiles has led to a corresponding increase in the total tonnage of fuels being burnt every year. This, in turn, has led to an increase in the concentration of atmospheric pollutants over the years with enhanced particulate concentrations being reported for different parts of the country. Considering the adverseness of the particulates, the paper analyses the role of the particulates on the air quality of four major congested cities of the country namely, Kolkata (22034’ N, 88024’ E), Delhi (28038’N , 77012’ E), Bangalore (12058’ N , 77038’E) and Mumbai (18.9750° N, 72.8258° E) over a period of four years from 2006-2009. The fractional contribution of the finer fractions to the coarser one has been considered in the study in addition to the relative occurrences of the particulate fractions with respect to the other gaseous pollutants such as sulphur dioxide (SO2) and nitrogen oxides (NOX).Keywords: air quality, particulates, yearly variation, relative occurrence, SO2, NOX
Procedia PDF Downloads 36824358 A Feasibility Study of Crowdsourcing Data Collection for Facility Maintenance Management
Authors: Mohamed Bin Alhaj, Hexu Liu, Mohammed Sulaiman, Osama Abudayyeh
Abstract:
An effective facility maintenance management (FMM) system plays a crucial role in improving the quality of services and maintaining the facility in good condition. Current FMM heavily relies on the quality of the data collection function of the FMM systems, at times resulting in inefficient FMM decision-making. The new technology-based crowdsourcing provides great potential to improve the current FMM practices, especially in terms of timeliness and quality of data. This research aims to investigate the feasibility of using new technology-driven crowdsourcing for FMM and highlight its opportunities and challenges. A survey was carried out to understand the human, data, system, geospatial, and automation characteristics of crowdsourcing for an educational campus FMM via social networks. The survey results were analyzed to reveal the challenges and recommendations for the implementation of crowdsourcing for FMM. This research contributes to the body of knowledge by synthesizing the challenges and opportunities of using crowdsourcing for facility maintenance and providing a road map for applying crowdsourcing technology in FMM. In future work, a conceptual framework will be proposed to support data-driven FMM using social networks.Keywords: crowdsourcing, facility maintenance management, social networks
Procedia PDF Downloads 17424357 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete
Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė
Abstract:
By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow
Procedia PDF Downloads 36624356 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data
Authors: Elyta Widyaningrum
Abstract:
The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.Keywords: automation, GIS environment, LiDAR processing, map quality
Procedia PDF Downloads 36824355 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling
Authors: Taehan Bae
Abstract:
In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm
Procedia PDF Downloads 22424354 Robust Data Image Watermarking for Data Security
Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan
Abstract:
In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms
Procedia PDF Downloads 51524353 Assessment of Rooftop Rainwater Harvesting in Gomti Nagar, Lucknow
Authors: Rajkumar Ghosh
Abstract:
Water scarcity is a pressing issue in urban areas, even in smart cities where efficient resource management is a priority. This scarcity is mainly caused by factors such as lifestyle changes, excessive groundwater extraction, over-usage of water, rapid urbanization, and uncontrolled population growth. In the specific case of Gomti Nagar, Lucknow, Uttar Pradesh, India, the depletion of groundwater resources is particularly severe, leading to a water imbalance and posing a significant challenge for the region's sustainable development. The aim of this study is to address the water shortage in the Gomti Nagar region by focusing on the implementation of artificial groundwater recharge methods. Specifically, the research aims to investigate the effectiveness of rainwater collection through rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to reduce aquifer depletion and bridge the gap between groundwater recharge and extraction. The research methodology for this study involves the utilization of RTRWHs as the main method for collecting rainwater. This approach is considered effective in managing and conserving water resources in a sustainable manner. The focus is on implementing RTRWHs in residential and commercial buildings to maximize the collection of rainwater and its subsequent utilization for various purposes in the Gomti Nagar region. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage (0.04%) of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance of 24519 ML/yr in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. The findings of this study can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis. The data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. Statistical analysis and modelling techniques were employed to quantify the water imbalance and evaluate the effectiveness of RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. The study highlights the need for widespread adoption of RTRWHs in all buildings and emphasizes the importance of integrating such systems into the urban planning and development process. By doing so, smart cities like Gomti Nagar can achieve efficient water management, ensuring a better future with improved water availability for its residents.Keywords: rooftop rainwater harvesting, rainwater, water management, aquifer
Procedia PDF Downloads 9524352 TRIZ-Based Conflicts-Solving Applications in New Product Development (NPD) Process and Knowledge Management (KM) System
Authors: Chi-Hao Yeh
Abstract:
