Search results for: possibility uncertainty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2786

Search results for: possibility uncertainty

776 Effect of cold water immersion on bone mineral metabolism in aging rats

Authors: Irena Baranowska-Bosiacka, Mateusz Bosiacki, Patrycja Kupnicka, Anna Lubkowska, Dariusz Chlubek

Abstract:

Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density.

Keywords: swimming in cold water, adaptation to cold water, bone mineral metabolism, aging

Procedia PDF Downloads 60
775 Preclinical Studying of Stable Fe-Citrate Effect on 68Ga-Citrate Tissue Distribution

Authors: A. S. Lunev, A. A. Larenkov, O. E. Klementyeva, G. E. Kodina

Abstract:

Background and aims: 68Ga-citrate is one of prospective radiopharmaceutical for PET-imaging of inflammation and infection. 68Ga-citrate is 67Ga-citrate analogue using since 1970s for SPECT-imaging. There's known rebinding reaction occurs past Ga-citrate injection and gallium (similar iron Fe3+) binds with blood transferrin. Then radiolabeled protein complex is delivered to pathological foci (inflammation/infection sites). But excessive gallium bindings with transferrin are cause of slow blood clearance, long accumulation time in foci (24-72 h) and exception of application possibility of the short-lived gallium-68 (T½ = 68 min). Injection of additional chemical agents (e.g. Fe3+ compounds) competing with radioactive gallium to the blood transferrin joining (blocking of its metal binding capacity) is one of the ways to solve formulated problem. This phenomenon can be used for correction of 68Ga-citrate pharmacokinetics for increasing of the blood clearance and accumulation in foci. The aim of real studying is research of effect of stable Fe-citrate on 68Ga-citrate tissue distribution. Materials and methods: 68Ga-citrate without/with extra injection of stable Fe-citrate (III) was injected nonlinear mice with inflammation models (aseptic soft tissue inflammation, lung infection, osteomyelitis). PET/X-RAY Genisys4 (Sofie Bioscience, USA) was used for non-invasive PET imaging (for 30, 60, 120 min past injection 68Ga-citrate) with subsequent reconstruction of imaging and their analysis (value of clearance, distribution volume). Scanning time is 10 min. Results and conclusions: I. v. injection of stable Fe-citrate blocks the metal-binding capability of transferrin serum and allows decreasing gallium-68 radioactivity in blood significantly and increasing accumulation in inflammation (3-5 time). It allows receiving more informative PET-images of inflammation early (for 30-60 min after injection). Pharmacokinetic parameters prove it. Noted there is no statistically significant difference between 68Ga-citrate accumulation for different inflammation model because PET imaging is indication of pathological processes and is not their identification.

Keywords: 68Ga-citrate, Fe-citrate, PET imaging, mice, inflammation, infection

Procedia PDF Downloads 490
774 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products

Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch

Abstract:

Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.

Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method

Procedia PDF Downloads 278
773 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions

Authors: Valerii Dashuk

Abstract:

The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.

Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function

Procedia PDF Downloads 176
772 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 252
771 Investigating Role of Novel Molecular Players in Forebrain Roof-Plate Midline Invagination

Authors: Mohd Ali Abbas Zaidi, Meenu Sachdeva, Jonaki Sen

Abstract:

In the vertebrate embryo, the forebrain anlagen develops from the anterior-most region of the neural tube which is the precursor of the central nervous system (CNS). The roof plate located at the dorsal midline region of the forebrain anlagen, acts as a source of several secreted molecules involved in patterning and morphogenesis of the forebrain. One such key morphogenetic event is the invagination of the forebrain roof plate which results in separation of the single forebrain vesicle into two cerebral hemispheres. Retinoic acid (RA) signaling plays a key role in this process. Blocking RA signaling at the dorsal forebrain midline inhibits dorsal invagination and results in the absence of certain key features of this region, such as thinning of the neuroepithelium and a lowering of cell proliferation. At present we are investigating the possibility of other signaling pathways acting in concert with RA signaling to regulate this process. We have focused on BMP signaling, which we found to be active in a mutually exclusive domain to that of RA signaling within the roof plate. We have also observed that there is a change in BMP signaling activity on modulation of RA signaling indicating an antagonistic relationship between the two. Moreover, constitutive activation of BMP signaling seems to completely inhibit thinning and partially affect invagination, leaving the lowering of cell proliferation in the midline unaffected. We are employing in-silico modeling as well as molecular manipulations to investigate the relative contribution if any, of regional differences in rates of cell proliferation and thinning of the neuroepithelium towards the process of invagination. We have found expression of certain cell adhesion molecules in forebrain roof-plate whose mRNA localization across the thickness of neuroepithelium is influenced by Bmp and RA signaling, giving regional rigidity to roof plate and assisting invagination. We also found expression of certain cytoskeleton modifiers in a localized small domains in invaginating forebrain roof plate suggesting that midline invagination is under control of many factors.