The aim of this paper is to show how to apply TRIZ to resolve conflicts in management area, which can be readily applied in new product development (NPD) process and Knowledge Management (KM) system in desinging and manfacturing stages. TRIZ has been well-known as a creative and innovative thinking theory in solving engineering and technology contradictions in the last two decades. However, few studies and practical usage were proposed in management area. Conflicts occurring including schedule, budget, and risk plannings at smart phone R&D process are discussed to demonstrate the ideas guided by 39 TRIZ management parameters, 40 TRIZ innovative principles, and contradiction matrix. The results show that TRIZ is able to provide direct, quick and effective alternatives to resolve the management conflicts. In this manner, huge effort and cost can be actually saved and practical experince can be stored in KM system. In this paper, an innovative 3C consuming product such as smart-phone is utilized as a case study to describe the proposed TRIZ-based conflicts-solving approaches in NPD process and Knowledge Management (KM) system.Keywords: TRIZ, conflicts-solving in managment area, new product development (NPD), knowledge management (KM), smart-phone
Procedia PDF Downloads 51924351 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors
Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde
Abstract:
In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance
Procedia PDF Downloads 12424350 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake
Procedia PDF Downloads 17224349 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks
Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi
Abstract:
In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks
Procedia PDF Downloads 37824348 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 37424347 Blockchain Technology Security Evaluation: Voting System Based on Blockchain
Authors: Omid Amini
Abstract:
Nowadays, technology plays the most important role in the life of human beings because people use technology to share data and to communicate with each other, but the challenge is the security of this data. For instance, as more people turn to technology in the world, more data is generated, and more hackers try to steal or infiltrate data. In addition, the data is under the control of the central authority, which can trigger the challenge of losing information and changing information; this can create widespread anxiety for different people in different communities. In this paper, we sought to investigate Blockchain technology that can guarantee information security and eliminate the challenge of central authority access to information. Now a day, people are suffering from the current voting system. This means that the lack of transparency in the voting system is a big problem for society and the government in most countries, but blockchain technology can be the best alternative to the previous voting system methods because it removes the most important challenge for voting. According to the results, this research can be a good start to getting acquainted with this new technology, especially on the security part and familiarity with how to use a voting system based on blockchain in the world. At the end of this research, it is concluded that the use of blockchain technology can solve the major security problem and lead to a secure and transparent election.Keywords: blockchain, technology, security, information, voting system, transparency
Procedia PDF Downloads 13224346 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16724345 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15924344 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 11924343 Design and Implementation of Flexible Metadata Editing System for Digital Contents
Authors: K. W. Nam, B. J. Kim, S. J. Lee
Abstract:
Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.Keywords: video, multimedia, metadata, editing tool, XML
Procedia PDF Downloads 17124342 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data
Authors: Luís Pina
Abstract:
The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.Keywords: GSM, marine biology, marine turtles, unstructured supplementary service data (USSD)
Procedia PDF Downloads 20624341 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera
Authors: Shih-Hao Chen, Chi-Wai Chow
Abstract:
Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme
Procedia PDF Downloads 41924340 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising
Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri
Abstract:
Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing
Procedia PDF Downloads 58924339 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012
Authors: Mohammadreza Ashouri, Majid Bayatian
Abstract:
Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.Keywords: fire statistics, fire analysis, accident prevention, Tehran
Procedia PDF Downloads 18424338 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services
Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.Keywords: internet of things (IoT), IoT platform, serviceplatform, virtual file system (VSF)
Procedia PDF Downloads 50224337 Evaluation of Triage Performance: Nurse Practice and Problem Classifications
Authors: Atefeh Abdollahi, Maryam Bahreini, Babak Choobi Anzali, Fatemeh Rasooli
Abstract:
Introduction: Triage becomes the main part of organization of care in Emergency department (ED)s. It is used to describe the sorting of patients for treatment priority in ED. The accurate triage of injured patients has reduced fatalities and improved resource usage. Besides, the nurses’ knowledge and skill are important factors in triage decision-making. The ability to define an appropriate triage level and their need for intervention is crucial to guide to a safe and effective emergency care. Methods: This is a prospective cross-sectional study designed for emergency nurses working in four public university hospitals. Five triage workshops have been conducted every three months for emergency nurses based on a standard triage Emergency Severity Index (ESI) IV slide set - approved by Iranian Ministry of Health. Most influential items on triage performance were discussed through brainstorming in workshops which then, were peer reviewed by five emergency physicians and two head registered nurses expert panel. These factors that might distract nurse’ attention from proper decisions included patients’ past medical diseases, the natural tricks of triage and system failure. After permission had been taken, emergency nurses participated in the study and were given the structured questionnaire. Data were analysed by SPSS 21.0. Results: 92 emergency nurses enrolled in the study. 