Keywords: bone morphogenetic signaling, cytoskeleton, cell adhesion molecules, forebrain roof plate, retinoic acid signaling

Procedia PDF Downloads 156
770 Reviving the Ancient Craft of Patteda Anchu Saree Weaving of Karnataka, India

Authors: Hemalatha Jain, M. Vasantha

Abstract:

Patteda Anchu is one of the first variety of sari woven centuries ago in Gajendragarh village from Gadag district of north Karnataka. The sari played a significant role in bringing together the socio-cultural aspect in ancient days. It was used as wedding sari for bride and also to adorn goddess Yellamma Saundatti by the devotees. Indian traditional art and crafts were rich in culture and diversity, however with the onset of liberalisation and end of the license raj lot of traditional Indian artwork are on the verge of extinction today. Patteda Anchu is one of the examples of traditional art lost to globalisation. The main aim of the study was to document the ancient weaving tradition of the Patteda Anchu and revive by exploring the weaving possibility as yardage with different product layout. To accomplish the formulated objectives a exploratory cum diagnostic study was planned. Data was collected through observations and interviews schedule during the field visits in Gajendragarh village. There are very few weavers weaving on traditional looms and many weavers who have moved to weaving other sari's or construction work were interviewed to understand the downfall of the sari. The discussions and interviews conducted with the local weavers, shop keepers, sales agents, weaving society, NGOs and Self help groups helped in unearthing the new opportunities to develop products for the local and national market and help start weaving of Patteda Anchu and expand its market. The handloom art details in terms of raw materials, loom set up, dyeing, types of Patteda Anchu, weaving process and colors were documented through photographs, video recordings and supplemented with notes. Based on the analysis of the feedback gathered it was recommended to develop products on the handloom without changing the width frame or design of the traditional weaving methods. The weavers, weavers society and other cooperatives centres also were in consent with the new product development which will help sustain the Patteda Anchu.

Keywords: Gajendragarh, patteda Anchu sari, revival of traditional art, weaving, handloom

Procedia PDF Downloads 519
769 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources

Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger

Abstract:

Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.

Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity

Procedia PDF Downloads 155
768 Assessment of Environmental Risk Factors of Railway Using Integrated ANP-DEMATEL Approach in Fuzzy Conditions

Authors: Mehrdad Abkenari, Mehmet Kunt, Mahdi Nourollahi

Abstract:

Evaluating the environmental risk factors is a combination of analysis of transportation effects. Various definitions for risk can be found in different scientific sources. Each definition depends on a specific and particular perspective or dimension. The effects of potential risks present along the new proposed routes and existing infrastructures of large transportation projects like railways should be studied under comprehensive engineering frameworks. Despite various definitions provided for ‘risk’, all include a uniform concept. Two obvious aspects, loss and unreliability, have always been pointed in all definitions of this term. But, selection as the third aspect is usually implied and means how one notices it. Currently, conducting engineering studies on the environmental effects of railway projects have become obligatory according to the Environmental Assessment Act in developing countries. Considering the longitudinal nature of these projects and probable passage of railways through various ecosystems, scientific research on the environmental risk of these projects have become of great interest. Although many areas of expertise such as road construction in developing countries have not seriously committed to these studies yet, attention to these subjects in establishment or implementation of different systems have become an inseparable part of this wave of research. The present study used environmental risks identified and existing in previous studies and stations to use in next step. The second step proposes a new hybrid approach of analytical network process (ANP) and DEMATEL in fuzzy conditions for assessment of determined risks. Since evaluation of identified risks was not an easy touch, mesh structure was an appropriate approach for analyzing complex systems which were accordingly employed for problem description and modeling. Researchers faced the shortage of real space data and also due to the ambiguity of experts’ opinions and judgments, they were declared in language variables instead of numerical ones. Since fuzzy logic is appropriate for ambiguity and uncertainty, formulation of experts’ opinions in the form of fuzzy numbers seemed an appropriate approach. Fuzzy DEMATEL method was used to extract the relations between major and minor risk factors. Considering the internal relations of risk major factors and its sub-factors in the analysis of fuzzy network, the weight of risk’s main factors and sub-factors were determined. In general, findings of the present study, in which effective railway environmental risk indicators were theoretically identified and rated through the first usage of combined model of DEMATEL and fuzzy network analysis, indicate that environmental risks can be evaluated more accurately and also employed in railway projects.