30 % of nurses reported the past history of chronic disease as the most influential confounding factor to ascertain triage level, other important factors were the history of prior admission, past history of myocardial infarction and heart failure to be 20, 17 and 11 %, respectively. Regarding the concept of difficulties in triage practice, 54.3 % reported that the discussion with patients and family members was difficult and 8.7 % declared that it is hard to stay in a single triage room whole day. Among the participants, 45.7 and 26.1 % evaluated the triage workshops as moderately and highly effective, respectively. 56.5 % reported overcrowding as the most important system-based difficulty. Nurses were mainly doubtful to differentiate between the triage levels 2 and 3 according to the ESI VI system. No significant correlation was found between the work record of nurses in triage and the uncertainty in determining the triage level and difficulties. Conclusion: The work record of nurses hardly seemed to be effective on the triage problems and issues. To correct the deficits, training workshops should be carried out, followed by continuous refresher training and supportive supervision.Keywords: assessment, education, nurse, triage
Procedia PDF Downloads 23324336 A Review on 3D Smart City Platforms Using Remotely Sensed Data to Aid Simulation and Urban Analysis
Authors: Slim Namouchi, Bruno Vallet, Imed Riadh Farah
Abstract:
3D urban models provide powerful tools for decision making, urban planning, and smart city services. The accuracy of this 3D based systems is directly related to the quality of these models. Since manual large-scale modeling, such as cities or countries is highly time intensive and very expensive process, a fully automatic 3D building generation is needed. However, 3D modeling process result depends on the input data, the proprieties of the captured objects, and the required characteristics of the reconstructed 3D model. Nowadays, producing 3D real-world model is no longer a problem. Remotely sensed data had experienced a remarkable increase in the recent years, especially data acquired using unmanned aerial vehicles (UAV). While the scanning techniques are developing, the captured data amount and the resolution are getting bigger and more precise. This paper presents a literature review, which aims to identify different methods of automatic 3D buildings extractions either from LiDAR or the combination of LiDAR and satellite or aerial images. Then, we present open source technologies, and data models (e.g., CityGML, PostGIS, Cesiumjs) used to integrate these models in geospatial base layers for smart city services.Keywords: CityGML, LiDAR, remote sensing, SIG, Smart City, 3D urban modeling
Procedia PDF Downloads 13524335 Structural Damage Detection via Incomplete Model Data Using Output Data Only
Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation
Procedia PDF Downloads 36524334 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm
Authors: P. Senthil Kumari
Abstract:
Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.Keywords: text mining, data classification, community network, learning algorithm
Procedia PDF Downloads 50824333 The Impact of Content Familiarity of Receptive Skills on Language Learning
Authors: Sara Fallahi
Abstract:
This paper reviews the importance of content familiarity of receptive skills and offers solutions to the issue of content unfamiliarity in language learning materials. Presently, language learning materials are mainly comprised of global issues and target language speakers’ culture(s) in receptive skills. This might leadlearners to focus on content rather than the language. As a solution, materials on receptive skills can be developed with a focus on learners’culture and social concerns, especially in the beginner levels of learning. Language learners often learn their target language through the receptive skills of listening and reading before language production ensues through speaking and writing. Students’ journey from receptive skills to productive skills is mainly concentrated on by teachers. There are barriers to language learning, such as time and energy, that can hinder learners’ understanding and ability to build the required background knowledge of the content. This is generated due to learners’ unfamiliarity with the skill’s content. Therefore, materials that improve content familiarity will help learners improve their language comprehension, learning, and usage. This presentation will conclude with practical solutions to help teachers and learners more authentically integrate language and culture to elevate language learning.Keywords: language learning, listening content, reading content, content familiarity, ESL books, language learning books, cultural familiarity
Procedia PDF Downloads 11824332 Documentation Project on Boat Models from Saqqara, in the Grand Egyptian Museum
Authors: Ayman Aboelkassem, Mohamoud Ali, Rezq Diab
Abstract:
This project aims to document and preserve boat models which were discovered in the Saqqara by Czech Institute of Egyptology archeological mission at Saqqara (GEM numbers, 46007, 46008, 46009). These boat models dates back to Egyptian Old Kingdom and have been transferred to the Conservation Center of the Grand Egyptian Museum, to be displayed at the new museum.The project objectives making such boat models more visible to visitors through the use of 3D reconstructed models and high resolution photos which describe the history of using the boats during the Ancient Egyptian history. Especially, The Grand Egyptian Museum is going to exhibit the second boat of King Khufu from Old kingdom. The project goals are to document the boat models and arrange an exhibition, where such Models going to be displayed next to the Khufu Second Boat. The project shows the importance of using boats in Ancient Egypt, and connecting their usage through Ancient Egyptian periods till now. The boat models had a unique Symbolized in ancient Egypt and connect the public with their kings. The Egyptian kings allowed high ranked employees to put boat models in their tombs which has a great meaning that they hope to fellow their kings in the journey of the afterlife.Keywords: archaeology, boat models, 3D digital tools for heritage management, museums
Procedia PDF Downloads 13724331 Expanding the Evaluation Criteria for a Wind Turbine Performance
Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin
Abstract:
The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses
Procedia PDF Downloads 390