Keywords: DEMATEL, ANP, fuzzy, risk

Procedia PDF Downloads 415
767 New Methods to Acquire Grammatical Skills in A Foreign Language

Authors: Indu ray

Abstract:

In today’s digital world the internet is already flooded with information on how to master grammar in a foreign language. It is well known that one cannot master a language without grammar. Grammar is the backbone of any language. Without grammar there would be no structure to help you speak/write or listen/read. Successful communication is only possible if the form and function of linguistic utterances are firmly related to one another. Grammar has its own rules of use to formulate an easier-to-understand language. Like a tool, grammar formulates our thoughts and knowledge in a meaningful way. Every language has its own grammar. With grammar, we can quickly analyze whether there is any action in this text: (Present, past, future). Knowledge of grammar is an important prerequisite for mastering a foreign language. What’s most important is how teachers can make grammar lessons more interesting for students and thus promote grammar skills more successfully. Through this paper, we discuss a few important methods like (Interactive Grammar Exercises between students, Interactive Grammar Exercise between student to teacher, Grammar translation method, Audio -Visual Method, Deductive Method, Inductive Method). This paper is divided into two sections. In the first part, brief definitions and principles of these approaches will be provided. Then the possibility and the case of combination of this approach will be analyzed. In the last section of the paper, I would like to present a survey result conducted at my university on a few methods to quickly learn grammar in Foreign Language. We divided the Grammatical Skills in six Parts. 1.Grammatical Competence 2. Speaking Skills 3. Phonology 4. The syntax and the Semantics 5. Rule 6. Cognitive Function and conducted a survey among students. From our survey results, we can observe that phonology, speaking ability, syntax and semantics can be improved by inductive method, Audio-visual Method, and grammatical translation method, for grammar rules and cognitive functions we should choose IGE (teacher-student) method. and the IGE method (pupil-pupil). The study’s findings revealed, that the teacher delivery Methods should be blend or fusion based on the content of the Grammar.

Keywords: innovative method, grammatical skills, audio-visual, translation

Procedia PDF Downloads 77
766 Volatile Compounds and Sensory Characteristics of Herbal Teas and Bush Tea Blends with Selected Herbal Teas South Africa

Authors: Florence Malongane, Lyndy J. McGaw, Legesse K. Debusho, Fhatuwani N. Mudau

Abstract:

Rooibos (Aspalathus linearis (Burm.f.) R.Dahlgren), honeybush (Cyclopia Vent. species), bush tea (Athrixia phylicoides DC.) and special tea (Monsonia burkeana) are traditionally consumed herbal teas in South Africa. The volatile and sensory qualities of rooibos and honeybush tea have previously been described although there is a dearth of information regarding the sensory attributes and volatile compounds analysis of special tea and bush tea. The objective of this study was to describe the sensory properties, compare the differences in descriptive sensory analysis (DSA) and volatile compounds of bush tea, special, rooibos, honeybush and the blend of bush tea with special, honeybush and rooibos in a 1:1 ratio and subsequently to determine the influence of blending bush tea with other herbal teas. DSA was used to assess the sensory attributes of the teas while gas chromatography–mass spectrometry (GC-MS) was used to quantitatively determine the volatile components of the teas. Rooibos tea and honeybush tea had an overall sweet-caramel, honey-sweet, perfume floral and woody aroma with slight astringency, consistent with the taste and aftertaste attributes. In contrast, bush tea and special tea depicted green-cut grass, dry green herbal, cooked spinach aroma as well as taste and aftertaste characteristics. GC-MS analyses revealed that the seven tea samples had similar major volatiles, including 2-furanmethanol, 2-methoxy-4-vinylphenol, acetic acid, D-limonene terpene and phytol. Cluster analysis revealed that the sweet and woody flavour of honeybush and rooibos were ascribed to the presence of á-myrcene, phenylethyl alcohol, phytol and vanillin. The bitter, medicinal flavour attributes of special tea were attributed to (-)-carvone. Blending of bush tea with rooibos and honeybush tea toned down its aversive flavour components, typically the bitter, green-cut grass and herbal properties, thus minimising the possibility of consumer aversion.

Keywords: bush tea, rooibos tea, honeybush tea, sensory, volatile compounds

Procedia PDF Downloads 181
765 Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission

Authors: Kazumasa Kawasaki, Isamu Tsuji, Hiroshi Gunbara

Abstract:

A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained.

Keywords: alignment error, face gear, gear design, helicopter transmission, tooth contact analysis

Procedia PDF Downloads 438
764 Radial Variation of Anatomical Characteristics in Three Native Fast-Growing Species Growing in South Kalimantan, Indonesia

Authors: Wiwin Tyas Istikowati, Futoshi Ishiguri, Haruna Aisho, Budi Sutiya, Imam Wahyudi, Kazuya Iizuka, Shinso Yokota

Abstract:

The objective of this study was to investigate the anatomical characteristics of three native fast-growing species, terap (Artocarpus elasticus Reinw. ex Blume), medang (Neolitsea latifolia (Blume) S. Moore), and balik angin (Alphitonia excelsa (Fenzel) Reissek ex Benth) growing in the secondary forest in South Kalimantan, Indonesia for evaluating the possibility of tree breeding for wood quality. Cell lengths were investigated for 5 trees in each species at several different height positions (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 m above the ground). The mean values of fiber and vessel element lengths in terap, medang, and balik angin were 1.52 and 0.44, 1.16 and 0.53, and 1.02 and 0.49 mm, respectively. Fiber length in terap and balik angin gradually increased from pith to bark, whereas it increased up to 2 cm and then became nearly constant to the bark in medang. Vessel element length was almost constant from pith to bark in terap and balik angin, while slightly increased from pith to bark in medang. Fiber length in terap has a fluctuation pattern from ground level to top of the tree. It decreased up to 3 m above the ground, increased up to 5 m, and then decreased to the top of the tree. On the other hand, vessel element length slightly increased up to 5 m above the ground, and then decreased to the top of the tree. Both fiber and vessel element lengths in medang were almost constant from ground level to top of the tree, whereas decreased from ground level to top of the tree in balik angin. Significant difference at 1% level among trees was found in both fiber and vessel element length in both radial and longitudinal directions for terap and medang. Based on obtained results, it is concluded that the wood quality in fiber and vessel element lengths of terap and medang can be improved by tree breeding programs.

Keywords: anatomical properties, fiber length, vessel elements length, fast-growing species

Procedia PDF Downloads 353
763 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review

Authors: Qiyao Han, Xianhai Meng

Abstract:

Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.

Keywords: fractal, urban infrastructure, sustainability, system-level resilience

Procedia PDF Downloads 275
762 The Role of Building Services in Energy Conservation into Residential Buildings

Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan

Abstract:

The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.

Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder

Procedia PDF Downloads 295
761 Bronchoscopy and Genexpert in the Diagnosis of Pulmonary Tuberculosis in the Indian Private Health Sector: A Short Case Series

Authors: J. J. Mathew

Abstract:

Pulmonary tuberculosis is highly prevalent in the Indian subcontinent. Most cases of pulmonary tuberculosis are diagnosed with sputum examinations and the vast majority of these are undertaken by the government run establishments. However, mycobacterial cultures are not routinely done, unless drug resistance is detected based on clinical response. Modern diagnostic tests like bronchoscopy and Genexpert are not routinely employed in the government institutions for the diagnosis of pulmonary tuberculosis, but have been accepted widely by good private institutions. The utility of these investigations in the private sector is not yet well recognized. This retrospective study aims to assess the usefulness of bronchoscopy and Genexpert in the diagnosis of pulmonary tuberculosis in quaternary care private hospital in India. 30 patients with respiratory symptoms raising the possibility of tuberculosis based on clinical and radiological features, but without any significant sputum production, were subject to bronchoscopy and BAL samples taken for microbiological studies, including Genexpert. 6 out of the 30 patients were found to be Genexpert positive and none of them showed Rifampicin resistance. All the 6 cases had upper zone predominant disease. One of the 6 cases of tuberculosis had another co-existent bacterial infection according to the routine culture studies. 6 other cases were proven to be due to other bacterial infections alone, 2 had a malignant diagnosis and the remaining cases were thought to be non-infective pathologies. The Genexpert results were made available within 48 hours in the 6 positive cases. All of them were commenced on standard anti-tuberculous regimen with excellent clinical response. The other infective cases were also managed successfully based on the drug susceptibilities. The study has shown the usefulness of these investigations as early intervention enabled diagnosis facilitating treatment and prevention of any clinical deterioration. The study lends support to early bronchoscopy and Genexpert testing in suspected cases of pulmonary tuberculosis without significant sputum production, in a high prevalence country which normally relies on sputum examination for the diagnosis of pulmonary tuberculosis.

Keywords: pulmonary, tuberculosis, bronchoscopy, genexpert

Procedia PDF Downloads 245
760 Implementation of an Economic – Probabilistic Model to Risk Analysis of ERP Project in Technological Innovation Firms – A Case Study of ICT Industry in Iran

Authors: Reza Heidari, Maryam Amiri

Abstract:

In a technological world, many countries have a tendency to fortifying their companies and technological infrastructures. Also, one of the most important requirements for developing technology is innovation, and then, all companies are struggling to consider innovation as a basic principle. Since, the expansion of a product need to combine different technologies, therefore, different innovative projects would be run in the firms as a base of technology development. In such an environment, enterprise resource planning (ERP) has special significance in order to develop and strengthen of innovations. In this article, an economic-probabilistic analysis was provided to perform an implementation project of ERP in the technological innovation (TI) based firms. The used model in this article assesses simultaneously both risk and economic analysis in view of the probability of each event that is jointly between economical approach and risk investigation approach. To provide an economic-probabilistic analysis of risk of the project, activities and milestones in the cash flow were extracted. Also, probability of occurrence of each of them was assessed. Since, Resources planning in an innovative firm is the object of this project. Therefore, we extracted various risks that are in relation with innovative project and then they were evaluated in the form of cash flow. This model, by considering risks affecting the project and the probability of each of them and assign them to the project's cash flow categories, presents an adjusted cash flow based on Net Present Value (NPV) and with probabilistic simulation approach. Indeed, this model presented economic analysis of the project based on risks-adjusted. Then, it measures NPV of the project, by concerning that these risks which have the most effect on technological innovation projects, and in the following measures probability associated with the NPV for each category. As a result of application of presented model in the information and communication technology (ICT) industry, provided an appropriate analysis of feasibility of the project from the point of view of cash flow based on risk impact on the project. Obtained results can be given to decision makers until they can practically have a systematically analysis of the possibility of the project with an economic approach and as moderated.

Keywords: cash flow categorization, economic evaluation, probabilistic, risk assessment, technological innovation

Procedia PDF Downloads 405
759 Reduction of Fermentation Duration of Cassava to Remove Hydrogen Cyanide

Authors: Jean Paul Hategekimana, Josiane Irakoze, Eugene Niyonzima, Annick Ndekezi

Abstract:

Cassava (Manihot esculenta Crantz) is a root crop comprising an anti-nutritive factor known as cyanide. The compound can be removed by numerous processing methods such as boiling, fermentation, blanching, and sun drying to avoid the possibility of cyanide poisoning. Inappropriate processing mean can lead to disease and death. Cassava-based dishes are consumed in different ways, where cassava is cultivated according to their culture and preference. However, they have been shown to be unsafe based on high cyanide levels. The current study targeted to resolve the problem of high cyanide in cassava consumed in Rwanda. This study was conducted to determine the effect of slicing, blanching, and soaking time to reduce the fermentation duration of cassava for hydrogen cyanide (HCN) in mg/g removal. Cassava was sliced into three different portions (1cm, 2cm, and 5cm). The first portions were naturally fermented for seven days, where each portion was removed every 24 hours from soaking tanks and then oven dried at a temperature of 60°C and then milled to obtain naturally fermented cassava flours. Other portions of 1cm, 2cm, and 5cm were blanched for 2, 5, 10 min, respectively, and each similarly dried at 60°C and milled to produce blanched cassava flour. Other blanched portions were used to follow the previous fermentation steps. The last portions, which formed the control, were simply chopped. Cyanide content and starch content in mg/100g were investigated. According to the conducted analysis on different cassava treatments for detoxification, found that usual fermentation can be used, but for sliced portions aimed to size reduction for the easy hydrogen cyanide diffuse out and it takes four days to complete fermentation, which has reduced at 94.44% with significantly different (p<0.05)of total hydrogen cyanide contained in cassava to safe level of consumption, and what is recommended as more effective is to apply blanching combined with fermentation due to the fact that, it takes three days to complete hydrogen cyanide removal at 95.56% on significantly different (p<0.05) of reduction to the safe level of consumption.

Keywords: cassava, cyanide, blanching, drying, fermentation

Procedia PDF Downloads 72
758 A Review on the Impact of Mental Health of the Workman Employees Leads to Unsafe Activities in the Manufacturing Industry

Authors: C. John Thomas, Sabitha Jannet

Abstract:

The review concentrates on mental health wellbeing at workplace to create a safe work environment. The purpose of the study is to find the existing gaps in occupational health in the manufacturing sector. Mental wellbeing is important because it is an essential component of human life and influences our emotions, attitudes, and feelings. In the workplace, mental wellbeing can encourage a culture of safety and avoid accidents. An environment where individuals are comfortable voicing themselves and being themselves. More technically, when individuals have psychological protection at work, without regard for humiliation or punishment, they feel relaxed expressing complaints and errors. They are sure they are going to speak up and not humiliate, neglect, or accuse them. Once they are uncertain about something, they know they are going to ask questions. They are inclined to trust their colleagues and respect them. The reviews were considered through keywords and health-related topics. There are different characteristics of mental wellbeing in the literature and how it impacts the workplace. There is also a possibility that their personal lives will have an impact. In every occupation, however, there is widespread acknowledgment that psychosocial hazards are an important health risk for workers, yet in many workplaces, the focus remains on physical hazards. It is alleged that the understating of workplace psychosocial hazards is primarily due to the perception that they present a more difficult and complex challenge when compared to other health and safety issues. Others, however, allege it is the paucity of awareness about psychosocial hazards and their alleviation that explains their relative neglect. The other researchers focused that following global trends, it is believed that psychosocial hazards must be minimized within our workplaces and that there is a requirement for workplace interventions to reduce psychological harm and promote mental health for all the workman employees to achieve zero harm. In common, this literature review compares various results of the individual studies on their research methods and finding to fill gaps.

Keywords: mental health wellbeing, occupational health, psychosocial hazards, safety culture, safety management systems, workman employee, workplace safety

Procedia PDF Downloads 114
757 Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach

Authors: Razaq A. Olaitan, Ayansina Ayanlade

Abstract:

Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems.

Keywords: aerosol loading, aerosol types, health risks, optical properties

Procedia PDF Downloads 64
756 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 271
755 Experimental Investigation of Sisal Fiber Reinforced Recycled Low-Density Polyethylene Composite Filled with Egg Shell Powder for Wall Tile Application

Authors: Natnan Adelahu Dagne

Abstract:

This paper focuses on an experimental investigation into the development of wall tiles made of a composite material consisting of egg shell powder (ESP), waste recycled low-density polyethylene (LDPE), and sisal fiber. Although waste plastic has been a popular material for packaging in recent years, its nonbiodegradability is generating contamination in the environment. Waste LDPE is a common material that is used extensively and discarded egg shell powder contributes to environmental contamination. By recycling them into usable items and reinforcing them with natural textile fibers to create composite materials, these waste plastics and egg shell powder can be eliminated from the environment. Natural fiber-based composites are ecofriendly, with better properties and low cost. The sisal fibers were treated with 6% NaOH in 24 hr., to improve the fiber-matrix interaction. The composites were manufactured by the melt-mixing method followed by compression molding. The effects of mixing time, egg shell powder content and fiber length and on the composite properties were investigated using tensile, flexural, impact, compressive, flame retardant and water absorption tests. The investigation showed that the optimum mixing time, ESP and fiber length for the optimal properties of the composite were achieved at 15.766 min, 1.668% and 10.096 mm respectively. The maximum optimized tensile strength of 57.572 Mpa, flexural strength of 59.262 Mpa, impact strength of 24.200 Mpa, compressive strength 120.307 Mpa, flame retardant of LOI values of 28.692 % of were obtained. Water absorption of the tiles increased with increase in the fiber length. Overall, the experimental findings demonstrate the possibility of using sisal reinforced LDPE filled with ESP composite as a sustainable substitute material to create wall tiles that are better for the environment, within low cost and have enhanced mechanical, physical, and chemical properties of composite.

Keywords: composite, sisal, ESP, LDPE

Procedia PDF Downloads 7
754 Environmental Radioactivity Analysis by a Sequential Approach

Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab

Abstract:

Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.

Keywords: Bayesian approach, event mode sequence, gamma spectrometry, Monte Carlo method

Procedia PDF Downloads 497
753 The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups

Authors: Peter Boyes, Sarah Sharples, Paul Tennent, Gary Priestnall, Jeremy Morley

Abstract:

Significant long-term investment projects can involve complex decisions. These are often described as capital projects, and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives; these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in the complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with the perception of veracity and validity of the data presented; this impacted the ability of group to reach consensus and, therefore, for decisions to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.

Keywords: decision making, decisions under uncertainty, real decisions, sensemaking, spatial, team decision making

Procedia PDF Downloads 132
752 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations

Authors: Priyanka Bharti

Abstract:

Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.

Keywords: cognition, visual, decision making, graphics, recognition

Procedia PDF Downloads 269
751 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.

Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 52
750 Differences in Cognitive Functioning over the Course of Chemotherapy in Patients Suffering from Multiple Myeloma and the Possibility to Predict Their Cognitive State on the Basis of Biological Factors

Authors: Magdalena Bury-Kaminska, Aneta Szudy-Szczyrek, Aleksandra Nowaczynska, Olga Jankowska-Lecka, Marek Hus, Klaudia Kot

Abstract:

Introduction: The aim of the research was to determine the changes in cognitive functioning in patients with plasma cell myeloma by comparing patients’ state before the treatment and during chemotherapy as well as to determine the biological factors that can be used to predict patients’ cognitive state. Methods: The patients underwent the research procedure twice: before chemotherapy and after 4-6 treatment cycles. A psychological test and measurement of the following biological variables were carried out: TNF-α (tumor necrosis factor), IL-6 (interleukin 6), IL-10 (interleukin 10), BDNF (brain-derived neurotrophic factor). The following research methods were implemented: the Montreal Cognitive Assessment (MoCA), Battery of Tests for Assessing Cognitive Functions PU1, experimental and clinical trials based on the Choynowski’s Memory Scale, Stroop Color-Word Interference Test (SCWT), depression measurement questionnaire. Results: The analysis of the research showed better cognitive functions of patients during chemotherapy in comparison to the phase before it. Moreover, neurotrophin BDNF allows to predict the level of selected cognitive functions (semantic fluency and execution control) already at the diagnosis stage. After 4-6 cycles, it is also possible to draw conclusions concerning the extent of working memory based on the level of BDNF. Cytokine TNF-α allows us to predict the level of letter fluency during anti-cancer treatment. Conclusions: It is possible to presume that BDNF has a protective influence on patients’ cognitive functions and working memory and that cytokine TNF-α co-occurs with a diminished execution control and better material grouping in terms of phonological fluency. Acknowledgment: This work was funded by the National Science Center in Poland [grant no. 2017/27/N/HS6/02057.

Keywords: chemobrain, cognitive impairment, non−central nervous system cancers, hematologic diseases

Procedia PDF Downloads 152
749 Shear Behavior of Reinforced Concrete Beams Casted with Recycled Coarse Aggregate

Authors: Salah A. Aly, Mohammed A. Ibrahim, Mostafa M. khttab

Abstract:

The amount of construction and demolition (C&D) waste has increased considerably over the last few decades. From the viewpoint of environmental preservation and effective utilization of resources, crushing C&D concrete waste to produce coarse aggregate (CA) with different replacement percentage for the production of new concrete is one common means for achieving a more environment-friendly concrete. In the study presented herein, the investigation was conducted in two phases. In the first phase, the selection of the materials was carried out and the physical, mechanical and chemical characteristics of these materials were evaluated. Different concrete mixes were designed. The investigation parameter was Recycled Concrete Aggregate (RCA) ratios. The mechanical properties of all mixes were evaluated based on compressive strength and workability results. Accordingly, two mixes have been chosen to be used in the next phase. In the second phase, the study of the structural behavior of the concrete beams was developed. Sixteen beams were casted to investigate the effect of RCA ratios, the shear span to depth ratios and the effect of different locations and reinforcement of openings on the shear behavior of the tested specimens. All these beams were designed to fail in shear. Test results of the compressive strength of concrete indicated that, replacement of natural aggregate by up to 50% recycled concrete aggregates in mixtures with 350 Kg/m3 cement content led to increase of concrete compressive strength. Moreover, the tensile strength and the modulus of elasticity of the specimens with RCA have very close values to those with natural aggregates. The ultimate shear strength of beams with RCA is very close to those with natural aggregates indicating the possibility of using RCA as partial replacement to produce structural concrete elements. The validity of both the Egyptian Code for the design and implementation of Concrete Structures (ECCS) 203-2007 and American Concrete Institute (ACI) 318-2011Codes for estimating the shear strength of the tested RCA beams was investigated. It was found that the codes procedures gives conservative estimates for shear strength.

Keywords: construction and demolition (C&D) waste, coarse aggregate (CA), recycled coarse aggregates (RCA), opening

Procedia PDF Downloads 394
748 The Effect of Penalizing Wrong Answers in the Computerized Modified Multiple Choice Testing System

Authors: Min Hae Song, Jooyong Park

Abstract:

Even though assessment using information and communication technology will most likely lead the future of educational assessment, there is little research on this topic. Computerized assessment will not only cut costs but also measure students' performance in ways not possible before. In this context, this study introduces a tool which can overcome the problems of multiple choice tests. Multiple-choice tests (MC) are efficient in automatic grading, however structural problems of multiple-choice tests allow students to find the correct answer from options even though they do not know the answer. A computerized modified multiple-choice testing system (CMMT) was developed using the interactivity of computers, that presents questions first, and options later for a short time when the student requests for them. This study was conducted to find out whether penalizing for wrong answers in CMMT could lower random guessing. In this study, we checked whether students knew the answers by having them respond to the short-answer tests before choosing the given options in CMMT or MC format. Ninety-four students were tested with the directions that they will be penalized for wrong answers, but not for no response. There were 4 experimental conditions: two conditions of high or low percentage of penalizing, each in traditional multiple-choice or CMMT format. In the low penalty condition, the penalty rate was the probability of getting the correct answer by random guessing. In the high penalty condition, students were penalized at twice the percentage of the low penalty condition. The results showed that the number of no response was significantly higher for the CMMT format and the number of random guesses was significantly lower for the CMMT format. There were no significant between the two penalty conditions. This result may be due to the fact that the actual score difference between the two conditions was too small. In the discussion, the possibility of applying CMMT format tests while penalizing wrong answers in actual testing settings was addressed.

Keywords: computerized modified multiple choice test format, multiple-choice test format, penalizing, test format

Procedia PDF Downloads 168
747 21st Century Computer Technology for the Training of Early Childhood Teachers: A Study of Second-Year Education Students Challenged with Building a Kindergarten Website

Authors: Yonit Nissim, Eyal Weissblueth

Abstract:

This research is the continuation of a process that began in 2010 with the goal of redesigning the training program for future early childhood teachers at the Ohalo College, to integrate technology and provide 21st-century skills. The article focuses on a study of the processes involved in developing a special educational unit which challenged students with the task of designing, planning and building an internet site for kindergartens. This project was part of their second-year studies in the early childhood track of an interdisciplinary course entitled 'Educating for the Future.' The goal: enabling students to gain experience in developing an internet site specifically for kindergartens, and gain familiarity with Google platforms, the acquisition and use of innovative skills and the integration of technology in pedagogy. Research questions examined how students handled the task of building an internet site. The study explored whether the guided process of building a site helped them develop proficiency in creativity, teamwork, evaluation and learning appropriate to the 21st century. The research tool was a questionnaire constructed by the researchers and distributed online to the students. Answers were collected from 50-course participants. Analysis of the participants’ responses showed that, along with the significant experience and benefits that students gained from building a website for kindergarten, ambivalence was shown toward the use of new, unfamiliar and complex technology. This attitude was characterized by unease and initial emotional distress triggered by the departure from routine training to an island of uncertainty. A gradual change took place toward the adoption of innovation with the help of empathy, training, and guidance from the instructors, leading to the students’ success in carrying out the task. Initial success led to further successes, resulting in a quality product and a feeling of personal competency among the students. A clear and extreme emotional shift was observed on the spectrum from a sense of difficulty and dissatisfaction to feelings of satisfaction, joy, competency and cognitive understanding of the importance of facing a challenge and succeeding. The findings of this study can contribute to increased understanding of the complex training process of future kindergarten teachers, coping with a changing world, and pedagogy that is supported by technology.

Keywords: early childhood teachers, educating for the future, emotions, kindergarten website

Procedia PDF Downloads 156